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Cities are the hot spots for global dengue transmission. The increasing availability of human movement 
data obtained from mobile devices presents a substantial opportunity to address this prevailing 
public health challenge. Leveraging mobile phone data to guide vector control can be relevant for 
numerous mosquito-borne diseases, where the influence of human commuting patterns impacts not 
only the dissemination of pathogens but also the daytime exposure to vectors. This study utilizes 
hourly mobile phone records of approximately 3 million urban residents and daily dengue case counts 
at the address level, spanning 8 years (2015–2022), to evaluate the importance of modeling human-
mosquito interactions at an hourly resolution in elucidating sub-neighborhood dengue occurrence 
in the municipality of Rio de Janeiro. The findings of this urban study demonstrate that integrating 
knowledge of Aedes biting behavior with human movement patterns can significantly improve 
inferences on urban dengue occurrence. The inclusion of spatial eigenvectors and vulnerability 
indicators such as healthcare access, urban centrality measures, and estimates for immunity as 
predictors, allowed a further fine-tuning of the spatial model. The proposed concept enabled the 
explanation of 77% of the deviance in sub-neighborhood DENV infections. The transfer of these results 
to optimize vector control in urban settings bears significant epidemiological implications, presumably 
leading to lower infection rates of Aedes-borne diseases in the future. It highlights how increasingly 
collected human movement patterns can be utilized to locate zones of potential DENV transmission, 
identified not only by mosquito abundance but also connectivity to high incidence areas considering 
Aedes peak biting hours. These findings hold particular significance given the ongoing projection of 
global dengue incidence and urban sprawl.
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The increasing amount of worldwide collected human movement data has a large potential to address current 
public health challenges1–3. Human mobility patterns, derived from a variety of data sources, such as mobile 
phone networks or social media platforms4,5, offer not only the ability to predict the spatial occurrence 
of infectious diseases6–9 but also to assess the effectiveness of control interventions10,11. This is of particular 
interest for many vector-borne diseases, for which labor-intensive vector control remains the most efficacious 
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countermeasure12–14. Among them, the mosquito-borne disease dengue fever is the most important, with a 30-
fold increase in incidence over the last 50 years, causing approximately 400 million infections each year15.

Urban growth, climate change, and international travel are known key drivers for this global incline in 
the dengue virus (DENV) occurrence (cf. Fig. 1)16. DENV transmission dynamics are highly determined 
by the interplay of mosquito abundance and connectivity, as defined by human movements17,18. A precise 
understanding of these risk factors, especially their spatial variation and interaction, is essential for an efficient 
allocation of vector control resources and the prevention of DENV outbreaks world wide19–21. Modeling human-
mosquito interactions however can be a challenging task, especially at urban scale, where most DENV infections 
occur and precise knowledge about mosquito abundance as well as hourly human movement patterns is often 
missing22. This research work is part of the ’Lancet Commission on Dengue’ and aims to study the phenomenon 
of urban areas as global hotspots for dengue transmission and prevention.

Another challenging aspect of modeling human-mosquito interaction involves considering the ecological 
characteristics of the vector. DENV is a flavivirus transmitted primarily by female mosquitoes of the species 
Aedes aegypti and Aedes albopictus23,24. Both mosquito species tend to breed in small, artificial water containers 
often found in close proximity to human settlements25–31. Additionally, they exhibit a limited flight range, which 
is estimated to be below 1000 m32–35, and a diurnal biting behavior that mainly covers evening and morning 
twilights. Incorporating these ecological vector characteristics into the modeling of urban dengue outbreaks is 
imperative in the pursuit of alleviating the global burden of dengue fever36.

In this study, our primary objective is to assess the importance of ecological vector characteristics in explaining 
the spatial distribution of urban dengue infections. We propose that incorporating human-mosquito interactions 
on an hourly basis, while considering the diurnal biting behavior of mosquitoes and daytime commuting 
patterns of humans at a sub-neighborhood scale, may significantly impact our understanding of inner-urban 
dengue dynamics. To achieve this, we analyze the sensitivity of inferences related to various assumptions about 
hourly human-mosquito interactions. We develop two distinct modeling scenarios: one that neglects existing 
knowledge about Aedes mosquito twilight activity, and another that incorporates this knowledge through feature 
engineering, allowing for a more comprehensive analysis of the intricate dynamics of urban dengue infections. A 
low sensitivity to these inferences would suggest that ecological vector characteristics play a minor role in urban 
dengue outbreaks. Conversely, a high sensitivity would underscore the need to carefully account for diurnal 
biting behavior and daytime human movements when modeling DENV infections, especially at a fine-grained 
urban scale. In order to carry out this investigation we integrate data from previous research on high-resolution 
urban mosquito mapping39 and inner-urban human mobility patterns40, thereby creating hourly transmission 
risk maps. Our study focuses on the municipality of Rio de Janeiro, Brazil, an urban area endemic for Aedes 
mosquitoes and experiencing numerous dengue cases annually41. The findings from this research could 
significantly enhance our understanding of urban dengue transmission dynamics and potentially contribute to 
the development of more effective control strategies for this disease. More specifically, our investigation focuses 
on evaluating the impact of two key factors on model enhancement: (i) the feature engineering of hourly human-
mosquito biting risk and (ii) the incorporation of spatial eigenvector mapping and vulnerability indicators.

