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Abstract

Recognising the increasing complexities posed by climate challenges to urban

environments, it is crucial to develop holistic capabilities for urban areas to ef-

fectively respond to climate-related risks, forming the backbone of sustainable

urban planning strategies and demanding a comprehensive understanding of

urban climate justice. It requires a thorough examination of how climate

change exacerbates social, economic, and environmental inequalities within

urban settings, which requires a series of sophisticated spatial modellings

and relies on data collected periodically. This paper introduces a novel dual-

GNN approach, Multi-Hyper Graph Neural Network (MHGNN), with street

view imagery as input. The proposed model integrates a multigraph and a

hypergraph to model intricate spatial patterns for classifying urban climate

justice. The multigraph component of the MHGNN captures spatial proxim-

ity and pair-wise connections between urban areas to assess climate impacts.

Meanwhile, the hypergraph component addresses higher-order dependencies
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by incorporating hyperedges that connect multiple geographic areas based on

their similarities, thus capturing the multi-faceted relationships among areas

with comparable geographic characteristics. By harnessing the strengths of

both multigraph and hypergraph structures, the MHGNN provides a com-

prehensive understanding of the spatial dynamics of urban climate justice. It

achieves nearly a 24% performance improvement compared to conventional

spatial modelling methods, establishing it as a valuable tool for researchers

and policymakers in this domain. Codes available at GitHub1.

Keywords: Spatial Modelling, Graph Neural Network, Multigraph,

Hypergraph, Urban Resilience

1. Introduction

Cities are home to human habitation, housing a major proportion of

the global population, economic activity, and critical physical infrastructure.

However, urban areas, especially in the past decades, are increasingly vul-

nerable to the impacts of climate change, which is projected to intensify the

frequency and severity of flooding, heat waves, droughts, and other hazardous

events (Tuholske et al., 2021; Lankao and Qin, 2011). However, urban areas

react to natural hazards in diverse ways; for instance, coastal cities may im-

plement seawalls and storm surge barriers to combat flooding, while cities in

hot climates can establish green roofs and urban forests to mitigate the e↵ects

of heatwaves. Such measurements often reflect the unique socio-economic,

environmental, and infrastructural characteristics of each city and di↵erent

areas within (Sultana, 2022; Porter et al., 2020; Schlosberg and Collins, 2014),

1https://github.com/anonymized-for-review
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leading to consequences that some people and places are more exposed to the

direct impacts of climate change due to their location but with less capacity

to respond. Hence, the disparity in exposure and the unequal capacity to

respond to climate change underscore the urgent need for a holistic under-

standing of urban climate justice (Sebestyen et al., 2023; Steele et al., 2015;

Broto and Bulkeley, 2013).

Understanding urban climate justice involves examining how climate change

exacerbates social, economic, and environmental inequities in urban settings

(Shi et al., 2016), seeking to identify who is most a↵ected by climate change

impacts and why, considering factors such as socio-economic status, race,

ethnicity, and geographic location (Surminski et al., 2020). The concept

extends beyond mere vulnerability assessment; it calls for transformative ac-

tions that promote fairness and equity in both mitigating climate change

and adapting to its inevitable consequences. Census statistics and remote

sensing images are often the most common data sources to study urban cli-

mate justice (Amorim-Maia et al., 2022). One of the examples of using

census statistics to understand urban climate justice is the project Climate

Just (Sayers et al., 2017; Lindley et al., 2014), which was initiated in 2014

in the United Kingdom (UK) to address the intertwined relationship be-

tween climate change and social justice. While census statistics are valuable

for analysing complex patterns of human-urban interactions, they represent

a periodic snapshot (e.g., every decade in the UK) that remains fixed in

a rapidly changing world (Coleman, 2013). Remote sensing, on the other

hand, o↵ers the bird’s eye view of the Earth’s surface with more frequent

data collection and has been widely used for environmental-related research
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(Weigand et al., 2019). However, remote sensing satellites often provide data

at resolutions that may not be fine enough to capture detailed urban features

or small-scale variations within cities (Cao and Lam, 2023), putting barri-

ers for the specific urban micro-climates, such as small parks or individual

streets. Therefore, it is hard to analyse urban climate justice at a fine scale

(e.g., street or neighbourhood level) with remote sensing images.

Recently, street view imagery (SVI) has emerged as a valuable data source

for studying urban environments (Biljecki and Ito, 2021), unlocking new po-

tential for human-eye-level understanding of urban characteristics (Ito et al.,

2024) at a fine spatial resolution in quantitative analysis of environmental

urban justices, such as urban greenery (Lu et al., 2023; Xia et al., 2021; Li

et al., 2015b), pollution (Nathvani et al., 2023; Qi and Hankey, 2021; Apte

et al., 2017), and living quality (Rui and Cheng, 2023; Yin et al., 2023).

Most research utilises imagery from Google Street View (GSV) for urban an-

alytics (Biljecki and Ito, 2021); however, crowdsourcing SVIs from platforms

like Mapillary and KartaView provides broader spatial coverage, capturing

images from virtually any location in the city, which has attracted increasing

interest from experts in the field (Huang et al., 2024; Biljecki et al., 2023). To

support the use of SVIs in urban analytics, image segmentation—a computer

vision technique that partitions a digital image into discrete groups of pixels

for object detection and related tasks—alongside a wide range of geospatial

artificial intelligence (GeoAI) methods, has been developed for quantitative

urban sensing (Zhang et al., 2024a).

GeoAI, integrating AI methods into spatial analytics, has been a trend-

ing technique in urban studies (Wang et al., 2024; De Sabbata et al., 2023b;
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Liu and Biljecki, 2022). Graph Neural Networks (GNNs) are a set of AI

methods using graph modelling of geospatial phenomenons and are capable

of encapsulating the spatial relationships among geospatial objects into the

computational process (Mai et al., 2022). Hence, GNNs are widely acknowl-

edged as a genre of spatially-explicit GeoAI methods (Liu and Biljecki, 2022).

To facilitate GNNs in urban analytics, it is often a common practice to use

graphs to represent street networks (i.e., connectivity) with aggregated SVI

segmentation as streets’ features for downstream tasks (Ma et al., 2024; Liu

et al., 2024; De Sabbata et al., 2023a; Zhang et al., 2023). GNNs, then, con-

sider Tobler’s First Law of Geography (Tobler, 1970) by leveraging spatial

proximity and relational dependencies among nodes, incorporating spatial in-

formation through graph structures, where geographically closer nodes often

have stronger connections, leading to more influence during message passing.

Despite its usefulness in various urban analytical tasks (Liu and Biljecki,

2022), such a naive way of spatial modelling overlooks the high-order latent

interactions among spatial areas, failing to account for the attribute similar-

ity between locations that may exhibit highly correlated relationships even

across more distant locations (Wang and Zhu, 2024; Zhu et al., 2018). Such

high-order spatial interaction often refers to the Third Law of Geography

(Zhu and Turner, 2022; Zhu et al., 2018), which is particularly interesting

for studying urban climate justice context, highlighting how similar socio-

environmental conditions can drive interactions and inequalities, informing

more equitable climate policies and interventions. However, for spatially-

explicit GeoAI development, incorporating the Third Law of Geography re-

mains an underexplored research direction in current GNN-based GeoAI de-
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velopment.

This paper proposes a dual GNN-based analytical framework, Multi-

Hyper Graph Neural Network (MHGNN), combining a hypergraph-based

GNN and a multigraph-based GNN to classify urban climate justice, focusing

on flooding and heat resilience using SVIs from Mapillary. The hypergraph-

based GNN captures high-order, attribute-based relationships among distant

but similar areas, e↵ectively incorporating the Third Law of Geography. For

example, in a large city, consider three urban areas—Area A, Area B, and

Area C—that, while geographically dispersed, share similar socio-economic

vulnerabilities such as high population densities, low incomes, and mini-

mal green spaces, making them particularly susceptible to heatwaves. A

hypergraph model e↵ectively connects these areas not through geographic

proximity but via a hyperedge that represents their shared characteristics,

allowing for comprehensive analysis and targeted climate resilience interven-

tions, such as coordinated cooling centres, despite the areas not being phys-

ically adjacent, thus enhancing urban planning and adaptation strategies in

a way traditional graphs could not. Meanwhile, the multigraph-based GNN

still understands spatial proximity and pair-wise direct connections among

geographically closer areas, adhering to the First Law of Geography. We

demonstrate that such a dual-graph-based approach incorporating both the

first and the third laws of geography ensures a comprehensive spatial analy-

sis of the urban environment by considering spatial and attribute similarities

across urban regions.

