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Toward an Integrated Approach for Managing and Streaming 3D 

Spatial Data at the Component Level in Spatial Data Infrastructures 

Transitions of spatial data infrastructures (SDIs) support applications from 2D 

landscapes to 3D scenes. The existing methods for describing, managing, and 

providing services for 3D spatial data often lack coordination and efficiency. 

Moreover, the added complexity of 3D data structures necessitates novel 

approaches for component-level management and streaming capabilities. In 

response, we developed a generic conceptual model suitable for component-level 

management of diverse 3D spatial data in SDIs and discussed the design 

rationales and key considerations underlying the model. We formalized the 

flexible data composition and fine-grained lifecycle management in this model 

and specified this model at the cloud-optimized encoding level to enable efficient 

CRUD operations and streaming delivery of massive 3D spatial data. Our 

approach enabled direct streaming of the managed 3D spatial data without the 

need for redundant replication. We implemented, evaluated, and discussed the 

proposed approach in terms of service, accessibility, visualization, analysis cases, 

and efficiency. The results show that the proposed method is efficient in 

managing 3D spatial data and enables users to conduct 3D geo-analysis on the 

basis of specific parts of the data as needed. This work provides a scientific 

exploration that integrates the management and services of 3D spatial data in 

SDIs. 

Keywords: spatial data infrastructure, information modeling, 3D data 

management, geographical information system 

1. Introduction 

Spatial data infrastructures (SDIs) are service-oriented mechanisms designed to 

efficiently collect, store, manage, and share spatial data (Budhathoki et al., 2008; 

Hendriks et al., 2012). Many SDIs at the regional, national, or global level have been 

proposed and implemented for Earth observations (Gao et al., 2022; Gorelick et al., 

2017; Izdebski et al., 2021; Lewis et al., 2017). These SDIs have facilitated the 

discovery and reuse of 2D spatial data, such as raster and vector data, thereby showing 



significance in areas such as environmental monitoring, agricultural analysis, and 

climate change (Owers et al., 2022; Yue et al., 2015, 2016). 

As information acquisition technologies advance, detailed and semantically 

enriched 3D spatial data are being collected worldwide. 3D spatial data convey aesthetic 

and spatial relationships more effectively than 2D data do (Labetski et al., 2023). Many 

studies have shown that 3D spatial data constitute an advanced tool for urban analysis, 

disaster evolution simulation, and microclimate analysis (Biljecki et al., 2015, 2018, 

2021). Consequently, high-value 3D data propel the transformation of geographic 

information systems (GISs) and SDIs from a 2D paradigm to a 3D paradigm at an 

astounding scale and pace. However, the increase in dimensions results in an amplified 

geometric volume. Furthermore, as shown in Fig. 1, the diversity and intricate structure 

introduce greater complexity than initially anticipated. 

 
Fig. 1. Different forms of 3D spatial data. Examples of (a) 3D mesh, (b) point 

cloud, (c) photorealistic 3D mesh, (d) CityGML, and (e) 3D voxel model. 

For the construction of an SDI for 3D data, Stoter et al. (2020) identified several 

primary challenges: data management, data heterogeneity, standardization, 

interoperability, and data quality. Rapid progress in machine learning has spurred much 

research on the semantic processing of 3D data (Lai et al., 2022; Yu et al., 2021, 2023; 

Yuan et al., 2022). To facilitate interoperability for 3D, the Open Geospatial 

Consortium (OGC) has released multiple specifications, including 3D Tiles1, Indexed 

3D Scene Layers (I3S2), City Geography Markup Language (CityGML3), and CDB4. 



 However, the challenges in 3D data management remain enormous due to the 

diverse and intricate nature of 3D spatial data. Many 3D spatial data are constructed 

from numerous components. For example, a complex building is assembled from 

elements such as tables, walls, and doors, whereas a large geographic scene is 

composed of nodes representing different areas. Moreover, complex geoanalytics tasks 

often involve multiple components from different datasets to perform relevant 

simulations. This inherently requires the SDI to manage and deliver 3D data efficiently 

at the component level. Recent efforts have focused on the management of specific data 

formats (Yao et al., 2018) but disregard other data formats. Furthermore, the preview 

and visualization of objects close to viewpoints necessitate SDIs to deliver voluminous 

data during streaming, a requirement often overlooked by existing 3D data management 

studies. Consequently, redundant duplicates are typically required to facilitate streaming 

delivery, further complicating the management process. 

In response to these challenges, this paper introduces an integrated approach for the 

management and streaming delivery of 3D spatial data at the component level. First, we 

model a conceptual structure for managing the multigrained representation and fine-

grained lifecycle of 3D spatial data. On the basis of this structure, second, we extend the 

create, retrieval, update, and delete (CRUD) operations for 3D spatial data. Last, this 

approach encodes the structure into a database schema suitable for efficient CRUD 

operations. Our goal is to explore efficient management and service methods for 3D 

spatial data in SDIs. The experiments demonstrate that the proposition is remarkably 

effective in managing 3D spatial data, streaming it on the web, and enabling users to 

inspect specific parts of the data as needed. In summary, the contributions of this paper 

are as follows: 



• A generic conceptual model suitable for component-level management of diverse 

3D spatial data in SDIs is developed. 

