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Urban transformation not only reshapes physical spaces but also impacts pub-
lic perception, influencing how people experience their environments. This study
utilizes Street View Imagery (SVI) as an emerging, human-level data source to
assess urban changes, providing perspective beyond traditional datasets. Exist-
ing studies often focus on either urban physical changes or human perception
changes, without bridging the two. This research integrates both aspects by com-
bining a change detection model, trained on a self-labeled dataset, and a human
perception model based on the crowdsourced Place Pulse 2.0 dataset with input
from 81,630 online volunteers, to analyze urban transformation in New York City
and Memphis from 2007 to 2023. Our findings reveal differences between the
two cities: New York City exhibited small, isolated changes often driven by com-
munity needs, while Memphis transitioned from concentrated to more dispersed
development patterns. This study provides insights into how physical changes in-
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fluence public perception within these two cities. It demonstrates how thoughtful,
well-planned urban transformation can improve neighborhood’s perception such
as safety and livability, while also pointing out potential challenges like gentrifica-
tion or social fragmentation. These findings provide policymakers with valuable
insights into human perception, aiding in the creation of more inclusive, vibrant,
and resilient urban transformation. This helps ensure that urban transformation
efforts are based on community desires and align with long-term sustainability
goals.
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1. Introduction

Urban transformation, characterized by its variety in scale, duration, and spa-
tial segregation, presents itself through physical changes that not only affect urban
landscapes but also impact public perception, thereby having major impact on sus-
tainable development (Koch et al., 2018; Maassen and Galvin, 2019). However,
urban transformation occurs through formal and informal processes, posing issues
that require close investigation in order to develop effective policy solutions that
are adapted to the distinctive dynamics of each urban physical change, such as
expansion of informal settlements and businesses, new development, and micro-
scale urban renewal (Lara-Hernandez et al., 2020; Kamalipour and Dovey, 2019;
Liu and Song, 2024).

To accurately capture and manage urban dynamics, existing studies use vari-
ous data sources, including site photographs, building permits, construction records,
and satellite imagery, to document and demonstrate physical urban changes at dif-
ferent scales (Wiatkowska et al., 2021; Zhang and Seto, 2013; Bennett and Smith,
2017; Venter et al., 2020). While these techniques effectively monitor physical
changes in the city, they have limitations in directly capturing impacts at the hu-
man level. SVI provides a broad, historical, and detailed view of the urban en-
vironment from a human perspective, offering an objective and comprehensive
record of physical changes (Biljecki and Ito, 2021; Wang et al., 2024). However,
previous studies using SVI have primarily relied on single data epochs without
considering multiple snapshots or historical versions to understand urban evolu-
tion and the various phenomena that occur as cities change.

Scholars have explored different methods to detect and monitor urban trans-
formation (Ilic et al., 2019; Chen et al., 2021; Sakurada and Okatani, 2015; Huang
et al., 2024). Traditional methods, such as questionnaires, interviews, or statistical
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analysis of socioeconomic data, provide valuable insights but lack detailed visual
information on the urban landscape. Some scholars have employed machine learn-
ing models to compare streetscapes and detect changes, achieving high accuracy
rates (Huang et al., 2024; Chen et al., 2021). However, studies focusing on change
detection have primarily addressed physical changes, often neglecting to analyze
their impact on human perception. Meanwhile, other scholars focus on changes in
urban perception, often equating perceptual changes directly to the broad concept
of changes in visual elements (Liang et al., 2023; He et al., 2023), without rig-
orously examining specific elements in the streetscape. This approach falls short
in characterizing urban changes in a precise manner, and the machine learning
models used cannot determine which type of urban change corresponds to the de-
tected pixel changes and perception changes. Temporary in street elements, such
as moving vehicles or swaying tree branches, may affect perceptual evaluations.
This limitation restricts the depth and precision of analysis and the understanding
of the detailed impacts of urban changes on human perception (Wang et al., 2024;
Liu and Song, 2024).

Our research seeks to answer two questions: 1) Which parts in an urban area
exhibit human level urban physical changes over time, and at what scale? 2) Do
detected changes in specific locations lead to improvements or deterioration in
human perception? The results of this study can help improve urban living stan-
dards, inform policy refinements, and the effective implementation and monitoring
of these policies.

Our study informatively devised a workflow to quantify the distribution of ur-
ban physical changes over time and reveal their impacts through an analysis of
perceived urban environmental quality scores, addressing both positive and neg-
ative consequences such as fragmentation or gentrification. Specifically, we used
semantic segmentation to exclude temporary and irrelevant factors, such as ve-
hicles, human activities, and vegetation changes, from SVIs. A simplified ver-
sion of the change detection model (Liu and Song, 2024), as shown in Figure 1,
was trained on a self-labeled dataset of 4,000 SVI pairs, which represents the
largest change detection classification dataset for urban scenes within our studied
cities. This model was then used to analyze time-series SVIs, aiming to identify
whether physical change occurred in the city, particularly in buildings and streets.
The change detection model employs two convolutional backbones derived from
a pre-trained VGG16 model (Simonyan and Zisserman, 2014), generating two
similarity scores to enhance feature extraction of the texture and detail of the in-
put data. These similarity scores are combined and processed using a Support
Vector Machine (SVM) classifier, which includes a fully connected layer network
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with ReLU activation and dropout regularization for classification. Our change
detection results outperform the latest research results (Liu and Song, 2024) using
similar size dataset of static SVIs.