To provide an overview of this study and its contributions, in this paper:

• we advance the technological advancement in urban justice studies at
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a fine spatial resolution by proposing a dual GNN-based analytical

framework, which incorporates both the First and the Third Law of

Geography;

• we propose a new ground-breaking spatial modelling method, which

captures both the high-order spatial interactions among areas that are

distant from each other and also the pair-wise spatial connections be-

tween areas;

• we showcase the use of crowdsourced SVIs in urban analytical tasks,

promoting the potential of volunteered geographic information (VGI)

in urban studies.

2. Background and Related Work

2.1. Urban Climate Justice: Flooding and Heat Waves

Urban climate justice is an emerging field that examines the intersection

of climate change impacts, social equity, and urban environments (Zhang

et al., 2024b; Surminski et al., 2020; Shi et al., 2016), which recognises that

the e↵ects of rapid climate change in the past decades, such as flooding and

extreme heat, are not experienced equally across di↵erent urban populations

(Bulkeley et al., 2014). Such a disparity often exacerbates existing social

inequalities, disproportionately a↵ecting vulnerable communities with the

least capacity to adapt and respond to these challenges.

Flooding is one of the most pressing climate change impacts in urban

areas (Dharmarathne et al., 2024; Wang et al., 2023; Chang and Huang,

2015; Schreider et al., 2000). Intense rainfall, sea level rise, and inadequate
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drainage systems often lead to severe urban flooding, which can devastate lo-

cal communities across cities (Latham et al., 2024; Mignot and Dewals, 2022).

Meanwhile, flooding highlights significant social disparities. Due to histori-

cal housing practices and economic constraints, lower-income neighbourhoods

are often situated in flood-prone areas with inadequate infrastructure, facing

the brunt of flood-related damages (Zhu et al., 2021; Aroca-Jiménez et al.,

2020). In the meantime, those neighbourhoods may su↵er from long-term

setbacks after flooding events because of insu�cient financial resources or

insurance coverage for the local residents to repair and rebuild after flood

events (Wang et al., 2021).

Meanwhile, extreme heat is another critical aspect of urban climate jus-

tice. Urban areas, with their dense concentrations of buildings and infras-

tructure, often experience higher temperatures than their rural counterparts,

a phenomenon known as the urban heat island e↵ect (Kim and Brown, 2021).

During heatwaves, such an e↵ect can worsen the health risks for urban resi-

dents. Vulnerable populations, such as the elderly, children, pregnant women,

and those with pre-existing health conditions, are particularly at risk due to

physiological factors (Park et al., 2021; Ebi et al., 2021). Additionally, low-

income communities lack access to cooling resources such as air conditioning,

green spaces, and adequate healthcare, rendering them more susceptible to

the adverse e↵ects of extreme heat (Benz and Burney, 2021; Ebi et al., 2021).

In densely populated urban areas, housing quality can also play a significant

role; poorly insulated homes can trap heat, creating hazardous living condi-

tions during heatwaves (Yadav et al., 2023).

Therefore, addressing urban climate justice involves integrating social eq-
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uity into climate adaptation and mitigation strategies (Bulkeley et al., 2014),

and having a holistic understanding of local socio-economic status to react

to rapid climate changes is often the first step (Karanja and Kiage, 2021; Xu

et al., 2021). As mentioned in the Introduction, the Climate Just project, ini-

tiated in 2014, is a groundbreaking initiative in the United Kingdom aimed at

addressing the intersection between climate change and social justice to iden-

tify and mitigate the disproportionate impacts of climate change on vulner-

able populations (Sayers et al., 2017; Lindley et al., 2014), with a particular

focus on both flooding and heat waves. Based on 2011 UK census statistics,

the project developed comprehensive indices to measure socio-economic vul-

nerabilities within urban populations in handling, adapting, and recovering

from floods or urban heat waves, or both (Lindley et al., 2014). Such in-

dices served as a critical resource for local authorities, urban planners, and

community organisations, providing a robust evidence base for prioritising

investments and interventions that enhance climate resilience in a socially

equitable manner. Our study takes the indices developed by Climate Just

not only as a proxy to understand neighbourhood-level urban resilience but

also as ground-truth data to train our proposed dual GNN-based analytical

framework (see Section 4).

2.2. Street View Images: Quantitative Measurement of Urban Environment

The advent of SVI has revolutionised the quantitative analysis of ur-

ban environments (Ito et al., 2024; Zhang et al., 2024a; Biljecki and Ito,

2021). Early applications of SVIs in urban studies focused primarily on vi-

sual assessments of urban landscapes. Researchers utilised these images for

qualitative evaluations, such as assessing streetscape aesthetics, pedestrian

9



infrastructure, and urban greenery (Ben-Joseph et al., 2013; Rundle et al.,

2011). In recent years, machine learning and computer vision techniques have

since facilitated a shift towards more quantitative approaches. Convolutional

Neural Networks (CNNs) and their further applications in image recognition

algorithms, such as object detection and image segmentation, have been em-

ployed to automate the extraction of urban features from SVIs, enabling

large-scale and objective measurements (Biljecki and Ito, 2021), opening up

new potentials in studying urban environmental justice (Lu and Chen, 2024).

One prominent application of SVIs is the quantification of urban greenery,

shading structures, and reflective surfaces Biljecki et al. (2023); Yang et al.

(2023), which are crucial in mitigating the urban heat island e↵ect (Price

et al., 2015). For example, Li et al. (2015a) developed a methodology using

GSVs to measure the Green View Index (GVI), which quantifies the visible

green space from the street level. Their proposed method accurately repre-

sents human exposure to greenery compared to traditional aerial or satellite

imagery. By analysing the distribution of green spaces, researchers can iden-

tify areas lacking adequate greenery, often corresponding to lower-income

neighbourhoods, thus highlighting issues of environmental inequality (Cheng

et al., 2024). Meanwhile, research such as Li and Ratti (2019) proposed a

method of solar radiation estimation at the street level based on the built

environment structures identified using SVIs, o↵ering new potential for bet-

ter urban planning strategies facing the increasingly prolonged urban heat

weaves throughout the years.

Other than the urban heat waves studies, SVIs o↵er a unique perspective

for evaluating flood risk and resilience at the street level, assessing the con-
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dition and capacity of drainage systems (Boller et al., 2019), the prevalence

of permeable surfaces (Kim et al., 2022), and the presence of flood defences

(Percival et al., 2020). Mapping urban flood facilities through SVIs allows

policymakers to understand urban flooding vulnerabilities (Koks et al., 2015),

prioritising investments in flood resilience where they are most needed and

ensuring necessary interventions are socially equitable (Tyler et al., 2023;

Ho✏inger et al., 2019).

Inspired by the recent trend of using SVIs to study urban environments,

our study uses information identified and extracted from street-level images

as the primary input for the proposed framework, developing a new GeoAI

method and promoting the use of SVIs in intelligent urban environment

understanding.