• The flexible data composition and fine-grained lifecycle management in this model 

are formalized. 

• This model is encoded with a cloud-optimized architecture to support the extended 

CRUD and streaming delivery of massive 3D data, avoiding unnecessary 

replication and conversion. 

• The proposed approach is implemented, evaluated and discussed. 

2. Background and related works 

2.1. Interoperability and standards for delivering 3D data 

The International Organization for Standardization (ISO) GL transmission format 

(glTF5) minimizes the 3D content used for rendering and the runtime processing 

required to parse it. However, glTF only stores the geometric structure, disregarding the 

semantic and topological aspects of a 3D city. To address this problem, OGC CityGML4 

defines a conceptual model for describing and delivering semantic 3D city models 

(Gröger & Plümer, 2012). CityGML defines the geometry, semantics, topology, and 

application domain extension (ADE) of the most important urban objects in a modular 

way. 

The conceptual model of CityGML is continuously evolving. To address the 

limitation that interior building structures can be represented only by the level of detail 

(LOD) 4, Boeters et al. (2015) extended LOD2 to encompass simplified indoor 

geometries. Geometrically, the 5 LODs in CityGML are often too generalized. Hence, a 

set of 16 LODs is proposed to provide geometric supplements (Biljecki, Ledoux, & 

Stoter, 2016). In response to the redundancy of XML6 encodings, CityJSON7 was 



introduced to reduce the complexity of application development for CityGML(Ledoux 

et al., 2019). Recently, CityGML 3.0 was approved as an OGC standard. This updated 

version includes indoor representations at all LODs and introduces new elements such 

as versioning, dynamic attributes, and point clouds (Kutzner et al., 2020). 

The OGC common database (CDB) is designed as an interoperable container for 

geospatial data among 3D geo-simulation applications. CDB serves as a runtime 

database for geospatial information essential to 3D geo-simulation scenes, including 

rasters, vectors, and 3D models (Saeedi et al., 2017). While OGC CDB is frequently 

employed within the United States government for the modeling of 3D synthetic 

environments, its utilization in academic research remains relatively limited. 

Web-side 3D rendering faces pressure from the increasing scale and complexity 

of 3D geospatial scenes. Streaming delivery is a compelling solution for alleviating this 

pressure, with OGC having established 3D Tiles and I3S standards for web stream 

optimization of 3D spatial data (Lu et al., 2021). These standards employ a 

fragmentation strategy for delivering 3D models, thereby alleviating the local loading 

pressure experienced on the web. The Logic4DCity model subsequently integrates the 

temporal dimension into 3D tiles, enabling interactive visualization of time series 3D 

city models on the web (Jaillot et al., 2020). To facilitate interoperability among these 

solutions, 3D GeoVolumes8 is proposed. 3D GeoVolumes defines a unified API for 

requesting, receiving, and transmitting 3D content across different data providers, 

thereby simplifying the development of 3D applications. 

In building information modeling (BIM), the industry foundation class (IFC)9 

was developed to store and exchange construction project information, including 

geometry, materials, schedules, quantities, and spatial relationships among building 

elements. To integrate GIS with BIM data, OGC LandInfra10 offers a conceptual model 



for representing land and civil engineering infrastructure facilities. OGC IndoorGML11 

integrates indoor building objects for navigation purposes. In addition, Liu et al. (2016) 

proposed a framework for converting IFC and CityGML data to integrate BIM and GIS. 

Wang and Xie (2022) proposed a function integration method for 3D GIS and BIM, 

which is based on IFC and CityGML, with applications in the visual detection of 

concealed facilities. 

In summary, various solutions for delivering 3D spatial data exist, but 

harmonizing and converting between them remains challenging owing to differences in 

features and suitability for specific scenarios. Table 1 highlights key formats: CityGML 

and IFC are commonly used for modeling and exchanging semantic data but lack 

streaming capabilities and are not web friendly (Schilling et al., 2016; Jaillot et al., 

2021). The Open Scene Graph (OSG) format is primarily used for delivering 

photorealistic 3D meshes on desktops but not on the web (Jiang et al., 2017). Like glTF, 

3D tiles, and I3S can stream 3D data online but do not support temporal dimensions or 

versioning (Jaillot et al., 2020). These variations present significant challenges for the 

integrated management and service of 3D data. 

Table 1. Feature comparison of popular 3D specifications or formats 

Specifications Asset type 
Semantic 
extension 

LOD 
Asset 

referencing 
Versioning Encoding 

Net stream 
optimization 

glTF Model No No No No JSON/binary Yes 

3D Tiles 1.1 Scene application 
extras HLOD External 

reference No JSON+glTF Yes 

I3S 1.1 Scene No Mesh 
pyramid 

Node 
reference No SLPK Yes 

OSG Scene No PagedLOD shallow_copy No ASCII/binary No 

CityGML 3.0 Scene ADE LOD0-3 Implicit 
geometry Yes GML No 

Ours Multi 
scene ADE LOD Node 

reference  Yes Database 
schema Yes 

2.2. SDIs and management of 3D spatial data 

Building SDIs for 3D data has been an important topic in GIS research for years. 