Materials and methods
Here, we propose a novel risk modeling framework integrating ecological characteristics of A. aegypti and A. 
albopictus with data-driven insights on inner-urban human movement flows. This framework consists of three 
main parts (cf. Fig. 2): (i) the retrieval of DENV-related proxies capturing the three risk components of hazard, 
exposure, and vulnerability, (ii) the daytime feature engineering of human-mosquito biting risk integrating 

Fig. 1. Pearson’s correlation coefficients between yearly dengue incidence37 and percentage share of population 
in urban areas38 for PAHO (Pan American Health Organization) countries between 1960 and 2021. This 
analysis explores the potential association between urban growth and the increase in global DENV occurrence, 
recognizing that correlation does not necessarily imply causation (left). Urban cycle of DENV transmission, 
highlighting the role of human movement and limited mosquito flight range for disease occurrence (right).
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human movement data with knowledge of Aedes biting behavior, and (iii) the spatial eigenvector mapping42 of 
urban DENV occurrence using vulnerability indicators.

Data
All employed datasets, including their sources, spatial resolutions, and pre-processing procedures, are listed 
in Table 2. In order to evaluate our approach, we acquired daily counts of DENV cases from 2015 to 2022 with 
geographical coordinates corresponding to residential addresses (cf. Fig. 3). In adherence to ethical considerations 
and following approval by the Research Ethics Committee (CEP), this dataset underwent anonymization and 
was made accessible upon formal request by the municipal health ministry of Rio de Janeiro.

Fig. 2. Workflow for the sub-neighborhood spatial eigenvector mapping of urban DENV occurrence applying 
entomological surveillance (left) and call detail records (middle) to model daytime human-mosquito biting 
risk for the municipality of Rio de Janeiro in Brazil on an hourly basis. Voronoi tessellations based on mobile 
phone antenna locations were employed as the spatial unit for analysis. In the feature engineering process, 
the base model assumed a constant human-mosquito interaction throughout the day, while the proposed 
model accounted for the fluctuating exposure of humans to mosquito bites, considering the twilight biting 
activity of Aedes mosquitoes and the hourly commuting patterns of humans. Note that this workflow identifies 
associations at an aggregate level and should be interpreted with caution to avoid ecological fallacies, as it 
does not imply causation at the individual level. (CDRs: Call detail records; ORS: OpenRouteService; IGBE: 
Brazilian Institute of Geography and Statistics; IPEA: Institute of Applied Economic Research; SMS-RJ: 
Municipal Health Ministry of Rio de Janeiro).
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Hazard
The hazard risk components in this study were modeled using a variety of entomological surveillance data sources, 
focusing on different stages of the mosquito lifecycle. These data included mosquito egg and larva counts (cf. Fig. 
7) as well as indices representing larva and pupa infestation (cf. Fig. 8). To model the abundance of immature 
A. aegypti and A. albopictus in urban areas, we used egg and larval counts from the year 2019, collected from 
2698 ovitraps distributed across the study area. However, since ovitrap counts have limited spatial validity due to 
heterogeneous urban landscapes and the restricted flight range of Aedes mosquitoes, previous studies enhanced 
this dataset by incorporating high-resolution urban suitability indicators22,39,43. This approach allowed for a 
continuous approximation of seasonal urban mosquito suitability, considering a limited flight range of 200 m. 
For modeling larvae and pupae infestation, data from the Larval Infestation Rapid Assay (LIRA) were applied. 
These datasets covering the years 2015–2022 included seasonal Breteau and House indices, which were collected 
for 256 homogeneous street blocks defined by entomologists during survey design. The House index (HI) gauged 
the number of infested houses relative to the total visited buildings during LIRA, while the Breteau index (BI) 
represented the number of positive containers per 100 houses inspected. All entomological surveillance datasets 
used in this research were obtained from the municipal health department of the municipality of Rio de Janeiro 
upon request, exclusively for the purpose of this study.

Exposure
To model the exposure components, we obtained hourly origin-destination (OD) matrices and corresponding 
population density maps using anonymized call detail records provided by a large Brazilian telecommunications 
company. This raw dataset comprised individual antenna connections from approximately three million 
individual users, representing an estimated 45 percent of the population of the municipality of Rio de Janeiro. 
The raw data had a temporal resolution of 5 min, capturing user connections to 1359 antennas distributed across 
163 neighborhoods. In this study, the collective OD matrices for Voronoi tessellations, delineated by the locations 
of antennas, were generated based on the temporal sequences of individual antenna connections spanning from 
July 2021 to July 2022, encompassing a complete annual cycle of human mobility patterns. A more extensive 
description of the applied methods was given by a previous study40. Figure 4 illustrates the fluctuations in human 
population density throughout the day due to commuting dynamics within the municipality of Rio de Janeiro, 
where day and night active antennas are defined by their dominant active periods on a daily basis.

Vulnerability
We hypothesized that the likelihood of an infected individual appearing in official health registries is influenced 
not only by the human-mosquito biting risk but also by other factors, which were defined as vulnerability 
indicators and considered to refine the precision of estimating the spatial distribution of dengue cases, especially 
within an urban setting. The utilized indicators can be classified into five subgroups: centrality, accessibility, 
socio-economics, demographics, and level of immunity. Centrality indicators were derived from OpenStreetMap 
(OSM) using the OpenRouteService API44. Mean road centrality by average travel time was calculated on a 