2.3. Spatially-explicit GeoAI: Laws of Geography

Despite our study focusing on urban climate justice, our proposed method

is inspired by a rent publication focusing on human activity intensity pre-

diction (Wang and Zhu, 2024). In their research, the authors introduced

a hypergraph-based hybrid graph convolutional network (HyGCN) for the

spatiotemporal modelling of human activity intensity by incorporating both

Tobler’s First Law of Geography and the Third Law of Geography into the

proposed spatial modelling task. The HyGCN model proposed in the arti-

cle consists of three major components: a graph convolution layer (GCN),

a hypergraph convolutional layer (HGCN) and a spatial fusion layer. The

GCN layer was developed for capturing pair-wise relationships among areas,

where each node updates its representation based on the features of its neigh-

bours, mimicking the idea that the characteristics of a place are influenced
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by nearby places, with the influence weighted by the distance or strength of

the relationship; hence, e↵ectively incorporating Tobler’s First Law of Geog-

raphy in the model. Meanwhile, HGCN, as an underexplored GNN method

in spatial analytical tasks, has been introduced in their paper to incorporate

the Third Law of Geography. HGCN uses hyperedges to capture the high-

order relationships among multiple locations based on the similarity of their

geographic settings. That is, each node can have attributes that describe

its geographic features, such as the intensity of human activities in their pa-

per. Hyperedges, which connect multiple nodes, can represent the level of

similarity among these locations, e↵ectively illustrating how geographically

similar areas tend to exhibit similar phenomena, adhering to the Third Law

of Geography. After capturing the pair-wise and high-order relationship fea-

tures produced by GCN and HGCN, a spatial fusion layer was implemented

to capture the coupled nature of geographic relationships, where pair-wise

relationships influence high-order relationships and vice versa, contributing

to an enhanced prediction of human activity intensity.

Wang and Zhu (2024) serves as a fundamental inspiration for our pro-

posed method. However, their method is relatively naive because both the

pair-wise connections and the hypergraphs constructed for the population in-

tensity studies focus only on the limited sets of spatialities in the model. In

comparison, urban climate justice presents a more complex challenge involv-

ing the multifaceted nature of both environmental factors and socio-economic

drivers (Shi et al., 2016). Consequently, we extended their method, tailoring

the model to address various aspects of human-environmental interactions

through intricate spatial modelling. Details of these modifications will be in-
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troduced in Section 3. Nonetheless, the concept of incorporating both pair-

wise and high-order interactions among geographic areas provides us with

unique insights into how a comprehensive understanding of spatial modelling

contributes to a better understanding of the urban environment.

3. A Multi-Hyper Graph Neural Network for Urban Sensing

This study introduces a multifaceted approach to studying the urban en-

vironment and inferring urban climate justice through visual sensing and

advanced machine learning techniques, as shown in Figure 1. We formalise

the classification of urban climate justice as a semi-supervised learning task,

outputting the levels of urban neighbourhoods’ resilience facing the risks of

flooding, heatwaves, and both. The proposed method consists of four es-

sential components: visual understanding of the urban environment, spatial-

aware graph and high-order relationship graph modelling, and the MHGNN.

In the following sections, we will provide a detailed introduction to each com-

ponent and explain how they are integrated to enhance our understanding

of urban climate justice.

3.1. Visual Understanding of Urban Environment

As previously mentioned, the unequal distribution of the urban physi-

cal environment is often considered a key factor contributing to urban cli-

mate injustice, revealing disparities in environmental quality and access to

resources across di↵erent urban areas (Surminski et al., 2020; Shi et al., 2016).

Such inequity can lead to adverse health and socio-economic outcomes for

marginalised communities, as well as their capabilities to respond to urban
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Figure 1: The overview of the proposed method. This figure includes SVIs obtained from

Mapillary under the Creative Commons (CC) licence and the road network under the

Open Government Licence. Map data source: CDRC LOAC Geodata Pack by the ESRC

Consumer Data Research Centre; contains National Statistics data Crown copyright and

database right 2015; contains Ordnance Survey data Crown copyright and database right

2015.

climate-related risks. In recent years, the rapid advancement of computer vi-

sion technologies has made image segmentation of SVIs a standard practice in

urban analytics (Zhang et al., 2024a; Ito et al., 2024; Biljecki and Ito, 2021),
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which provides a systematic and quantitative understanding of the propor-

tion and distribution of urban objects in visual data, thereby supporting an

in-situ comprehension of the urban physical environment.

In our study, we employed DeepLabv3 (Chen et al., 2017) to segment

each image obtained from Mapillary and determine the percentages of vari-

ous spatial objects in each SVI. DeepLabv3 was pre-trained on the CityScape

dataset (Cordts et al., 2016) using PaddleSeg (Liu et al., 2021; PaddlePaddle

Authors, 2019). The CityScape dataset, designed for the semantic under-

standing of urban street scenes, classifies 30 categories of urban objects in

SVIs (Cordts et al., 2016). In our study, we utilised all 30 categories of urban

objects segmented by DeepLabv3, facilitating a holistic understanding of the

urban built environment. Therefore, for each neighbourhood (see Section 4

on the case study) within the city, we segmented all SVIs within its bound-

aries and calculated the mean values of each urban object category. These

processed values were then used as input for the graph modelling introduced

in the following sections.

3.2. Spatial-aware Graph Construction

In recent years, conceptualising urban physical environments as graphs for

the spatially-explicit development of GeoAI has become increasingly common

(Liu and Biljecki, 2022). Such an innovative approach, e↵ectively incorporat-

ing Tobler’s First Law of Geography in the model, allows for a more nuanced

understanding of spatial relationships and interactions within urban areas.

A prevalent method involves constructing spatial graphs based on physical

connections that interlink urban neighbourhoods, such as street networks

(Liu et al., 2024; Zhang et al., 2023; De Sabbata et al., 2023a), transporta-

15



tion routes (Rahmani et al., 2023), or spatial weights (De Sabbata and Liu,

2023). Researchers can facilitate pair-wise spatially aware graph construction

by representing these connections as graph edges, with nodes corresponding

to various urban elements or locations, enabling detailed analysis of spa-

tial dependencies and influences, which are crucial for applications in urban

environmental monitoring (Ma et al., 2023). However, existing methods of

constructing such graphs often focus on a single spatial modality, such as the

pair-wise graph constructed in Wang and Zhu (2024), relying on one type

of spatial connection to study complex urban issues. This approach, while

useful, can be limiting as it typically considers only one aspect of the urban

environment (e.g., street networks) without integrating other critical spa-

tial dimensions. Consequently, this single-modality focus may overlook the

multifaceted interactions and dependencies that characterise urban systems,

potentially leading to an incomplete understanding of the urban environment.

To address this issue, our research proposes a multigraph modelling ap-

proach to capture the pair-wise connections among urban neighbourhoods,

aiming for a more comprehensive understanding of the urban environment.

This innovative approach involves constructing multiple graphs, each repre-

senting di↵erent spatial modalities and interactions within the urban fabric.

As shown in Figure 2, by integrating various dimensions such as road net-

works that interlink urban areas, queen contiguity spatial weights among

neighbourhoods, and waterways throughout the city, our multigraph model

provides a comprehensive representation of the urban environment.

Queen contiguity spatial weights are a widely-used method in spatial

analysis that considers neighbourhoods to be adjacent if they share a com-
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Figure 2: Spatial-aware Graph Construction. Detailed introduction about the data is

provided in Section 4.

mon boundary or vertex. By applying this approach, we constructed a graph

where nodes represent neighbourhoods and edges represent spatial contigu-

ity, capturing the direct spatial relationships and dependencies among urban

areas. Such an aspect of the multigraph helps in understanding how the prox-

imity of neighbourhoods influences the classification of urban climate justice.