Several studies have attempted to construct SDIs for 3D data. For example, Basanow et 

al. (2008) discussed the implementation of 3D SDI based on open standards for 



Heidelberg. The 3D testbed in the Netherlands resulted in the proof of concept of the 

3D SDI (Stoter et al., 2011). Alizadehashrafi (2019) introduced a framework for the 3D 

SDI of Iran on the basis of OGC standards. Table 2 compares the core components of 

different SDIs. These SDIs typically use relational database management systems 

(RDBMSs) to store 3D data, which are served through web 3D service (W3DS). 

Table 2. Comparison of different 3D SDIs on core components 

SDIs Data simplification 
Data 

repository Data service 

Heidelberg 3D SDI 3D extension on styled 
layer descriptor PostgreSQL WMS/W3DS 

Netherlands 3D SDI 3D Standard NL, compatible 
with CityGML RDBMS Web Services 

Iran 3D SDI CityGML RDBMS WMS/W3DS 

3D data management is at the heart of 3D SDIs. On the basis of Oracle Spatial, 

Stadler et al. (2009) proposed a mapping method for the CityGML Schema to RDBMS, 

which enabled parallel storage and querying of Berlin CityGML data. However, this 

approach caters primarily to the representation of simple geometries and struggles to 

store complex geometries. Subsequently, an open-source RDBMS tool known as 

3DCityDB was developed, facilitating the import, management, and analysis of 

CityGML data (Yao et al., 2018). To manage the dynamic attributes encoded in ADE, a 

plugin was developed to increase the ability of 3DCityDB to handle CityGML data with 

ADEs (Chaturvedi et al., 2019). Karnatak and Kumar (2014) conducted tests on various 

spatial indices within RDBMS and reported that R-Tree and GiST often offer better 

performance for 3D spatial data queries. 

Nonrelational databases (NoSQL) are typically built on distributed architectures, 

offering advantages such as high performance and elastic scalability. NoSQL have been 

applied in 3D spatial data management. For example, to address the challenges posed by 

large-scale 3D data, a strategy based on Hadoop was proposed to load 3D wavefront 

OBJ data efficiently (Luan et al., 2014). Mao et al. (2014) employed NoSQL to manage 



increasingly complex 3D urban models, incorporating geographic indexing to increase 

query speeds. 

Since diverse and complex 3D spatial data are difficult to manage, some efforts 

have focused on the management of specific attributes of 3D data. For example, Karim 

et al. (2022) introduced a scale-unique identifier to support cross-scale CityGML 

querying. Chadzynski et al. (2021) treated city objects within CityGML as distinct 

entities. These authors proposed ontological methods for urban geometric entities and 

utilized a graph database to manage 3D data. In addition, an event-driven 

spatiotemporal database was proposed to perform dynamic updates of 3D city models 

(Guo et al., 2016). In general, existing research has focused mainly on the management 

of CityGML data, hindering the ingestion of diverse 3D spatial data from various 

providers. Additionally, the complexity of 3D data structures requires component-level 

CRUD operations, which current studies fail to support. The large scale and volume of 

3D data also demand streaming services, a factor not considered in existing 

management methods. 

3. Improved conceptual model for component-level management of 

multisource 3D spatial data 

3.1. Requirements from SDIs for 3D data 

To enable the discovery and delivery of spatial data from repositories, the basic 

requirements of SDIs are as follows: 1) data management for CRUD operations of 

spatial data, 2) a data catalog for discovering and browsing spatial data, 3) a data service 

for allowing the delivery of the data, and 4) data processing for continuous data 

ingestion. 

Integrating 3D data into SDIs introduces additional requirements as follows: 1) 

component-level management for hierarchically complex 3D spatial data, 2) streaming 



services for large-scale 3D spatial data, and 3) semantic expression and extension of 3D 

spatial data for 3D geoanalytics. 

Furthermore, to manage 3D spatial data at the component level, a DBMS-

oriented information model that can easily inject various semantic 3D data is needed. 

With the vast volume of large-scale 3D models, streaming the managed data directly is 

required to minimize deserialization costs. To achieve these goals, this section 

introduces a concept model for multisource 3D information management at the 

component level. This model is mapped to a cloud-optimized encoding for streaming 

the managed data directly in Section 4. 

3.2. Overview of 3DSIM CM 

In 3DSIM CM, we adopt the principles of SceneGraph in computer graphics to logically 

organize the components of complex 3D spatial data using the bounding volume 

hierarchy (BVH). The BVH is represented by the associations and edges between 3D 

assets in Fig. 2, forming the foundation for CRUD operations on components. 3DSIM 

CM is designed according to the commonalities across diverse 3D formats, such as 

glTF, CityGML, netCDF12, and 3D tiles, for better compatibility and scalability. We 

abstract 3D spatial data as a 3D asset described by Abstract3DAsset, which is inherited 

from geographic features (i.e., AnyFeature), as defined by ISO 19109. 3D assets not 

only encompass spatial geometries, textures, and materials but also include semantic 

attributes. 

According to hierarchy complexity, we categorize 3D assets into two types: 

3DScene and Abstract3DModel. 3DScene, such as a residential area, represents a 

complex 3D geographic scene consisting of multiple leaf nodes (Abstract3DModel) or 

group nodes (3DScene), whereas Abstract3DModel, such as a building model, 



characterizes a 3DSI composed of one or more geometries and their textures and 

materials, usually stored in a single 3DSI instance file such as glTF. 