Fig. 3. A 200 m grid displaying statistically significant hotspots, cold spots, and spatial outliers derived 
from daily DENV health records collected for the municipality of Rio de Janeiro between January 2015 and 
December 2022. Spatial autocorrelation and the identification of clusters with similar or dissimilar values were 
assessed using the Anselin Local Moran’s I statistic. In this context, ‘High–High’ clusters represent areas with 
high DENV occurrence surrounded by neighboring areas with similarly high occurrence, and ‘Low–Low’ 
clusters indicate areas with low occurrence surrounded by low-occurrence neighbors. Areas colored white 
indicate the absence of significant spatial autocorrelation in dengue occurrence. (created using ArcGIS).
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200m grid using cars as a transportation medium (cf. Fig. 9). These measures were hypothesized to estimate 
human closeness and interaction, as tested in a previous study45. Accessibility to job opportunities and travel 
time to the closest healthcare facilities using active transportation as well as public schools were retrieved from 
the Institute for Applied Economic Research (IPEA) on a hexagonal grid of 0.11 km2 (cf. Fig. 10)46. The same 
data source was applied to download a cumulative opportunity measure of the whole population, indicating the 
number of opportunities that can be reached within 60 minutes of travel time, and the socio-economic indicator 
of average household income per capita. We hypothesized that all these accessibility and socio-economic 
indicators influence the appearance of dengue infections in the official health database. For instance, we assumed 
that inhabitants of shanty towns (favelas) in Rio de Janeiro with lower average income and lower accessibility 
measure are less likely to visit a doctor with dengue symptoms compared to people of higher social class47,48.

Information about the most vulnerable age groups for DENV infections was included by using population 
estimates for children below five years and elderly individuals above 60 years from the Humanitarian Data 
Exchange49. These indicators were included to estimate the severity of symptoms50 and, thus also the likelihood 
of visiting a doctor and being registered in an official health database (cf. Fig. 11). Additionally, we retrieved the 
locations of past DENV infections, including all four DENV serotypes, hypothesizing that past dengue epidemics 
serve as a reliable indicator for modeling immunity levels at the population level51. However, this immunological 
vulnerability effect would likely be complex as it is dependent on the sequence of DENV serotypes causing DENV 
cases over time as well as the time intervals between them52. All mentioned vulnerability components were 
combined with the daytime models for human-mosquito biting risk to facilitate spatial eigenvector mapping of 
urban DENV occurrence, which is described in the following “Methods” section.

Methods
Feature engineering of hourly human-mosquito biting risk
In this study, we propose a novel method to model the spatial distribution of human-mosquito biting risk in 
urban areas by incorporating ecological characteristics of mosquitoes, specifically focusing on the diurnal 
biting behavior of A. aegypti and A. albopictus. Our method involved integrating local estimates of mosquito 
abundance Mi with knowledge about hourly human distribution over the considered area to derive an aggregate 
measure of mosquito biting risk Bi for residents of cell Ci:

 
Bi =

[
24∑

h=1

ω(h)

(
N∑

j=1

χi,j(h)Mj

)]
 (1)

Equation 1 aims to more accurately reflect mosquito bite risk than estimates solely based on local mosquito 
abundance by incorporating two key principles. First, due to human movement, individual hosts are exposed 
to different mosquito populations throughout the day. To capture this for each hour of the day h, we calculated 
a weighted sum approximating the contribution of mosquito populations Mj  from all cells Cj  to the biting risk 

Fig. 4. Daytime human population density in the municipality of Rio de Janeiro, estimated by using mobile 
phone data. Hourly changes in antenna activity behave differently in various zones of the case study region, 
as shown for two selected subregions. While the dominant mobility motif in the northwest district involved 
movement between three locations, the southeast district exhibited a dominant mobility motif characterized by 
movement between two locations. (created using QGIS).
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of people resident in cell Ci. This sum reflects the extent to which the hourly mosquito biting risk originating 
from the mosquito population Mj  in cell Cj  affects individuals residing in cell Ci. To this end, we estimated 
χi,j(h), representing the fraction of people present in antenna tessellation cell Cj  during hour h, relative to the 
total number of residents in antenna tessellation cell Ci. The calculation of χi,j(h) utilized hourly OD matrices, 
indicating collective human mobility from cell Ci to cell Cj . Secondly, considering the daytime variation in 
mosquito biting behavior, we introduced the hourly weighting function, denoted as w(h) in our model (cf. Eq. 
2). It is well-documented that A. aegypti and A. albopictus biting behavior occurs exclusively during daylight 
hours, with heightened activity observed during twilight53–55. As such, we assumed a decrease in mosquito 
biting activity during midday hours. However, we posited that this behavior might persist in shaded regions 
characterized by elevated humidity and other environmental factors favoring mosquito activity56–58. Notably, 
mosquito biting activity during the night was excluded from our proposed model.

 

ω(h) =





3, if h ∈ {6, 7, 8, 9, 15, 16, 17, 18}
2, if h ∈ {5, 10, 14, 19}
1, if h ∈ {4, 11, 12, 13, 20}
0, otherwise

 (2)

The proposed feature engineering underwent evaluation employing a quasi-Poisson generalized linear model 
(QP-GLM), wherein the target variable Di was defined by overdispersed official dengue case counts aggregated 
on 1359 antenna tessellations between the years 2015 and 2022 (cf. Eq. 3). For evaluation, we calculated Cohen’s 
pseudo-R2 (cf. Eq. 4). The explained deviance for this regression model was compared to the pseudo-R2 of a 
base model that did not consider assumptions related to diurnal Aedes mosquito biting behavior and hourly 
human movement (cf. Fig. 2). In contrast to the proposed model, the base model was implemented utilizing 
identity OD matrices for χi,j(h).

 

Di ∼ quasi-Poisson(µ̂i, θ̂)
E(Di) = µ̂i

Var(Di) = µ̂i ∗ θ̂, with θ̂ ̸= 1
log(µ̂i) = log(Hi) + β̂0 + β̂1 ∗ Bi

 (3)

 Cohen′s pseudo R2 = 1 − model deviance
null model deviance  (4)

Spatial eigenvector mapping incorporating selected vulnerability indicators
After evaluating the feature engineering of hourly human-mosquito biting risk, we expanded our QP-GLM in 
two aspects: (i) by incorporating vulnerability indicators to model the likelihood of an infected individual being 
registered in official health registries, geolocated by residency, and (ii) by integrating spatial eigenvectors to address 
spatial autocorrelation of residuals. To mitigate multicollinearity among covariates, we selected vulnerability 
indicators with low intercorrelation (≤ 0.7). These two model extensions led to a more comprehensive model 
for sub-neighborhood DENV occurrence, considering daytime human-mosquito biting risk, as explored in our 
initial research question.