The following equation shows how its adjacency matrix was represented:

AQueen(i, j) =

8
><

>:

1 if neighbourhoods i and j are adjacent

0 otherwise
(1)

In addition to queen contiguity spatial weights, we incorporated the city’s

waterways into our multigraph model. Waterways, including rivers, canals,

and streams, play a crucial role in shaping the urban environment (Luo
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et al., 2022), cooling down cities (Park et al., 2019) and influencing the

urban flooding risks (Rubinato et al., 2019). As shown in Figure 2, if two

neighbourhoods have a waterway crossing through, an edge was added to

the graph. The adjacency matrix for the urban waterway connections is as

follows:

AWater(i, j) =

8
><

>:

1 if a waterway connects neighbourhoods i and j

0 otherwise
(2)

Furthermore, we included the road networks within the city as another

critical layer in our multigraph model. In the context of urban climate jus-

tice, road networks are fundamental to urban infrastructure, a↵ecting the

accessibility of neighbourhoods to relevant facilities when hazards happen

(Dalziell and Nicholson, 2001). Similar to the process we implemented for

the waterways, if two neighbourhoods have a road network across, an edge

was added to the graph. Similar to the waterway connections, the adjacency

matrix for the urban road network connections is:

ARoad(i, j) =

8
><

>:

1 if a road connects neighbourhoods i and j

0 otherwise
(3)

Having the adjacency matrices AQueen, AWater, and ARoad, we defined the

combined adjacency matrix for the multigraph as:

AMulti = AQueen + AWater + ARoad (4)
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Integrating these three modalities—queen contiguity spatial weights, wa-

terways, and road networks—allows our multigraph model to comprehen-

sively represent the urban environment. In our research, we investigated

how such a tri-layered approach facilitates the analysis of interactions and

influences among di↵erent spatial elements, providing a more nuanced un-

derstanding of urban systems and, hence, assisting in better classification of

urban climate justice.

3.3. High-order Relationship Graph Construction

High-order relationships in spatial data refer to interactions and depen-

dencies that extend beyond simple pair-wise connections between spatial en-

tities. Unlike traditional spatial analyses that focus on direct, pair-wise rela-

tionships, high-order relationships capture the complex interactions among

groups or clusters of entities. Hypergraphs, with their ability to repre-

sent complex, multi-way interactions among entities, o↵er significant op-

portunities for modelling these intricate spatial relationships in urban an-

alytics (Wang and Zhu, 2024), echoing the Third Law of Geography (Zhu

and Turner, 2022). Unlike the hypergraphs implemented in Wang and Zhu

(2024), which focused on a single aspect of urban configurations (i.e., ur-

ban functions), our study extends the application of hypergraphs by incor-

porating a comprehensive understanding of urban environments, including

socio-economic factors and environmental settings.

We constructed a hypergraph based on three data types: urban geodemo-

graphics, land cover data, and levels of tree coverage in the city (see Section

4 for details of the data), as shown in Figure 1. Having sets of categories

for the three data types defined as Cdemo = {cdemo1 , cdemo2 , . . . , cdemok} (for
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geodemographics), Clc = {clc1 , clc2 , . . . , clck} (for land cover), and Ctree =

{ctree1 , ctree2 , . . . , ctreek} (for tree coverage), for each neighbourhood i in the

urban area that is represented as a node vi, we define indicator functions

�demo, �lc, and �tree to determine whether a neighbourhood belongs to a spe-

cific category as:

�demo(vi, cdemoj) =

8
><

>:

1 if vi belongs to cdemoj

0 otherwise
(5)

�lc(vi, clcj) =

8
><

>:

1 if vi belongs to clcj

0 otherwise
(6)

�tree(vi, ctreej) =

8
><

>:

1 if vi belongs to ctreej

0 otherwise
(7)

After completing the above steps, for each category, we created a hyper-

edge connecting all neighbourhoods that share the same category:

edemoj = {vi 2 V | �demo(vi, cdemoj) = 1} (8)

elcj = {vi 2 V | �lc(vi, clcj) = 1} (9)

etreej = {vi 2 V | �tree(vi, ctreej) = 1} (10)

Hence, in our study, the hypergraph H is defined as H = (V,E), where

V is the set of nodes and E is the set of hyperedges, and the hyperedges E

include all hyperedges from the three categories:
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E = {edemo1 , . . . , edemok , elc1 , . . . , elcm , etree1 , . . . , etreen} (11)

Then, we represent the hypergraph H by using an incidence matrix M based

on the hyperedges constructed:

M(i,j) =

8
><

>:

1 if node vi is in hyperedge ej

0 otherwise
(12)

Such a multi-faceted hypergraph construction approach allows for a more

detailed analysis of urban systems, as it considers various factors that in-

fluence potential urban capabilities in handling urban climate-related risks,

such as socio-economic characteristics, land use patterns, and environmen-

tal features. In our study, the constructed hypergraph, together with the

multigraph introduced in Section 3.1, was used as input for the proposed

MHGNN.

3.4. The Multi-Hyper Graph Neural Network

As shown in Figure 1, the proposed MHGNN has two major parts: a

GCN layer for handling the constructed multigraph and an HGCN for pro-

cessing the hypergraph. Such an integration leverages the strengths of both

types of convolutions to capture both pair-wise and high-order relationships

among nodes. The combined features are then passed through a series of

fully connected layers, followed by a softmax layer for classification.

Having segmented SVIs as nodes’ features for each neighbourhood in the

city as xi, and the combined adjacency matrix AMulti, the GCN part applies

convolution operations (Kipf and Welling, 2016) to the adjacency matrix.
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The feature update rule for node vi is:

Embed
(l+1) = �

 
kX

i=1

↵iÃ
(i)
MultiEmbed

(l)
W

(l)

!
(13)

where Ã(i)
Multi is the normalised adjacency matrix for the i-th criterion, ↵i are

learnable weights, Embed
(l) represents the node features at layer l, W (l) are

the learnable parameters, and � is an activation function of ReLU (Nair and

Hinton, 2010). The final output of the GCN part after L layer is Embed
(L),

containing the updated feature representations of the nodes, incorporating

information from their immediate neighbours according to the multiple pair-

wise connections.

Meanwhile, HGCN (Bai et al., 2021) extends the traditional GCN by

incorporating hyperedges that connect multiple nodes, enabling the network

to capture complex interactions and dependencies among neighbourhoods.

Having the hypergraph’s incidence matrix M correspond to the incidence of

nodes in the hyperedges, HGCN computes the hypergraph Laplacian Lapi

for the matrix:

Lapi = I �D
�1/2
v MiWM

T
i D

�1/2
v (14)

where I is the identity matrix; Dv is the diagonal degree matrix of nodes;

Mi is the incidence matrix for the i-th criterion; W is the diagonal matrix of

hyperedge weights.

The convolution operation on the hypergraph uses the hypergraph Lapla-

cian to propagate information across nodes (Bai et al., 2021), and the feature

update rule is given by:

HEmbed
(l+1) = �

 
kX

i=1

�iLapiHEmbed
(l)
W

(l)

!
(15)
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where HEmbed
(l) is the feature matrix at layer l; �i are learnable weights

for each hypergraph; Lapi is the hypergraph Laplacian for the i-th criterion;

W
(l) are learnable parameters; � is an activation function of ReLU (Nair and

Hinton, 2010). The output of HGCN is HEmbed
(L), containing the updated

feature representations of the nodes, incorporating high-order relationships

among nodes connected by hyperedges.

The output of GCN and HGCN is then concatenated to integrate pair-

wise and high-order relationships in the urban environment as:

Embedconcat = concat(Embed
(L)

, HEmbed
(L))) (16)

which is then passed through fully connected layers and a softmax layer to

produce the final classification scores:

Z = softmax(EmbedconcatWfinal)) (17)

whereWfinal are the learnable weights of the final layer. The model is trained

using a supervised learning approach, where the cross-entropy loss measures

the discrepancy between the predicted classifications and the true labels. The

parameters of the network are optimised using backpropagation to minimise

this loss:

L = �
nX

i=1

cX

j=1

yij log(Zij) (18)

where yij is the true label for node i and class j.

3.5. Model Implementation

We developed our proposed framework using the Python programming

language, specifically utilising the PyTorch library (Paszke et al., 2019) and
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the PyTorch Geometric library (Fey and Lenssen, 2019) for implementation.

The model, known as the MHGNN, was fully trained over 2000 epochs for a

semi-supervised classification task, with each epoch representing a complete

pass through the dataset. The dataset was split into 30% for training, 10%

for validation, and 60% for testing, and the training was conducted on the

cloud-based Google Colab platform2. We employed the Adam optimisation

algorithm (Kingma and Ba, 2014) with a learning rate of 0.001 to refine the

model’s weights.