We employ the geosolid coordinate reference system (CRS) EPSG13 4978 as a 

standardized spatial datum. To support 3D assets whose CRS (localCRS) is not EPSG 

4978, a nonnull transformation matrix (transform) and a location of the reference point 

in the world coordinate system (originLocation) are designed to correctly position them, 

as shown in Section 3.3. 

 

Figure 2. UML conceptual model for component-level management of multisource 

3DSI. 

3.3. Multigrained representation and composition of 3D assets on the basis of 

the bounding volume hierarchy 

3DMesh, PointCloud, and Abstract3DCoverage are derived from Abstract3DModel to 

represent common 3D mesh models, point clouds, and 3D coverage data, respectively. 

For Abstract3DCoverage, we define two commonly used forms in GIS: terrain 

(RasterRelief) and the temporal 3D physical field (PhysicalField). 3DMesh is primarily 

represented by geometry, texture, and material properties, which commonly follow the 



glTF specification. For RasterRelief and PhysicalField, common file formats include 

GeoTIFF14 and NetCDF. 

We adopt BVH, a type of directed acyclic graph (DAG), as shown in Figs. 2 and 

3, to represent the structure of 3DScene. The nodes constituting 3DScene are classified 

into the leafNode and the groupNode, both of which have the mandatory 

boundingVolume attribute for identifying the spatial extent of the node to support 

culling during collision detection. 

The 3DScenesWithLODs are derived from 3DScene for multilevel representation 

of 3D assets. Specifically, its groupLOD and leafLOD are associated with other 3D 

assets through LODScene2ModelEdge and LODScene2SceneEdge. renderMode 

controls how the range values should be interpreted when active nodes are determined. 

renderDistance specifies the range that determines when the node is loaded or rendered. 

For example, if the renderMode is DistanceFromEyepoint and the renderDistance is 

[100, 500], the node is rendered when its center point distance from the viewpoint is 

between 100 and 500 units. 

 

Figure 3. Bounding volumes, BVHs, 3D models, 3D scenes, and LODs. 

We use node references and transformation to enable any 3D assets to be a 

groupNode or leafNode of a larger scene, allowing for flexible 3D spatial data 



composition. An advantage is the reduction of storage waste in scenes that consist of 

numerous repetitive 3D models, such as trees in a city scene. The transform and 

originLocation within the Scene2SceneEdge and Scene2ModelEdge objects describe 

how a groupNode or leafNode is referenced accurately within a 3D scene. transform is 

an affine transformation matrix that acts upon the vertices and boundingVolume of the 

3D asset. For a vertex v with homogeneous coordinates 𝑝 = (𝑥, 𝑦, 𝑧, 𝑤), its transformed 

position is expressed via Eq. 1: 

 𝑝! = (𝑇" ∗ 𝑝#)#,   (1)  

where 𝑇" is an affine transformation matrix. When hierarchical transformations are 

involved, they transform sequentially in a bottom-up manner. For example, the process 

of transforming the model instance in Fig. 4 into a city scene instance is calculated via 

Eq. 2: 

 𝑝! = (𝑇$ ∗ (𝑇" ∗ 𝑝#))#.     (2)  

 

Figure 4. Node references and transformations. 

The UML classes shown in Fig. 2 define the minimal attributes required for 

scene organization, visualization, etc. Additionally, ADEs are introduced to extend 

more metadata, which are required for unique application domains. As shown in Fig. 5, 

the extended metadata are described as key-value pairs. They can reside in structured 



file types or databases optimized for key-value storage, which are then externally 

referenced through the adeOfSceneMetadata and adeOfModelMetadata attributes in the 

3D assets. This solution allows unforeseen metadata to be flexibly defined while 

associations are maintained with 3D assets. 

 

Figure 5. Attribute mapping of the waterbody module in CityGML to a 3D asset 

described by 3DSIM CM. 

3.4. Fine-grained lifecycle management of 3D assets 

We further specialize Abstract3DAsset into Abstract3DAssetWithLifeSpan. The 

validFrom and validTo attributes are used to represent the lifespan of the asset in the 

real world. This can be utilized to query the morphology and appearance of geographic 

scenes within specific time ranges. The countReferenced attribute is used to identify the 

survival status of the 3D asset in the DBMS. The initial value of countReferenced for 

each 3D asset is 1. The countReferenced is increased by 1 each time the 3D asset is 

referenced by another 3D scene and decreased by 1 whenever the asset needs to be 

removed from the DBMS. The asset can be completely deleted only when 

countReferenced = 0. This mechanism ensures consistency of the asset across all 3D 

scenes, preventing the scenario in which deleting a 3D asset would invalidate the 3D 

scene referencing it. 



Furthermore, to support the semantic or geometric evolution of 3D assets, we 

designed a versioning module inherited from AbstractVersion. This module defines the 

concept of 3D assets having multiple version representations. As shown in Fig. 6, 3D 

assets can have multiple versions representing their state at different times or stages. 