Our second research objective focuses on the enhancement of spatial estimates of sub-neighborhood DENV 
occurrence by incorporating spatial eigenvectors and selected vulnerability indicators. By addressing this 
question, we aim to assess the extent to which these additional variables improve the predictive capability and 
understanding of DENV transmission dynamics within the urban environment. Here, vulnerability features were 
defined as variables that influence the appearance and collection process of DENV infections at the urban scale, 
but not the human-mosquito biting risk itself. This strategic inclusion allows us to dissect the nuanced factors 
contributing to DENV occurrence, beyond solely focusing on the dynamics of human-mosquito interactions. In 
this study, these factors included the location of vulnerable age groups, accessibility to health care facilities, road 
network centrality, the socio-economic factor of average income, and estimates on immunity levels derived from 
past DENV infections. In contrast to the first model defined in Eq. 3, the year 2022 was selected as the reference 
year for predictions, coinciding with the occurrence of the last major DENV outbreak in the municipality of Rio 
de Janeiro (cf. Fig. 12). Consequently, immunity levels were estimated based on the spatial distribution of past 
infections recorded between 2015 and 2021.

The applied spatial eigenvector mapping, originally proposed by Griffith et al.42, involved the incorporation 
of additional covariates to absorb spatial autocorrelation. This ensures unbiased estimators for other predictors. 
These covariates, derived from the eigenfunction decomposition of the spatial weight matrix W, are called 
spatial eigenvectors. They represent orthogonal components that effectively separate and capture information 
on spatial autocorrelation, similar to principal component analysis. In our study, we employed daily aggregated 
OD matrices from July 2021 to July 2022 to illustrate human connectivity between antenna tessellations, serving 
as a spatial weight matrix (cf. Fig. 5). This led to the generation of 1359 spatial eigenvectors, out of which the 
ME function from the ’spatialreg’ R package facilitated the identification of a specific subset applying brute-force 
search59,60 under consideration of an alpha threshold of 0.05 to mitigate residual autocorrelation. This selected 
subset of eigenvectors was integrated as additional covariates into the QP-GLM (cf. Eq. 3).

Results
Evaluating the feature engineering of hourly human-mosquito biting risk
The results in Table 1 demonstrate how considering mosquito biting hours and human movement corridors 
can enhance the accuracy of spatial estimates for urban DENV occurrence. The proposed feature engineering 
method outperforms the baseline model, which does not consider the daylight activity of Aedes mosquitoes, 
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and demonstrates a 13.5% increase in the explained deviance within the response of the QP-GLM. Both models 
yielded positive and significant estimates for their hazard and exposure combined covariate of human-mosquito 
biting risk Bi. The computed global Moran’s I value for the residuals was 0.59.

Considering the aforementioned results, it implies that integrating knowledge of Aedes biting behavior with 
human movement patterns can also facilitate the inference of probable transmission sites for reported dengue 
cases. If this holds true, increased mosquito control interventions in these locations would have the potential to 
combat Aedes-borne diseases more effectively.

Figure 6 presents, as a highlight of this work, the practical implications of these research findings for the 
municipality of Rio de Janeiro. A novel mapping approach for vector control intervention was developed, 
incorporating (i) the spatial distribution of mosquitoes, as indicated by temporally aggregated entomological 
surveillance data, (ii) the spatial dispersal of dengue occurrence, and (iii) the most likely transmission locations 
for reported dengue cases, taking into account daytime Aedes biting behavior. This target effectiveness map 
marks regions that were potentially underestimated for vector control planning using entomological datasets 
only, while at the same time emphasizing the enduring importance of areas with high mosquito abundance.

The role of vulnerability indicators and spatial eigenvector mapping in model enhancement
We hypothesized that incorporating vulnerability indicators and spatial eigenvectors would further enhance 
the proposed QP-GLM (cf. Equation 3), which considers Aedes-human interactions for predicting the spatial 
occurrence of dengue in the municipality of Rio de Janeiro. The Cohen’s pseudo-R2 of the more extensive QP-
GLM considering hourly human-mosquito biting risk was determined to be 0.77, indicating that the extended 
model was capable of explaining up to 77 percent of the deviance in dengue occurrence on the sub-neighborhood 

QP-GLM

Intercept
Human-mosquito biting risk 
(Bi) Cohen’s explained deviance

β̂0 σ̂β̂0 β̂1 σ̂β̂1 P r(> |z|) pseudo-R2

Base model (BM) − 0.7914 0.2856 2.3228 0.4591 4.78e−7 0.0395

Proposed model (PM) 0.4273 0.0532 4.2866 0.2230 < 2e−16 0.1750

Table 1. Coefficients, standard errors, and p-values for QP-GLMs applying two different model scenarios 
for human-mosquito interaction, where the base model did not consider any temporal variation in human-
mosquito biting risk and the proposed model incorporated hourly adapting mosquito activity and human 
population densities. Regression coefficients and standard errors are reported at the link scale. The limited 
explained deviance in both models hints at the presence of missing latent covariates.