In line with standard practices for classification models, we selected ac-

curacy and the F1 score (a metric that combines precision and recall into

a single measure and evaluates the accuracy of the classification model by

balancing the trade-o↵ between false positives and false negatives) for the

model’s performance assessment.

3.6. Benchmark Comparisons

To evaluate the performance of MHGNN, we selected three prediction

methods, ranging from classical to state-of-the-art, as benchmark compar-

isons for classifying overall urban sensitivity to both flooding and heat stress:

• Random Forest (RF) is recognised as one of the most classical machine

learning models and is extensively utilised for various urban analytical

tasks (Luo et al., 2022; Ameer and Shah, 2018; Puissant et al., 2014).

In this assessment, RF serves as a non-spatial model, taking image

segmentation results as input. It provides a baseline comparison to

highlight the advantages of incorporating spatial data and connections,

2https://colab.research.google.com/
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as MHGNN does, in urban climate justice classification. The selection

of RF is motivated by its robustness and popularity in urban studies

(Lavallin and Downs, 2021), where non-spatial data alone have been

used e↵ectively for classification tasks. Such a comparison allows us to

examine how spatial relationships improve prediction when compared

to a traditional, non-spatial approach.

• GraphSAGE (Hamilton et al., 2017) is an inductive graph-based frame-

work that generates node embeddings by sampling and aggregating fea-

tures from a node’s local neighbourhood, which are not widely used in

urban analytics (Zhang et al., 2022; Liu et al., 2023). GraphSAGE is in-

cluded to compare MHGNN against another graph-based method that

focuses on local neighbourhood information aggregation, thus allowing

us to explore how di↵erent forms of graph representation influence clas-

sification performance. We adapted GraphSAGE to handle multigraph

and hypergraph structures by integrating the two graphs’ adjacency

matrices, which ensures a fair comparison between models while main-

taining the graph-based focus. By including GraphSAGE, we assess

MHGNN’s ability to e↵ectively handle more complex graph structures.

• Deep Graph Infomax (DGI) (Veličković et al., 2019) is a graph repre-

sentation learning technique that can serve as a benchmark for eval-

uating how well the proposed method captures graph structures and

relationships. However, DGI is primarily designed for single graph

structures with simple edges between nodes. To handle multigraphs

and hypergraphs, we applied further modifications to accommodate
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the complexities of these types of graphs. Similar to MHGNN, DGI in

this study consists of two encoders to process the constructed multi-

graph and hypergraph individually, a GCN (Kipf and Welling, 2016)

encoder and a HGCN (Bai et al., 2021) encoder. The two encoders

learnt the two graph structures separately in an unsupervised manner

and output a joint embedding for the supervised fine-tuning climate

justice classification task.

All three of the aforementioned benchmark methods are evaluated using

two of the same performance metrics: accuracy and the F1 score, as men-

tioned in the previous subsection. The results of these evaluations, including

detailed comparisons across models, are presented in Section 5, where we

demonstrate how each method performs in comparison with MHGNN.

4. Case Study

In this study, we have selected Greater London (shortened to London

for the rest of this paper), UK, as our case study area. London o↵ers a

compelling case study for examining urban climate justice due to its diverse

demographic composition, extensive urban infrastructure, and proactive cli-

mate policies (Bulkeley et al., 2013). As one of the world’s leading global

cities, London is home to approximately nine million residents from varied

socio-economic backgrounds, ethnicities, and cultures. While hosting such a

significant number of residents within its urban area, the city faces numerous

environmental challenges, including flooding and heatwaves, exacerbated by

ever-complicated climate challenges (Keat et al., 2021). Being aware that
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such challenges are not uniformly distributed across the city, with vulnera-

ble neighbourhoods often experiencing disproportionate impacts, our study

explored how spatially-explicit GeoAI-empowered methods can provide en-

hanced support for understanding urban resilience at a fine spatial resolution

facing risks of climate hazards.

4.1. London Climate Just Data

As previously discussed in Section 2, the Climate Just project in London

served as a fundamental inspiration for our study. Based on 2011 UK census

statistics, this project systematically produced indices on urban socio-spatial

vulnerability to flooding and heat stress separately, as well as a composite

index on the overall urban sensitivity to both flooding and heat stress, as

illustrated in the top three figures of Figure 3. Positive scores indicate in-

creasing vulnerability and sensitivity, and vice versa. The data is available

at the Middle Super Output Area (MSOA) level for London.

In the UK, MSOAs are considered a valuable unit for neighbourhood stud-

ies because they provide a standardised geographic framework for analysing

social, economic, and health data at a granular level. MSOAs typically en-

compass populations between 5,000 and 15,000 people, making them large

enough to capture meaningful statistical trends while being small enough to

reflect local neighbourhood characteristics. Therefore, in our study, all anal-

yses were conducted at the MSOA level in London to ensure detailed and

reliable insights specific to neighbourhoods.

Additionally, as illustrated in Figure 3, we refined the indices from the

Climate Just project by categorising them based on the Jenks classification

method (Jenks, 1975) into three distinct classifications designated as low,
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Figure 3: On the top left of the figure, a. demonstrates the city centre of London defined by

the Central Activity Zone by Greater London Authority. In b., from top left to top right:

Overall sensitivity index for both Flooding and Heat risks; Socio-spatial vulnerability

index for flood; Socio-spatial vulnerability index for heat. From bottom left to bottom

right: Three categorical classifications for the above indices. The missing parts in the

maps are those MSOAs in London that had no Climate Just indices produced; hence,

those neighbourhoods were excluded from this study. For Climate Just data, we have 950

MSOAs presented in the figure. Map data source: CDRC LOAC Geodata Pack by the

ESRC Consumer Data Research Centre; contains National Statistics data Crown copyright

and database right 2015; contains Ordnance Survey data Crown copyright and database

right 2015.
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medium, and high, to enhance the interpretability of the indices across Lon-

don, thereby facilitating a clearer understanding and communication of the

varying levels of climate vulnerability present within the city. The table

in Figure 3 reveals that central London exhibits a significantly higher per-

centage of areas that face heat vulnerability compared to non-central areas,

potentially due to a stronger urban heat island e↵ect (Taylor et al., 2015).

However, it shows more favourable conditions for flood vulnerability and

overall urban sensitivity to both heat and flood risks thanks to its accessi-

bility to urban facilities (Lamond et al., 2009). In our study, these classified

indices were employed as ground truth labels, serving a critical role in the

training and evaluation of our proposed GeoAI-driven classification method,

ensuring that the identified areas accurately reflect real-world conditions,

thereby enhancing the reliability of our method and the findings.

4.2. Crowdsourcing Street View Imagery

For the SVIs adopted as input for this study, we acquired data from Map-

illary, covering the period from the 1st of January 2020 to the 22nd of Septem-

ber 2022 in London, resulting in the collection of 529,501 SVIs. As mentioned

in Biljecki and Ito (2021) and Yan et al. (2020), crowdsourced data, while

highly beneficial due to its broad accessibility, often su↵ers from inconsis-

tencies in quality and uniformity. To ensure data quality, we employed the

methods described in Hou and Biljecki (2022) and Hou et al. (2024) to filter

out SVIs that were blurry or had undesirable orientations (e.g., facing di-

rectly forward or to the side). Consequently, we retained 333,783 images for

analysis.

Subsequently, we aggregated the SVIs within each MSOA and used the
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mean values of the segmented urban objects as the input values for each

neighbourhood for the constructed graphs (see Sections 3.2 and 3.3). How-

ever, it is important to note that not all MSOAs contain SVIs. Therefore,

in this study, we excluded those MSOAs that lacked SVIs. As a result, we

included 807 MSOAs out of a total of 983 MSOAs (including missing parts

excluded in Climate Just data) for the analyses, and the number of SVIs per

MSOA varies from 3 to 435.