The versionTransition attribute of the version describes changes from a previous 

version (reliantVersion) to the current version, detailing the applied modifications. Each 

change is defined by a transaction with the type enumerated as delete, insert, modify or 

replace. Different versions of the same 3D asset share the same identifier value. 

The versioning module enables tracking and management of variations in the 

geometric and semantic attributes of 3D assets longitudinally, encompassing alterations 

to its SceneGraph constituents (e.g., arboriculture events such as planting orexcavating 

vegetation), modifications to its geometric constitution (e.g., reconstructing a building), 

and transitions in the status of the object (e.g., modifying the feature or timespan). 

 

Figure 6. UML conceptual model for the versioning module of 3DSIM CM. 



3.5. Extension of CRUD operations for 3DSIM CM 

While CRUD operations are well known as basic operations for data management, 

complex 3D data structures introduce new requirements for CRUD operations. 

The IDs of the desired 3D assets can be easily obtained through the retrieve 

operation. However, to obtain the complete 3DScene, it is necessary to further identify 

the 3D assets that compose it to construct the BVH. This process can be implemented 

through a depth-first search approach, as shown in Algorithm 1. 

The create and delete operations for a 3DScene introduce the requirement of 

atomicity. This means that unless all nodes of a 3DScene are fully created/deleted, no 

nodes are created/deleted. In addition, to avoid the deletion of assets used by other 

scenes, the delete for 3D asset 𝑎% is defined via Eq. 3: 

𝑑𝑒𝑙𝑒𝑡𝑒(𝑎%) = 𝑙𝑒𝑡	(𝑎% . 𝑐𝑜𝑢𝑛𝑡𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑	−= 1).             (3) 

Updating the attributes of asset 𝑎% directly may trigger many propagations across 

3D assets referencing it, potentially causing inconsistencies between datasets. To avoid 

propagation, all update operations are recorded within the versioning module. The 

update for 𝑎% involves adding a version that includes all the transactions and transitions 

associated with the update. 

Algorithm 1 Traverse a 3D scene. 
Input: 

 A 3D scene, 𝑠!; 
Output:  
  The 3D scenes that make up 𝑠!, 𝒮!; the 3D models that make up 𝑠!,ℳ!; 

1   𝒮! ← ∅; ℳ! ← ∅; Initialize a 𝑠𝑡𝑎𝑐𝑘; 
2   𝑠𝑡𝑎𝑐𝑘. 𝑝𝑢𝑠ℎ(𝑠!)	; 
3   while 𝑠𝑡𝑎𝑐𝑘 is not empty do 
4    𝑠" = 𝑠𝑡𝑎𝑐𝑘. 𝑡𝑜𝑝(); 	𝑠𝑡𝑎𝑐𝑘. 𝑝𝑜𝑝(); 
5    𝒮! = 𝒮! ∪ 𝑠"; 
6    for each leafNode 𝑚 of 𝑠" do 
7    1     ℳ! =ℳ! ∪𝑚; 
8    for each groupNode 𝑠 of 𝑠" do 
9    1     𝑠𝑡𝑎𝑐𝑘. 𝑝𝑢𝑠ℎ(𝑠); 
10   Return 𝒮! and ℳ! 



4. Cloud-optimized encoding for 3DSIM CM 

4.1. Cloud-optimized database schema for encoding 3DSIM CM 

To facilitate efficient CRUD operations, we employ the constellation schema to map the 

concepts and structures of 3DSIM CM into a database-based and system-independent 

encoding structure suitable for cloud-based storage. As shown in Fig. 7, the attributes 

most frequently utilized for retrieving 3D assets are treated as dimensions. The other 

attributes, relationships and versions of 3D assets are documented as facts, which are 

typically implemented using the NoSQL database due to the large number of records. 

The geometry encoding is stored in cloud-based object storage services (OSSs) and 

associated with the facts through the filePath attribute. 

The dimensions include timeDimension, spatialDimension, featureDimension, 

productDimension, and viewpointDimension. Each dimension documents a specific 

classification or hierarchy, enumerating the valid dimension values. For the spatial 

dimension, as users commonly utilize latitude and longitude for data retrieval, 

spatialDimension is encoded via the EPSG 4979 CRS. Facts consist of 

3DModelAssetFact, 3DSceneAsstFact, assetEdgeFact, versionTransistionFact, and 

transactionFact. Each 3D asset is encoded as a 3DModelAssetFact or 

3DSceneAsstFact. The assetEdgeFact documents the BVH structure of 3DScene, with 

the type specifying whether it corresponds to scene2SceneEdge, scene2LeafLODEdge, 

or scene2ModelEdge of 3DSIM CM. 



 

Figure 7. Cloud-optimized database schema for encoding 3DSIM CM. 

4.2. Efficient 3D model streaming delivery using an object storage service 

The geometry encoding of 3DModels often comprises millions of primitives and 

vertices. Moreover, large-scale 3DScenes often contain many 3DModels, which are 

required for streaming delivery to clients. Storing vast geometric data directly in 

databases results in inefficient storage utilization and deteriorated performance and 

impedes direct streaming. On the other hand, an OSS facilitates the elastic storage of 

unstructured objects and offers HTTP(S) byte-stream access to any stored object. 