 

Fig. 5. Human movement patterns used for spatial eigenvector mapping of DENV occurrence in the 
municipality of Rio de Janeiro. Spatial weights were estimated applying mobile phone records from July 2021 to 
July 2022. Thick dark black edges represent high human connectivity between antenna locations, whereas thin 
and bright black stripes indicate a lower amount of human movements. (created using FlowmapBlue).
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level for the municipality of Rio de Janeiro in the year 2022. The computed global Moran’s I value for the residuals 
was 0.07, indicating low spatial autocorrelation. A QP-GLM with human-mosquito biting risk and vulnerability 
indicators but without spatial eigenvectors was not considered, as it yielded a higher overdispersion value of 
26 85 and a higher global Moran’s I of 0.2, despite having a Cohen’s pseudo-R2 of 0.83. This underscores the 
importance of vulnerability indicators and spatial eigenvector mapping in improving spatial predictions of 
sub-neighborhood dengue occurrences, which are georeferenced based on residency. Additional result on the 
applied vulnerability indicators and spatial eigenvectors are listed in the Appendix 2 (Table 3, Fig. 13).

Discussion
In this study, we analyzed the impact of modeling urban DENV occurrence under consideration of daytime 
mosquito activity and human movement patterns. The analysis has shown how urban areas exhibit spatial 
heterogeneity in numerous factors relevant to infectious disease transmission. The findings contribute to the 
understanding of infectious disease dynamics at a sub-neighborhood scale by highlighting the important 
role played by daytime mosquito activity and human movement flows in linking observed patterns of DENV 
incidence to inferred patterns of disease transmission. The inferred degree of spatial variation in urban DENV 
occurrence was sensitive to assumptions about daytime mosquito activity. Spatial discrepancy existed between 
the dominant location of mosquitoes, the spatial patterns of human-mosquito interaction points, and disease 
occurrence collected by residency. Taking these findings into account, one can conclude that methodologies that 
presume consistent human exposure to mosquito bites throughout the day potentially yield exaggerated and 
biologically inadequate interpretations regarding the patterns of disease transmission.

Hazard
We modeled hazard risk components associated with Aedes mosquitoes utilizing various entomological 
surveillance data. However, several limitations affect the reliability of our findings. First, the resolution of 
the LIRA data impedes the ability to accurately capture the high spatial variability of Aedes that may occur 
in heterogeneous urban landscapes such as Rio de Janeiro, owing to the limited flight range of mosquitoes. 
Second, while we incorporated entomological data on eggs, larvae, and pupae, the absence of data on adult 
mosquito populations is a notable limitation of this study. Adult populations are crucial for understanding 
transmission dynamics; thus, future research should address this gap by implementing monitoring strategies 
for adult populations, potentially using smart traps to yield more comprehensive data. Additionally, the ovitrap 
surveillance from 2019 does not fully align with the analysis timeframe of 2015 to 2022. This temporal discrepancy 
primarily stems from restricted access to the ovitrap data, which required ethical approval for this research. This 

Fig. 6. Novel vector control planning map considering daytime mosquito activity and human movement 
flows for the municipality of Rio de Janeiro. The figure illustrates the discrepancy between DENV occurrence 
and estimated mosquito abundance at an urban scale. Areas of dark red color represent target effectiveness 
zones measured by entomological surveillance. The black-striped Voronoi tesselations highlight potential 
danger areas for transmission that might be underestimated when relying solely on entomological surveillance 
or reported dengue cases. The identification of these zones relied on hourly-weighted propagated dengue 
occurrence HP − DENVi, weighted by biting activity, to reflect the locations of infected persons during the 

days denoted as HP − DENVi =
∑24

h=1 w(h) ·
(

DENV ·
∏h

j=1 ODj

)
. Within the black-striped Voronoi 

tessellations, sub-regions with high mosquito suitability are particularly relevant to guide interventions. 
(created using QGIS).
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limitation highlights the need for a culture of open data sharing to facilitate further research in the field of 
eco-epidemiology, ultimately enhancing our understanding of dengue transmission dynamics and potentially 
improving control interventions in the long term. In summary, addressing these uncertainties through improved 
methodologies and robust data collection will be essential for accurately modeling the hazards associated with 
dengue transmission.

Exposure
While mobile phone data significantly improved predictive accuracy, potential biases may have been introduced 
by excluding individuals without mobile phones or those using alternative service providers. Another limitation 
is related to the spatial resolution of the analysis, as mobile phone records could only be georeferenced by 
antenna tessellation, which may have affected spatial precision. Future studies could address this by validating 
the findings using higher-resolution mobility data, such as GPS trajectories,enabling modeling at an individual 
scale rather than aggregating risk into areal units, thus mitigating issues related to the Modifiable Areal Unit 
Problem (MAUP). Additional preprocessing challenges, such as accounting for offline movements and antenna 
congestion, further complicated the accurate extraction of human movement patterns. While upper and lower 
boundaries for inter-event times were implemented to mitigate data bias40, future research could explore the 
impact of these parameter choices on the retrieval of human movements from mobile phone data. Incorporating 
cross-boundary human movements to out-of-city regions, which were not included in this study, could 
additionally contribute to refining exposure estimates and enhancing overall predictive accuracy.

Our study models spatial dengue occurrence from January 2015 to December 2022; however, the exposure 
modeling component utilizes movement data only from July 2021 to July 2022. This discrepancy in timeframes 
may introduce biases, as the movement data do not fully represent the entire study period. Moreover, the 2021-
2022 period overlaps with the COVID-19 pandemic, during which movement restrictions, quarantines, and 
behavioral changes likely influenced mobility patterns. These pandemic-related biases could impact the accuracy 
of our inferred human-vector interactions and associated dengue risk patterns. Future studies could improve 
alignment with the study period and reduce uncertainty in exposure estimates by incorporating a longer, non-
pandemic timeframe for exposure modeling.