4.3. Spatial Data Collection and Preprocecssing

Due to the multifaceted nature of urban climate-related risks, which en-

compass a variety of factors, including socio-economic characteristics, land

use patterns, and environmental features, our study collects an extensive

range of spatial data, as shown in Figure 1. Our aim is to develop a com-

prehensive GeoAI model that incorporates these diverse urban aspects to

e↵ectively address the complex issue of urban climate justice. Below, we

provide an introduction to the data used in this study in a detailed point-

by-point manner.

• Urban Road Network: Urban road networks significantly influence ur-

ban climate justice by a↵ecting environmental, social, and economic

aspects of cities (Arsenio et al., 2016), contributing to urban heat is-

land (Chapman et al., 2013), impacting urban resilience in risks of

inland flooding (Singh et al., 2018), and resulting in social inequity

(Behbahani et al., 2019). In our study, we collected open road network

data from Ordnance Survey (2021). As primary tra�c roads in the city

often lead to a high impact on mobility and connectivity (Ceder, 2021)
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Figure 4: Data processing for LOAC, Land Cover and Tree Coverage in London. Map

source licenses are the same as previous figures. For LOAC clusters, A - Intermediate

Lifestyle; B - High Density and High Rise Flats; C - Settled Asians; D - Urban Elites; E

- City Vibe; F - London Life-Cycle; G - Multi-Ethnic Suburbs; H - Aging City Fringe, as

defined in Singleton and Longley (2015).
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and result in a higher influence on urban heat and water management

(Pregnolato et al., 2017), we focused on roads that carry major tra�c

(i.e., A and B roads in the UK road type classification3) in London for

the studies.

• Urban Waterways: Urban waterways play a vital role in urban climate

justice by influencing environmental health, social equity, and economic

opportunities (Reckien et al., 2018). They help mitigate flood risks and

manage stormwater, reducing the impact of flooding on low-income and

vulnerable communities (Hashemi et al., 2024; Yereseme et al., 2022).

Meanwhile, urban waterways support green spaces and vegetation, con-

tributing to urban cooling and improving air quality by reducing the

urban heat island e↵ect (Wang et al., 2019). In our study, we collected

waterway data in line format from OpenStreetMap for London, cover-

ing both natural and artificial waterways within the city, aligning with

our objective to analyse the multifaceted roles of urban waterways in

promoting climate justice.

• London Output Area Classification: The London Output Area Classi-

fication (LOAC) is a geodemographic tool that categorises small geo-

graphic areas based on various socio-economic and demographic char-

acteristics (Singleton and Longley, 2015). It provides detailed insights

into the diversity of London’s population, helping to identify distinct

3https://www.gov.uk/government/publications/guidance-on-road-classification-

and-the-primary-route-network/guidance-on-road-classification-and-the-primary-route-

network
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groups and communities across the city. In this research, we used the

LOAC provided by Singleton and Longley (2015) and calculated based

on the 2011 UK census to explore if neighbourhoods that share similar

geodemographics would have similar resilience when facing climate-

related risks. However, LOAC was generated at output areas (OAs),

which is a set of smaller-scale geographic units compared with MSOAs.

Hence, to ensure the consistency of the spatial scales for each MSOA,

we first aggregated the counts of LOAC categories in each MSOA and

then chose the most frequent category as the socio-economic descriptor

for the MSOA. For example, if the majority of OAs within an MSOA are

Ageing City Fringe (a category in LOAC), the socio-economic descrip-

tor for such an MSOA is Ageing City Fringe in the prepared dataset.

If an MSOA has two LOAC categories with the same counts, we ran-

domly picked up one as the socio-economic descriptor for this MSOA.

The output map is shown in the left part of Figure 4.

• Land Cover: Land cover describes the physical characteristics of the

land surface, including natural features like forests, grasslands, water

bodies, and man-made structures like buildings and roads. Understand-

ing land cover is essential for e↵ective urban planning and sustainable

development (Hassan and Nazem, 2016). We collected the land cover

data from Cole et al. (2015) and proceeded to identify and extract the

portions of land cover that fall within each MSOA boundary and chose

the predominating types as the land cover type for the MSOA. The

output map is shown in the middle part of Figure 4.
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• Tree Cover: While land cover data provides a broad overview of the

physical characteristics of the land surface, including natural and man-

made features, an additional layer of tree cover data is necessary. Land

cover data often classifies broad categories such as “forest” or “green

space”, but tree cover data o↵ers detailed information about the density

and distribution of trees, which is essential for studying urban micro-

climates (Kim et al., 2024; Georgi and Zafiriadis, 2006). We obtained

tree distribution data for London from OpenStreetMap, aggregated

the number of trees within each MSOA, and classified the tree coverage

into five categories: Abundant, Relatively Abundant,Medium, Relatively

Insu�cient, and Insu�cient. The output map is shown in the right

part of Figure 4.

4.4. Exploratory Analysis

After data had been collected and processed, we began our research by

conducting preliminary exploratory data analysis on how the overall sensi-

tivity index for both flood and heat risks, alongside the socio-spatial vulner-

ability indices for flooding and heat, correlated with other urban data (LC,

LOAC and tree cover) collected. In this analysis, we utilised Cramér’s V

correlation analysis (Cramér, 1999) to measure the strength of association

between the categorical variables. Cramér’s V, derived from the Chi-square

statistic, standardises the association on a scale from 0 (no association) to

1 (perfect association), rendering it especially useful for examining relation-

ships in contingency tables with categorical data. The results of this analysis

are summarised in Figure 5.

As evident from the results, the LOAC variable is most strongly correlated
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Figure 5: Cramér’s V correlation analysis for the spatial data collected.
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with urban sensitivity and vulnerabilities, which suggests that socio-economic

factors play a key role in shaping our understanding of urban climate jus-

tice, and such a finding is later echoed in the study presented in Section 5.2.

Additionally, the socio-spatial vulnerabilities to heat and flood demonstrate

a strong correlation with each other, indicating that areas at high risk of

flooding are also likely to experience elevated heat stress. Given their shared

correlations with both LC and LOAC, this suggests that areas with similar

land use and socio-economic status tend to face comparable urban risks, rein-

forcing conclusions drawn from previous urban environmental justice studies

(Jennings et al., 2012; Reckien et al., 2018) and underscoring the rationale

for why we incorporated those neighbourhood-level spatial profiles into the

proposed MHGNN.

5. Results

The findings from the proposed study consist of two distinct sections.

The first section concentrates on the performance evaluation of the MHGNN

model, which targets the overall urban sensitivity to both flooding and heat

stress. This involves a comparative analysis against several established base-

line models, as introduced in Section 3.6. By benchmarking the MHGNN

against these baselines, we aim to highlight its strengths, identify areas for

improvement, and demonstrate its overall e�cacy in handling urban climate

justice classification tasks.

The second section delves into a series of ablation studies studying the

classification performances for urban socio-spatial vulnerability to flooding

and heat stress separately, as well as the overall urban sensitivity to both
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Table 1: Model performance comparison against baselines.

Results MHGNN Random Forest GraphSAGE Deep Graph Infomax

Accuracy 72.23% 48.58% 28.77% 71.82%

F1 Score 70.68% 45.90% 26.12% 69.16%

flooding and heat stress. An ablation study is a method used in machine

learning to assess the contribution of individual components or features of a

model by systematically removing or altering them. This helps to determine

the importance of each part in the model’s overall performance. In this paper,

the ablation studies are designed to dissect the contributions of various genres

of spatial data and the significance of di↵erent types of spatial connections.

Specifically, this study investigates how pair-wise spatial connections and

high-order connections among areas enhance the model’s understanding and

classification of urban climate justice. By systematically removing these

connections, we can pinpoint their individual and collective impacts on the

model’s performance, thereby o↵ering deeper insights into the mechanics of

spatial data integration and its role in urban climate justice analysis.