Therefore, unlike prior works, we store the geometry encoding of the 3DModel 

in an OSS. As shown in Fig. 8, the geometry of the 3DModel is stored as objects in the 

OSS when they are mapped to the database schema. By detaching the geometry 

encoding of the 3DModel from the database, the database can focus solely on storing 

and managing the semantics and structure of 3D assets, without the overhead of 

deserializing large-volume geometries. 



 

Figure 8. Schema mapping and streaming delivery of 3D assets in a cloud-based OSS. 

Additionally, clients can directly access the required geometries of models via 

HTTP(s) to facilitate streaming without downloading the entire 3DScene. Since clients 

can stream data on demand, they do not need local replicas, reducing overall data 

duplication. The efficient stream service workflow is shown in Fig. 9. In this process, 

the client initiates requests to the server via the 3D GeoVolumes for complex 3D scenes 

composed of various types of 3D assets. As the user subsequently shifts their current 

viewpoint within the client application, the client dynamically accesses the geometry 

encodings of 3DModel from the OSS. 

 



Figure 9. Sequence diagram of 3D asset cloud services in SDIs on the basis of 3D 

GeoVolumes and OSSs. 

3D GeoVolumes integrates various specifications into an open standard-based 

solution, enabling applications to request diverse 3D data from different providers in an 

interoperable manner. Inherently, each 3D dataset is imbued with a bounding volume 

(referred to as the extent attribute) to form a geoVolume. Multiple geoVolumes can then 

be hierarchically combined to form a geoVolume with a relatively large geographical 

scope. Semantically, the geoVolume can be considered an abstract representation of the 

3D asset defined by 3DSIM CM, because both impose bounding volume requirements. 

Consequently, the mapping of 3DSIM CM onto the service API of 3D GeoVolumes is 

straightforward. Table 3 shows the correspondence between the primary objects of 

3DSIM CM and 3D GeoVolumes. For example, a 3D scene composed of diverse types 

can be mapped as a container resource within 3D GeoVolumes. 

Table 3. Mapping between the primary objects of 3DSIM CM and 3D GeoVolumes 
3D 

GeoVolume 3DSIM CM HTTP Path Description 

geoVolume 3D asset none 3D content with bounding volumes 
collections multi scenes /collections collection of containers 

container 3D scene /collections/{3DContainerId} geoVolume structured hierarchically 
from multiple geoVolumes 

dataset multi 3D asset 
instances 

/collections/{3DContainerId}/…/
{datasetId} collection of contents 

content 3D asset 
instance 

/collections/{3DContainerId}/…/
{datasetId}/{contentId} 

3D asset instance file such as 3DTiles 
and glTF 

5. Implementation and evaluation 

In this section, we present an implementation allowing CRUD, streaming optimization, 

and 3D geospatial analysis of various 3D assets on the web. We start with a presentation 

of the software environment. We continue with a proof-of-concept experiment, which 

demonstrates that our propositions provide efficient component-level retrieval, 

composition, access, and 3D geoanalytics cases. 



5.1. Software implementation 

The implementation for encoding 3DSIM CM uses RDBMS, NoSQL, and OSS. The 

dimension tables were instantiated in PostgreSQL, whereas the fact tables were stored 

in MongoDB. The geometry of 3D assets was stored in MinIO. The API server was 

implemented with Django and Python to handle requests from clients and organize 

retrieved information into the required formats. Client-side processing of 3D spatial 

data was implemented in CesiumJS and JavaScript. 

5.2. Proof-of-concept experiments and evaluation 

5.2.1. Component-level management and delivery for 3D assets within SDIs. 

On the basis of 3DSIM CM, we developed an SDI that enables the management, access, 

and delivery of 3D spatial data in a coordinated and efficient way. In this system, 

various 3D spatial data can be easily ingested and managed at the component level, with 

semantics, LODs, ADE, and versioning properly organized to support client retrieval 

and analysis needs. Owing to the encoding being tailored for modern cloud storage, 

highly efficient component-level CRUD operations for 3D assets are implemented. As 

shown in Fig. 10, the client-side interface for semantic retrieval of 3D assets uses 

dimensions such as spatial extent, feature type, and product type (as depicted in Fig. 7) 

to retrieve the necessary 3D assets and access the component nodes comprising 3D 

scenes. The CRUD performance is evaluated in Section 5.2.3. 



 

Figure 10. Client-side graphical user interface for retrieving 3D assets from SDIs. 

An advantage of the proposition is that the geometries of 3D assets managed 

within the SDI can be streamed on demand from OSS to clients via HTTP(s). After the 

desired assets are retrieved from Fig. 10, users can obtain the semantics of 3D assets 

delivered in JSON and directly request the geometry of each node from the OSS via the 

filePath attribution. Additionally, we implemented interoperable standards such as 

glTF, 3D Tiles, and I3S to deliver the managed 3D assets. 

 

Figure 11. JSON encoding of the service API using 3D geovolumes. 

Another advantage is its support for component-level retrieval and assembly, 

which enables the retrieval of subparts of complex 3D scene assets and then combines 



these subparts with other 3D assets to create a new 3D scene for delivery to the client in 

3D GeoVolumes. The JSON encoding of its service API, as shown in Fig. 11, reveals 

how different types of 3D instances are mapped as contents within the 3D GeoVolumes. 