Given the restricted access to mobile phone data, Knoblauch et al.40 evaluated the use of geotagged 
tweets as a more openly available data source for modeling human movement patterns. The corresponding 
findings revealed the need for caution when using Twitter/X data for short-term urban mobility modeling, as 
it is vulnerable to policy changes and fluctuations in the availability of publicly accessible geotagged tweets. 
However, the 27-month validation study demonstrated that combining multiple mobility metrics, analyzing 
both dynamic and static mobility changes, and employing robust preprocessing techniques - such as rolling 
window downsampling - can improve the inference capabilities of Twitter/X data. Nevertheless, despite the 
application of these advanced methods, Twitter/X data may not always perform as well as mobile phone records 
in capturing human movement patterns, as validated during the COVID-19 pandemic using the stringency 
index, which measures the strictness of government-imposed mobility restrictions40. Future research could 
build on this validation study by exploring the potential of additional openly available data sources for 
retrieving human movement patterns. These may include data from public transit systems, ride-sharing apps, 
delivery services, household surveys, wearables, smart city sensors, and volunteered geographic information 
from platforms like Strava and Waze. Such data sources may offer valuable alternatives to mobile phone data 
and could provide critical insights into movement dynamics, essential for accurately modeling the spread of 
infectious diseases. Higher-order descriptions of movement, such as social network structure, have been shown 
to affect transmission dynamics in urban environments18,61,62. The consideration of the interplay among disease 
symptoms, infectiousness, and the mobility of individuals infected with DENV seems additionally promising in 
this context63–65. This complicates the assumption that the movement patterns of apparently healthy individuals 
can adequately represent the mobility patterns of those involved in transmission66.

Vulnerability
Additional limitations of our analysis stem from uncertainties related to vulnerability indicators. Socioeconomic 
status data, aggregated at the census block level, may fail to capture intra-block heterogeneity, potentially 
introducing spatial biases when aligned with our analysis units based on antenna tessellation. Healthcare 
accessibility, modeled using the OSM road network and active transportation assumptions, likely oversimplifies 
access in real-world conditions. In practice, accurate accessibility assessments would benefit from a more 
comprehensive road network, as OSM may not capture all routes, and should also consider factors such as 
health insurance coverage and passive transportation options. Furthermore, the absence of data on vaccine 
trials or public health interventions targeting Aedes-borne diseases may introduce local immunity effects not 
accounted for in this study, as immunity here was modeled solely through DENV occurrence data. Future 
studies incorporating high-resolution socioeconomic metrics, refined healthcare accessibility measures, and 
records of intervention efforts could presumably reduce some uncertainties associated with vulnerability factors.

Dengue occurrence
Our study leverages high-resolution dengue occurrence data at the point level, representing the precise latitude 
and longitude of each infected individual’s home address. This level of granularity enables integration with 
antenna tessellation cells, which we use as the spatial units of analysis (1359 cells in our study region), facilitating a 
finer-scale assessment of dengue transmission dynamics across the municipality of Rio de Janeiro. This approach 
marks a improvement over most studies, which are generally limited to the highest resolution available for openly 
accessible health records - typically aggregated at the neighborhood level in Brazil (e.g., 163 neighborhoods in 
our study region). However, the quality of this occurrence data is limited by several factors. First, underreporting 
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may be more prevalent in areas controlled by milícias - paramilitary groups that govern nearly half of the city 
and impose alternative governance structures, including control over healthcare services67. In these regions, 
residents are often required to pay milícias a commission for essential services, including medical care. Such 
governance by milícias can lead to inconsistent or unverified case reporting, thereby introducing bias into 
official municipal health records. Additionally, misdiagnosis remains a concern, as symptom overlap with other 
mosquito-borne diseases, such as Zika and chikungunya, can lead to misclassification of dengue cases. This 
issue was further exacerbated during the COVID-19 pandemic, which coincided with our study period, when 
individuals presenting with fever and other overlapping symptoms may have been misdiagnosed or hesitant to 
seek medical care. Lastly, reporting delays resulting from bureaucratic processes within the public health system 
may affect the completeness and timeliness of the occurrence data.

Modeling
Another key limitation of the results lies in the reliance on two relatively basic, temporally static statistical 
models for Aedes-human interactions: one assuming constant human exposure to mosquito bites throughout the 
day, and the other accounting for diurnal fluctuations. While these models offer valuable insights for comparing 
theoretical frameworks, they fall short of fully capturing the complexity of transmission dynamics. Future 
research could address this limitation by developing spatial process-based models that simulate transmission 
dynamics68,69. Though computationally demanding, such models would allow for the integration of mosquito 
behavior, ecological factors, and feedback mechanisms, including immunity dynamics and transmission cycles, 
to provide a more comprehensive understanding. In addition, incorporating the daytime variation in human 
host density across urban areas could enhance the models’ capacity to reflect changes in local vectorial capacity, 
as fluctuations in mosquito biting behavior and mosquito-to-host ratios could influence transmission risk. This 
approach would offer more refined insights into the efficacy of prevention and control strategies, presumably 
improving disease management in urban environments to a greater extent, as supported by the findings 
presented here. Besides that, future research could prioritize the development of spatiotemporal models that 
directly integrate high-resolution environmental suitability data and mobile phone data, rather than relying 
on spatiotemporal feature engineering. Adapting the proposed models to different mosquito species or regions 
will require accounting for variations in biting behavior influenced by factors such as day length. Incorporating 
seasonal shifts in sunrise and sunset times could further refine risk predictions, as could modeling partial 
nighttime activity of Aedes due to artificial lighting, particularly indoors. Smart traps equipped with optical or 
acoustic sensors provide a means to capture detailed, location-specific biting behavior of Aedes, offering more 
accurate data for modeling than the generalized literature values used in this study. Moreover, incorporating 
pathogen penetration rates for both host and vector populations into the models, may enhance the predictive 
accuracy of dengue occurrence models. However, widespread testing is often constrained by high costs, logistical 
complexities, and limited availability of advanced laboratory infrastructure.