5.1. Urban Climate Justice Classification

The outcomes of this study are detailed in Table 1, which presents a com-

prehensive comparison of the baseline models delineated above. As shown in

the table, the MHGNN achieved the best performance among all the base-

lines. MHGNN’s superior performance, compared to Random Forest (RF),

underscores the significance of using spatially-explicit methods in studying

urban issues (Liu and Biljecki, 2022). The results clearly indicate that in-

corporating spatial relationships into the modelling process yields better in-
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sights and more accurate predictions. Meanwhile, while DGI also delivered

a reasonable performance, it highlighted the importance of simultaneously

encoding both pair-wise spatial and high-order connections in the compu-

tational process for the urban climate justice classification. However, DGI

falls short in terms of computational e�ciency, with an inference time per

sample of approximately 323 µs compared to MHGNN’s 121 µs. Such an

e�ciency gap suggests that MHGNN not only provides better accuracy but

also is more suitable for applications requiring faster processing times.

On the other hand, GraphSAGE demonstrated the poorest classification

performance, indicating that the simplistic approach of integrating both pair-

wise spatial and high-order connections into a single matrix fails to capture

the complex spatial patterns inherent in the data. The inability to adequately

represent these spatial patterns highlights the necessity of investigating and

utilising more sophisticated spatial data configurations to fully leverage the

richness of the spatial information.

Figure 6: The left figure is the ground truth label given to the overall urban sensitivity

to both flooding and heat stress; the middle figure is the predicted result; and the right

figure is the spatial distribution of the errors.

A detailed examination of the classification results is provided in Figure
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6. The analysis of misclassifications (i.e., errors depicted in the figure) re-

veals a lack of spatial autocorrelation, suggesting that MHGNN e↵ectively

captures all underlying spatial relationships present in the integrated spa-

tial data. In other words, the MHGNN model successfully accounts for the

spatial dependencies within all the data provided, thereby reducing the like-

lihood of geographically clustered misclassification, implying that the model

has thoroughly learned the spatial patterns and relationships inherent in

the data. Such a performance highlights the model’s robustness in handling

complex spatial structures and suggests that MHGNN can generalise to var-

ious spatial contexts within the study area. Such a capability is crucial for

urban climate justice classification, where accurately understanding and rep-

resenting spatial dependencies can lead to more e↵ective and equitable policy

decisions.

As mentioned in Section 4.4, socio-economic factors play a key role in

shaping our understanding of urban sensitivity and vulnerability towards

heat and flooding; thus, we further investigated how the error correlates to

the census statistics to examine whether the model may underperform for

certain communities in the urban area. Figure 7 o↵ers a detailed descriptive

analysis of the model’s results by examining the mean and median values of

census statistics associated with the errors and ground truth labels across all

MSOAs. This analysis reveals that the model’s performance is less robust

in areas with a representative population, suggesting potential challenges

in accurately capturing the complexities of these diverse regions. Interest-

ingly, the analysis reveals that the number of errors does not correlate with

the number of SVIs in the MSOAs. Such a conclusion is supported by an
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Figure 7: Descriptive analysis of the census statistics.
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ANOVA test, which yields a p-value of 0.901, indicating no statistically sig-

nificant relationship between the number of errors and the number of SVIs.

Additionally, the Eta-Squared (⌘2) value of 0.015 suggests a negligible e↵ect

size, further confirming the lack of correlation. The absence of such a cor-

relation implies that the quantity of visual data does not inherently impact

the model’s accuracy. However, other factors, such as the intrinsic variabil-

ity within the population, might play a more significant role in influencing

model performance.

5.2. Ablation Study

Following the assessment of the MHGNN, we implemented a series of

model configurations, conducting ablation studies to identify which spatial

configurations contribute to the classification performance:

• GCN-only: omits the hypergraph part of this study completely, leaving

only the pair-wise spatial multigraph as the input fed into the GCN

part of the MHGNN model. This examines the extent to which the

high-order spatial relationships, as undermined in the Third Law of

Geography (Zhu and Turner, 2022), impact the predictive performance.

• HGCN-only: omits the pair-wise spatial multigraph part of this study

completely, leaving only the hypergraph as the input fed into the HGCN

part of the MHGNN model. This investigates how the neighbourhood-

level connections among areas, as underlined in the First Law of Geog-

raphy (Tobler, 1970), impact the model performance.

• MHGNN-Roads Omit: omits the spatial graph constructed based on

the road network in the multigraph. Road connectivity is often a cru-
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cial factor in assessing socio-spatial risks related to natural hazards

(Dalziell and Nicholson, 2001; Karlsson et al., 2017). By omitting this

component, we can evaluate the specific contribution of the road net-

work to the model’s predictive performance.

• MHGNN-Waterway Omit: omits the spatial graph constructed based

on the Waterway network in the multigraph. Urban waterways are

vital in assessing socio-spatial risks, as they help mitigate urban heat

islands through cooling e↵ects while also posing flood risks during heavy

rainfall (Depietri et al., 2012). Their influence on the distribution of

these risks, especially in vulnerable communities, is significant (Smar-

don et al., 2018). By omitting the waterway component from the urban

multigraph network, we aim to assess its impact on the model’s under-

standing of the urban environment.

• MHGNN-SpatialWeights Omit: omits the spatial graph constructed

based on the queen contiguity spatial weights in the multigraph. Queen

contiguity, which captures direct spatial relationships between neigh-

bouring areas, is often critical in understanding spatial dependencies

and clustering in geographic data (Getis and Aldstadt, 2004). By re-

moving this component, we can isolate and assess the specific impact of

these local spatial relationships on the model’s ability to capture urban

spatial dynamics and predict outcomes.

• MHGNN-LOAC Omit: omits the high-order graph constructed based

on the LOAC in the hypergraph. Socio-economic disparities across ur-

ban areas often shape climate justice (Fisher, 2015). By omitting this
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component, we assess how these local neighbourhoods’ socio-economic

di↵erences influence the model’s performance in capturing urban dy-

namics and risks.

• MHGNN-LC Omit: omits the high-order graph constructed based on

the land cover in the hypergraph. Land cover, which represents the

physical characteristics of urban surfaces, is key in influencing urban

environmental processes such as heat retention, water runo↵, and bio-

diversity (Borras and Franco, 2020). By excluding this component, we

aim to assess how the absence of land cover information a↵ects the

model’s ability to capture critical environmental factors and predict

spatial risks in urban areas.

• MHGNN-Tree Omit: omits the high-order graph constructed based on

the tree coverage level in the hypergraph. Tree coverage impacts urban

microclimates by providing shade, reducing heat stress, and mitigating

flood risks through improved water absorption (Schwarz et al., 2015).

By excluding this component, we evaluate how the absence of tree-

related spatial information a↵ects the model’s capacity to account for

environmental resilience and predict risks in urban settings.

The results are summarised in Table 2 and reveal several interesting in-

sights, underscoring the importance of di↵erent spatial configurations in un-

derstanding urban environments. Firstly, the inclusion of high-order connec-

tions in spatial modelling provides a comprehensive understanding of urban

settings, echoing findings from previous studies by Wang and Zhu (2024),

which highlights the value of considering complex spatial relationships be-
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Table 2: Albation Studies on the spatial graphs.
Features GCN-only HGCN-only Roads Omit Waterway Omit SpatialWights Omit LOAC Omit LC Omit Tree Omit

Spatial Weights X X X X X X
Roads X X X X X X
Waterway X X X X X X
LOAC X X X X X X
LC X X X X X X
Tree X X X X X X
Accuracy (Flood and Heat) 61.66% 65.19% 67.27% 66.91% 66.02% 63.23% 66.67% 65.92%

F1 Score (Flood and Heat) 58.11% 61.51% 66.75% 64.79% 63.22% 61.37% 64.75% 62.16%

Accuracy (Flood) 67.32% 63.88% 64.41% 61.15% 63.73% 61.23% 64.93% 67.10%

F1 Score (Flood) 64.23% 60.87% 61.55% 58.76% 59.01% 58.55% 61.73% 66.82%

Accuracy (Heat) 61.21% 65.49% 64.77% 62.71% 63.26% 60.11% 63.55% 63.17%

F1 Score (Heat) 59.88% 63.75% 62.17% 60.78% 60.82% 57.95% 62.34% 60.25%

yond simple pair-wise connections. The results also indicate a di↵erential

impact of spatial configurations on various types of urban vulnerability clas-

sifications. Specifically, pair-wise spatial connections contribute more signif-

icantly to the classification of urban socio-spatial flooding vulnerability. In

contrast, high-order connections are more influential in the classification of

heat-related vulnerability. Such a distinction suggests that di↵erent types of

urban vulnerabilities are characterised by di↵erent spatial interaction pat-

terns, necessitating tailored modelling approaches for each. Additionally,

LOAC, a geodemographic classification of urban areas, emerges evidently as

a particularly strong influence on the classifications among all the high-order

connections, which underscores the critical importance of incorporating socio-

economic indicators in urban analytics (Wang et al., 2024; Liu and Biljecki,

2022).
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Figure 8: Urban socio-spatial flooding vulnerability comparison. Left figure: labels in

Climate Just data; right figure: predicted results using MHGNN.