Fig. 12 presents a rendered 3D scene comprising a diverse assembly of various types of 

retrieved 3D assets. This scene is delivered to the client through 3D GeoVolumes and 

encompasses 3D storms, buildings in 3D Tiles, buildings in CityGML format, and relief 

data. 

 

Figure 12. Rendered 3D scene comprising diverse 3D assets via 3D GeoVolumes 

5.2.2. 3D geospatial analysis cases supported by 3DSIM CM 

One primary motivation for building an SDI for 3D is to support the multifaceted needs 

of 3D geoanalytics. We present several case studies to demonstrate how the proposed 

method can be used in 3D geospatial analysis. Fig. 13 shows an online analytical 

processing (OLAP) case using multisource 2D and 3D spatial data in a geo-computing 

platform that integrates the proposed method for managing and delivering 3D spatial 

data. This case simulates a flood disaster caused by prolonged rainfall. The simulation 

calculates the flood inundation areas and depths under specified rainfall amounts on the 



basis of vector data, reliefs, and 3D building meshes. The vector data are managed by 

other modules of the platform. The reliefs and 3D building meshes are managed and 

delivered in 3DSIM CM and provide the necessary elevation and permeability 

information for flood simulation. 

 

Figure 13. Online analytical processing for flood simulation in a geo-computing 

platform on the basis of the proposed method. 

Fig. 14 shows 3D geospatial analyses that require extended semantics. Fig. 14a 

displays a noise map simulated using 3DSIM CM and its encoding. This map was 

computed on the basis of the emission locations of the noise sources and the 3D 

environment in which the noise propagates. The noise distribution on the building 

surfaces was calculated using a ray-tracing algorithm, and the required reflection and 

absorption coefficients of the buildings were recorded in the adeOfModelMetadata 

attribute. Fig. 14b depicts a case of indoor route planning within a 3D building. Using 

the Astar algorithm, this case implemented the shortest route planning across multiple 

stories in a 3D building managed in 3DSIM CM. The building was originally in IFC 

format. As shown in Fig. 15, the IFC data are mapped to 3DSIM CM in an SDI, where 



classes such as IfcWall and IfcStair are converted to leaf or group nodes. Geometry is 

extracted as glTF, and complex semantics are extracted as key-value pairs in 

adeOfModelMetadata or adeOfSceneMetadata. To conduct cross-level shortest path 

analysis, first, we create floor-level paths on the basis of the geometric positions of 

corridors. Second, an indoor multistory topology is constructed on the basis of the 

geometric positions of the stairs and elevators. 

 

Figure 14. 3D geospatial analyses that require extended semantics: (a) noise 

propagation simulation and (b) rendered BIM building and results for indoor route 

planning. 

 

Figure 15. Shortest route planning across multiple stories in a 3D building managed in 

3DSIM CM. 



5.2.3. Performance evaluation 

This section presents experiments to demonstrate management performance. For the 

sake of measurement, performance evaluation experiments were conducted exclusively 

on a single Linux server with Xeon CPU E5-2690 V4 and 225 TB Raid drivers. 

Table 4. Databases with various data volumes used for testing. 

Database 
ID 

Number of 3D 
Model Facts 

Number of 3D 
Scene Facts 

Number of Scene 
Edge Facts 

Total Number 
of Facts 

Data Volume 
of Geometry 

DB1 23 K 27 K 50 K 100 K 4.5 GB 
DB2 231 K 270 K 500 K 1 M 45 GB 
DB3 23.1 M 27 M 50 M 100 M 4.5 TB 
DB4 0.29 B 0.25 B 0.55 B 1.1 B 49.5 TB 

 
Table 4 presents the data records of four different databases used in the tests, 

ranging from 100 thousand (K) to one billion (B) total facts. For CRUD operations on 

3DModels, typically, a single query is involved; thus, it usually takes milliseconds. 

However, for CRUD operations on 3DScenes, the time depends on the number of nodes 

involved. The more nodes there are, the longer a query takes. 

In Fig. 16, we compare the proposed method with 3DCityDB (Yao et al., 2018) 

in terms of retrieval, creation, and update efficiency of 3D scenes in databases of 

various sizes. 3DCityDB has been in productive and commercial use for more than 14 

years worldwide. The geometric volumes of the 3D scenes used are 0.4 GB, 0.8 GB, and 

1.5 GB. 

As shown in Fig. 16a, with increasing database volume, the retrieval and 

creation efficiency of 3DCityDB significantly decreases. In contrast, our method can 

retrieve and create the same 3D scenes in just a few seconds, as shown in Fig. 16b, 

regardless of the database volume ranging from 4.5 GB to 45 TB and the number of 

facts from 100 K to 1.1 B. This finding indicates that the database size has no 

substantial impact on the efficiency. However, the complexity of the scene significantly 

affects efficiency, with longer times required as the number of child nodes increases. As 

outlined in Table 4 and Fig. 16, the efficiency of 3D assets from the database is 



independent of the volume of geometry stored in OSS, and these assets can be directly 

delivered to the web side as needed. The challenge posed by the massive data volumes 

encountered in 3D SDI construction is effectively addressed. 