Conclusion
Overall, these findings underscore the critical importance of integrating vector ecology and human behavior into 
advanced disease modeling frameworks. A major challenge persists due to the lack of high-resolution data, which 
is essential for capturing real-world dynamics and enabling biologically sound interpretations of transmission 
patterns within eco-epidemiological models. While our analysis provides valuable insights, it is important to 
note that observed associations do not imply causation, given the inherent limitations of aggregate data and 
the potential for fallacies in interpretation. This emphasizes the need for caution in interpreting population-
level patterns as causal relationships at the individual level. Although focused on dengue, the insights from this 
study may extend to other vector-borne diseases in which human movement patterns influence both pathogen 
dissemination and exposure to vectors. Future research could build on these findings by refining the proposed 
integration of human mobility data into vector control strategies. Shifting from a primary focus on vector 
abundance to guidance informed by vector-host interactions acknowledges that risk is shaped by the combined 
factors of hazard and exposure. Validating the effectiveness of these targeted vector control strategies through 
field studies across diverse geographical contexts will be essential for advancing their applicability beyond the 
specific case of Rio de Janeiro.
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Category Subcategory Proxy Spatial resolution Source
Required pre-
processing step

Hazard

Egg Estimated Aedes mean egg count per trap (MET) 200 m Ovitrap Interpolation39

Larva
Estimated A. aegypti mean larva count per trap (MLT) 200 m Ovitrap Interpolation39

Estimated A. albopictus mean larva count per trap 
(MLT) 200 m Ovitrap Interpolation39

Larva and pupa

Mean A. aegypti larva breteau index (BI) Survey strata LIRA Rasterization

Mean A. albopictus larva breteau index (BI) Survey strata LIRA Rasterization

Mean A. aegypti larva house index (HI) Survey strata LIRA Rasterization

Mean A. albopictus larva house index (HI) Survey strata LIRA Rasterization

Vulnerability

Accessibility

Travel time to closest healthcare facility (TMIST) H3 spatial grid 0.11 km2 IPEA –

Total number of healthcare facilities (S001) H3 spatial grid 0.11 km2 IPEA –

Travel time to closest public school (TMIET) H3 spatial grid 0.11 km2 IPEA –

Total number of public schools (E001) H3 spatial grid 0.11 km2 IPEA –

Cumulative opportunity measure to access jobs in 60 
minutes (CMATT60) H3 spatial grid 0.11 km2 IPEA –

Total number of formal jobs (T001) H3 spatial grid 0.11 km2 IPEA –

Centrality
OSM road network centrality by averaged travel time 
in car 200 m OpenStreetMap OpenRouteService44

Count of public transport stations < 1 m Data.Rio –

Demographics
Number of residents between 0 and 5 years old 30 m Humanitarian data exchange –

Number of residents older than 60 30 m Humanitarian data exchange –

Socio-economic Average household income per capita (R001) H3 spatial grid 0 11 km2 IPEA –

Immunity level DENV occurrence < 1 m Municipal health ministry 
(MRJ)

Spatio-temporal 
aggregation

Other
Spatial weight Human movement flows Antenna tessellation Mobile phone data Ping extraction40

Offset Residential population density 30 m Humanitarian data exchange –

Table 2. List of retrieved covariates for the modeling of urban DENV occurrence in the municipality of Rio 
de Janeiro, including information on the spatial resolution, data source and the required pre-processing step 
before running zonal statistics on antenna tessellation level.
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Figure 7. Seasonal urban suitability for A. aegypti eggs (left) and larvae (right) at a 200-meter resolution 
within the municipality of Rio de Janeiro for the year 2019, generated in a prior study39. The analysis employed 
a complementary approach integrating entomological surveillance data from ovitraps, ecological knowledge 
concerning limited mosquito flight range, and urban landscape indicators relevant to infer immature A. aegypti 
suitability. The blue timescale on the left indicates the wet and dry season. (created using QGIS).
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Fig. 9. Normalized centrality of OSM road network measured by travel time in car for the municipality of Rio 
de Janeiro. (created using QGIS).

 

Fig. 8. Entomological surveillance data collected via household survey called LIRA.
MinisteriodaSaudeBrazil.2013 Maps display the house index (left) and breteau index (right) for A. aegypti (top) 
and A. albopictus (bottom) averaged over 48 seasonal LIRA surveys between 2015 and 2022. (created using 
QGIS).
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Fig. 11. Comparison between the age distribution of DENV-infected individuals, determined by the time 
interval between birth and notification date in the official health system, and the overall age structure in Rio 
de Janeiro municipality as per the 2022 census. For the calculation of the average infection age, official health 
records from January 2015 to December 2022 were applied. The age structure of infected persons roughly 
aligns with the general demographic structure.

 

Fig. 10. Healthcare accessibility measured by travel time using an equal modal split of car, public transport, 
bicycle and walk for the municipality of Rio de Janeiro. (created using QGIS).
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Fig. 12. Daily fluctuations of DENV case counts and serotype dominance in the municipality of Rio de Janeiro 
from 2015 to 2022. Larger outbreaks in 2015, 2016, and 2019 co-occur with dominant serotype switches. Days 
indicated by white stripes indicate a lack of serotype tests in the official health database; many of these gaps 
also coincide with the COVID-19 pandemic.