6. Scenario Understanding: Classifying Recent Urban Flooding

Risks in London

The previous sections highlighted the e↵ectiveness of our proposed MHGNN

model in classifying urban climate-related risks using spatial configurations

and SVIs as inputs. The initial studies were based on the London Climate

Just dataset, utilising the 2011 UK Census data. To obtain a more current

understanding of urban climate justice and to further validate our model’s

applicability, this section presents a use case scenario employing the latest

data to classify urban risks.

Recognising flooding as the main environmental risk to people living in

London (Bates et al., 2023), our case study focused on the urban socio-spatial

flooding vulnerability in London using the pre-trained MHGNN. We further

collected SVIs from Mappilary between the 23rd of September 2022 and the

1st of June 2024 and combined the dataset with previously collected data in-

troduced in Section 4.2. Meanwhile, for LOAC introduced in Section 4.3, we
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replaced it using the most recent LOAC produced by Singleton and Longley

(2024) to incorporate the most recent socio-economic urban indicators in the

model. All other spatial configurations remained the same as before. Figure

8 shows the new classification result. Such results suggest an increasing con-

dition on how London improved the urban environment in handling urban

flooding risks. Specifically, approximately 20% of the areas have shifted from

medium vulnerability to low vulnerability, and 12% of the areas have moved

from high vulnerability to medium vulnerability, indicating successful e↵orts

delivered by local authorities to address flooding risks in the past decade

(Bang and Burton, 2021).

7. Discussion and Conclusion

This paper presents a GeoAI approach, the Multi-Hyper Graph Neu-

ral Network (MHGNN) that combines a multigraph and a hypergraph to

model complex spatial patterns in classifying urban climate justice in urban

areas. The multigraph component of the MHGNN focuses on pair-wise spa-

tial connections among geographic areas, and it incorporates these spatial

relationships into a sophisticated graph modelling process. By considering

the proximities of di↵erent areas and the connections in between (i.e., road

networks, waterways and queen contiguity spatial weights), the multigraph

component accurately reflects the First Law of Geography, which posits that

“everything is related to everything else, but near things are more related

than distant things” (Tobler, 1970), ensuring that the model accounts for

the influence of geographical proximity on urban climate justice outcomes.

Meanwhile, the hypergraph component of the MHGNN addresses the Third
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Law of Geography, which suggests that “the more similar the geographic

settings of two places, the more similar the phenomena that occur in those

places” (Zhu and Turner, 2022). By incorporating hyperedges that connect

multiple geographic areas based on their similarity, the hypergraph e↵ec-

tively captures the nuanced and multi-faceted relationships between areas

with comparable geographic settings. This enables the model to account

for the influence of shared geographic characteristics on urban climate jus-

tice beyond mere spatial proximity. By leveraging the strengths of both

multigraph and hypergraph structures, the MHGNN o↵ers a comprehensive

understanding of the spatial dynamics of urban climate justice, positioning

it as a valuable tool for researchers and policymakers working in this field.

Echoing the findings of Wang and Zhu (2024), our research underscores

the e↵ectiveness of utilising hyperedges to capture high-order connections

among geographic areas. Such an approach allows areas that are geographi-

cally distant to be connected if they share similar conceptual level categories,

such as LOAC. Our results reveal the particular utility of socio-economic in-

dicators in high-order spatial modelling, demonstrating that socio-economic-

driven classifications of urban areas are crucial for understanding the urban

vulnerabilities to climate-related risks at the neighbourhood level. How-

ever, our research also highlights a significant challenge. While the MHGNN

proved capable of delivering reasonable results in identifying urban socio-

spatial vulnerabilities, its performance fell short in urban areas with under-

represented groups. This finding indicates the need for additional tailored

modelling to accurately represent the diverse populations in metropolitan

cities like London. Addressing this shortcoming is essential to mitigate po-
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tential biases inherent in algorithm-driven analyses (Van Migerode et al.,

2024; Ingold and Soper, 2016; Shelton et al., 2014).

Recognising crowdsourced street view imagery (SVIs) as a valuable source

to study the urban environment (Hou et al., 2024; Zhang et al., 2024a; Bil-

jecki et al., 2023; Juhasz and Hochmair, 2016; Ding et al., 2021), our study

demonstrates that SVIs o↵er a cost-e↵ective and timely alternative to tradi-

tional census statistics for analysing socio-spatial urban challenges, including

climate justice. Unlike census data, which is typically collected at periodic

intervals and may quickly become outdated, SVIs are updated much more

frequently. Such a continuous influx of fresh visual data allows researchers

to monitor and assess urban environments in near real-time, providing in-

sights into rapidly changing urban dynamics. Furthermore, the use of SVIs

democratises data collection and analysis, as these images are often crowd-

sourced from a diverse array of contributors. Although the model presents

less robust for underrepresented populations, from the data perspective, the

non-statistically significant relationship between the errors of the classifica-

tion and the number of SVIs showcases the representativeness of the data,

ensuring that the perspectives of di↵erent community members are reflected

in the analysis.

Several directions will be pursued in our future studies to enhance the un-

derstanding and modelling of urban climate justice. First, we aim to improve

the spatial modelling capabilities of the MHGNN to better predict outcomes

for underrepresented populations. One possible solution is to incorporate

the UK Multiple Deprivation Indices (Morse, 2024) into the high-order spa-

tial modelling framework, which helps to fill in the socio-economic gaps that
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the LOAC may inherently miss, thereby providing a more comprehensive

socio-economic profile of urban areas. By doing so, we aim to ensure that

the predictive power of the MHGNN is robust across diverse demographic

groups, ultimately leading to more equitable urban climate justice outcomes.

Second, we plan to expand our data sources beyond crowdsourced SVIs. In-

tegrating satellite imagery and 3D city models will be a crucial direction to

explore. Satellite imagery can provide macro-level insights into urban envi-

ronmental conditions, such as heat islands and vegetation cover, while 3D

models can o↵er detailed representations of urban morphology and infras-

tructure. This multi-dimensional data infusion will enable a richer and more

precise analysis of urban spatial patterns and their impact on climate jus-

tice. Third, our future research will also shed light on the participatory urban

planning process in addressing urban climate justice. By formalising a spe-

cialised team from the local residents for SVIs and urban infrastructure data

collection, the multi-dimensional data integration will lead to more inclusive

urban development strategies that reflect the diverse needs and preferences

of urban residents, hence potentially enhancing the model’s predictive pow-

ers. Last but not least, we plan to extend the application of the MHGNN

model to real-world scenarios by studying and classifying urban climate jus-

tice across various urban contexts. This will involve applying MHGNN to

cities with distinct urban characteristics, allowing us to explore how the

model can be tailored to address the specific challenges posed by di↵erent

spatial configurations, environmental risks, and socio-economic conditions.

By adapting the framework to diverse settings, we aim to demonstrate its

versatility and practical relevance in addressing urban climate justice issues
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globally, thus supporting informed decision-making in urban planning and

climate resilience strategies across di↵erent city environments.
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