As shown in Fig. 16c, the update time depends on the number of modifications 

involved. For example, updating the geometry of a node may change the bounding 

volumes of multiple parent nodes. 3CityDB accelerates updates to semantic attributes, 

but updates to geometry are relatively slower. Our method shows nearly identical 

update times for geometry and semantic attributes, and 4.41 seconds is required for 

2,000 updates. 

 

Figure 16. Performance comparison between 3DCityDB and the proposed method: 

Retrieval and creation times for different scenes using 3DCityDB (a) and the proposed 

method (b); (c) updated performance comparison for DB4. 

6. Discussion 

An increasing amount of geographic information is being captured in 3D. However, the 

description, management, and sharing of existing 3D spatial data are still performed in 

ad hoc ways and remain uncoordinated. The management, service, access, visualization, 

analysis cases, and performance evaluation of the proposed method are explored. The 

following observations are worthy of further discussion: 



6.1. Method applicability 

One key challenge is to improve the generalizability of 3DSIM CM by applying it to 

various 3D cases. In this work, we collect multiple 3D data and investigate their 

management and services within the SDI. 

The following lessons on how to convert and inject existing 3D spatial data can 

be learned: 1) the 3D asset type to which the 3D spatial data asset belongs should be 

identified; 2) nonstream optimized geometric encodings, such as the GML encoding of 

CityGML, need to be converted to stream-optimized formats, such as glTF; and 3) the 

hierarchical semantics of 3D scenes should be added as nested key-value pairs to the 

adeOfSceneMetadata or adeOfModelMetadata of the corresponding assets. 

With respect to the data partition, some 3D spatial data may be organized into 

hierarchical or modular structures. We consider the hierarchy to be built during data 

ingestion for the following reasons: 1) Hierarchical or modular structures can easily be 

mapped to the SceneGraph used in this paper, 2) data repartitioning is challenging 

because of the required topology reconstruction, and 3) decoupling geometry from the 

database helps avoid high deserialization costs. 

Low-frequency variations can be recorded in versioning, whereas high-

frequency changes, such as sensor data, can be integrated with our approach at the client 

to meet specific needs for time series analysis. However, for animations such as skeletal 

or keyframes, their implementation often relies heavily on the scene parameters 

rendered at the client, making predefining a universally applicable animation for all 

scenarios difficult. Therefore, the current version does not support animation 

management. 



6.2. Data consistency 

One key challenge in implementing 3DSIM CM is maintaining consistency among the 

complex 3DScenes. This involves avoiding dangling nodes, incorrect referencing, and 

incomplete data during CRUD operations. The proposed method can help ensure data 

consistency in the following ways: 1) the countReferenced feature prevents incorrect 

referencing caused by the deletion of used assets while allowing periodic deletion of 

dangling assets with countReferenced = 0, 2) recording all update operations in 

versioning mitigates inconsistencies resulting from propagations across 3D assets, and 

3) to maintain data integrity, the implementation of ingestion and deletion of 3DScenes 

must be atomic. 

6.2. 3D SDIs and geospatial digital twins 

A 3D SDI can be regarded as an architecture with capabilities because the various 3D 

spatial data are interoperable, accessible, and discoverable in a distributed 

infrastructure. Although this paper provides a solution for integrating the management 

and streaming service of 3D data in the cloud, additional components are needed to 

form a complete 3D SDI. The first is the enhanced data ingestion component, which 

seamlessly facilitates the conversion between various 3D data formats and 3DSIM CM. 

The second is a catalog component based on OGC Catalog Services or STAC, which 

enables the discovery of data within repositories. The third is a portal component, which 

queries, displays, and analyses 3D spatial data. 

Geospatial digital twins (GDTs) combine the advantages of virtual geographic 

environments (Lin et al., 2013) and digital twins to reflect real-world geographic 

conditions in real time through digital models (Zhang et al., 2024). The construction of 

GDTs involves large-scale and multisource 3D spatial data (Zhu, 2024). This work 

provides efficient 3D spatial data management and services for GDTs. Admittedly, the 



proposed method is not designed to handle real-time data generated from IoT devices, 

which are crucial for analysis in GDTs. However, such data can be delivered with 

solutions such as OGC SensorThings and integrated with our approach in GDTs for 

time series analysis. 

7. Conclusion 

Managing and streaming 3D spatial data is important for understanding and analyzing 

geospatial changes. In this paper, we present design rationales and a unified conceptual 

model suitable for component-level management of diverse 3D spatial data. The model 

is subsequently mapped to a cloud-optimized encoding schema to effectively manage 

and deliver massive 3D spatial data within SDIs. This work provides a scientific 

exploration that integrates management and services to enable direct streaming of 

managed 3D spatial data without the need for redundant replication and conversion. The 

proposed approach is implemented and evaluated across services, accessibility, analysis 

cases, visualization, and efficiency. 

This work helps develop a valuable reference for the management and delivery 

of 3D SDIs. Future work will consider moving features of 3D spatial data, such as 

sensor data and skeletal animations. The on-the-fly and batch computing methods for 

the vast 3D datasets managed within a 3D SDI are also helpful. In the coming months, 

we will develop a 3D SDI based on the proposed model and encoding solution, which 

offers online access and computation services for a substantial and varied collection of 

3D spatial data and associated operators. 
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