 

Vulnerability Class Coefficients β̂ σ̂β̂ P r(> |z|)
Socio-economic Average household income − 6.2719 0.7059 < 2e−16

Accessibility

Travel time to closest healthcare facility − 0.1221 0.2665 6.47e−1

Total number of healthcare facilities − 1.2820 0.5748 2.59e−2

Travel time to closest public school − 0.3676 0.3162 2 45e−1

Total number of public schools 0.1972 0.2977 5.08e−1

Cumulative opportunity measure to access jobs in 60 minutes − 0.0901 0.2497 7 18e−1

Total number of formal jobs − 4.5421 2.2695 4.55e−2

Centrality
Standardized OSM road network centrality by average travel time in car 1.4925 0.6917 3 11e−2

Count of public transport stations 0.0893 0.0538 9.72e−2

Demographics
Number of residents between 0 and 5 years old − 3.8328 0.7463 3 23e−7

Number of residents older than 60 years 0.1224 0.6864 8.59e−1

Immunity level

Estimated level of immunity (2015) 1.3946 0.4481 1.90e−3

Estimated level of immunity (2016) 1.5296 0.4095 1.95e−4

Estimated level of immunity (2017) 0.4041 0.2507 1.07e−1

Estimated level of immunity (2018) − 0.7807 0.4332 7.18e−2

Estimated level of immunity (2019) 1.7539 0.5135 7.00e−4

Estimated level of immunity (2020) 0.5402 0.2855 5.87e−2

Estimated level of immunity (2021) 2.9644 0.5117 8.61e−9

Table 3. Coefficients, standard errors, and p-values for the proposed vulnerability indicators in the extended 
QP-GLM, which considers hourly human-mosquito biting risk and spatial eigenvectors in the municipality of 
Rio de Janeiro. Coefficient estimates and standard errors are reported at the link scale.
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Data availability
The materials and datasets generated and analyzed during the current study are available from the correspond-
ing author upon reasonable request. Restrictions apply only to the sharing of entomological surveillance data 
and health data collected by the Municipal Health Ministry of Rio de Janeiro, for which access should be granted 
directly from there via ethical approval. Additionally, all products generated from the mobile phone dataset can 
only be shared after approval from the provider.

Appendix 1
See Table 2 and Figs. 7, 8, 9, 10 and 11.

Appendix 2. Significance of vulnerability indicators and spatial eigenvectors
Among the applied vulnerability indicators, the socio-economic variable of average income emerged as the most 
influential predictor, demonstrating a negative association (Table 3). This suggests that higher average income 
levels in the municipality of Rio de Janeiro are associated with a reduced risk of dengue infections. Conversely, 
the indicators of the hypothesized vulnerability categories accessibility and centrality did not exhibit significant 
predictive power, contradicting our initial assumptions. The same applied to the density of older individuals. 
However, the density of individuals under five years emerged as a significant predictor in our model, exhibiting a 
negative estimate, which suggests that a higher concentration of children was linked to fewer dengue cases. This 
could potentially be explained by the fact that first dengue infection per individual have a higher probability of 
being clinically mild70. Additionally, behavioral factors could play a role, as households with young children may 
be more vigilant in implementing mosquito control measures, thereby reducing dengue transmission. 

In the assessment of the vulnerability class of immunity, our analysis indicated that the calculated significance 
values for each year of past infections depend on the magnitude of the outbreak pattern (cf. Fig. 12). The years 
with minor outbreaks and less spatial variance in DENV occurrence (2017, 2018, 2020) exhibited either no 
significant association or marginally statistically significant association, whereas the major outbreak years with 
larger spatial variance in DENV occurrence (2016, 2019) showed lower p-values. The most recent year in our 
analysis, 2021, yielded the highest p-value among the hypothesized immunological vulnerability indicators, de-
spite the occurrence of lower dengue incidence. Surprisingly, most estimates of this vulnerability category were 
positive, contrary to our initial hypothesis about past infections conferring population immunity. We hypothe-
sized that this is related to the fact that environmental factors facilitating transmission are overruling marginal 
gains in population immunity (under the assumption that cross-immunity between subsequent serotypes 
or genotypes is relevant). The complex immunological interactions between infections with the four dengue 
serotypes over time are not further discussed in this context24. In brief, past infections with a heterologous 
serotype confer short-term cross-immunity, while past infections with a homotypic serotype confer long-term 
immunity to the same serotype. The duration and effect size of the heterologous cross-immunity and potential-
ly enhancement is dependent on the time interval between the infections as well as on the specific sequence of 
the serotypes and their genotypic similarity52,70. These complex immunological interactions between dengue 
serotypes make it challenging to utilize spatial distribution patterns of dengue cases from previous years to 
model immunity levels. Here we can only show the possible existence of a confounding factor not accounted 
for in the model but influential in driving the spatial distribution of dengue cases at the sub-neighborhood 
scale.

It is important to note that the presented results are dependent on the selection and calculation methods for 
vulnerability indicators and spatial eigenvectors. Not all additional variables showed significance in our model, 
underscoring the nuanced impact and selective relevance of certain variables within such broader predictive 
frameworks. The significance of the proposed human-mosquito biting risk indicator did also diminish in a 

Fig. 13. Exemplary spatial eigenvectors derived from the model’s spatial weight matrix illustrating distinct 
patterns: Spatial eigenvector 2 shows gradual spatial gradients, and spatial eigenvector 135 depicts localized 
clustering. These eigenvectors unveil varying spatial structures within the study area, providing valuable 
insights into the underlying spatial relationships influencing the observed phenomena. (created using QGIS).
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more extended spatial model. The spatial eigenvectors (cf. Fig. 13) effectively absorbed a significant portion of 
the spatial autocorrelation present in the residuals of the proposed QP-GLM. They can be instrumental in for-
mulating additional hypotheses regarding potential missing covariates or confounding factors for integration 
into future models. Furthermore, they can serve as a tool for testing spatially varying regression coefficients.
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