Subsequently, we focus specifically on SVIs that exhibit physical changes. To
assess whether these urban changes have positive or negative perceptions and im-
pacts, we employ a pre-trained deep learning model of human perception. This
model uses Place Pulse 2.0, a well-known comprehensive human perception dataset
that is widely adopted (van Veghel et al., 2024), to predict perceptions of the ur-
ban environment before and after changes. It evaluates detected changes based on
four key human perception metrics: ‘beauty’, ‘wealth’, ‘safety’, and ‘liveliness’.
Based on the positive and negative changes in these perception scores, we fur-
ther analyzed the impact of physical changes, as shown in Figure 1. Through this
dual approach of physical change detection and perception analysis, our research
provides a more informative guidance for the policy maker to understand of how
previous urban transformations impact both the physical landscape and people’s
perception and experience of these spaces in an inclusive and large-scale manner
within the studied cities. Additionally, non-professionals may find it useful to
understand how changes in their environment affect their daily experiences.

2. Literature Review

2.1. Theories related to urban change and their potential impacts
Urban physical change is a process driven by complex and interrelated fac-

tors, including physical, social, economic and ecological aspects of the urban
environment (Shi et al., 2020). These factors not only shape the spatial layout
and architectural character of cities, but also have a considerable impact on the
structure of neighborhoods, the lifestyles of residents, and the state of the regional
economy (Bratuškins et al., 2020). Urban renewal and redevelopment programs,
while aimed at upgrading the city’s infrastructure and living environment, may
also trigger gentrification, forcing former residents out of their neighborhoods
(Earley, 2023; Levine et al., 2022). At the same time, the growth and expansion
of cities demonstrates their economic vitality, but such expansion may also be ac-
companied by urban contraction and land use change, exacerbating environmental
pressures and social divisions.

The social ramifications of urban change encompass far-reaching and pro-
found effects, not only altering the physical structure of neighborhoods but also
significantly influencing the quality of life of their residents (Liang et al., 2023).
Schelling and Grodzins’ tipping point theory articulates how neighborhoods on
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Figure 1: Overall workflow of the developed methodology.

the socio-economic brink can either decline further or improve, depending on var-
ious factors, including human capital development and educational achievements
(Schelling, 1971; Garcı́a, 2019). This concept emphasizes the critical role of fos-
tering positive social progress to mitigate risks in poorer areas and enhance more
affluent ones (Schelling, 1971). Concurrently, Burgess’s intrusion-differentiation
theory sheds light on the importance of geographic positioning and social net-
works in urban renewal efforts. It points out that urban improvement initiatives
often cluster around central business districts and their adjacent desirable neigh-
borhoods, indicating a targeted approach to urban enhancement (Schelling, 1971)

Building on these theories, the work of Naik et al. (2017) on urban envi-
ronmental transformations reveals the cascading effects of changes within urban
spaces, demonstrating the interconnectedness of modifications and their capac-
ity to impact surrounding areas. This has been further illustrated in literature,

5



Figure 2: Selected pairs of SVIs showing different categories of changes. Data source: GSV.

e.g. through a seven-year study of Turkish neighborhoods, which showed that
changes within communities disrupt residents’ daily lives and social interactions,
ultimately altering the social fabric and cultural identity of the area (Atay Kaya,
2021).

Given this complex backdrop, acknowledging the variability and breadth of
urban physical changes becomes imperative. Figure 2 is provided for better un-
derstanding of the types urban changes. These changes, which vary in scale, du-
ration, and spatial segregation, and can occur through both formal and informal
processes, present challenges that require a comprehensive understanding. It is
this variability and its consequences that underline the need for effective policy
responses, tailored to address the specific dynamics of each urban transformation.

The influence of urban physical changes extends beyond tangible transforma-
tions to significantly impact human perception. Research demonstrates that mod-
ifications to the built environment, encompassing street layouts, building facades,
and public spaces, fundamentally shape how residents experience and interpret
their urban surroundings. This perceptual dimension adds another layer to the
complex interplay of factors driving urban change, as discussed in theories like
Schelling’s tipping point and Burgess’s intrusion-differentiation model. Recent
technological advancements, particularly Street View Imagery (SVI) and machine
learning models, have revolutionized our ability to study these perceptual impacts
systematically (Ito et al., 2024). These tools enable researchers to conduct quanti-
tative analyses of how the built environment and urban design influence subjective
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experiences of safety, vibrancy, and aesthetics (Zhang et al., 2021, 2018b; Wang
et al., 2024; Kang et al., 2023; Biljecki and Ito, 2021).

Despite extensive research on urban environments and perception, a critical
gap exists in our understanding of how physical urban changes affect human per-
ception in controlled settings (Ito et al., 2024). While numerous studies examine
static urban environments, there is a remarkable scarcity of research investigat-
ing how temporal changes at specific locations influence human perception. This
knowledge gap is particularly significant given that urban transformation occurs
as a continuous process rather than a static event, suggesting our understanding of
the relationship between physical changes and their perceptual impacts remains
largely unexplored in current literature.

2.2. Challenges and methodological advancements in monitoring urban change
The challenge of effectively monitoring urban change has captivated scholars

for years. This ongoing phenomenon encompasses the transformation and de-
velopment of various urban elements, including buildings, roads, green spaces,
streetscapes, and neighborhoods (Ma et al., 2021). To grasp and manage these
dynamics accurately, it necessitates sustained observation and thorough analy-
sis. Traditional methods leaned on questionnaires and interviews (McGinn et al.,
2007), visual surveys, or manual image assessments (Chen et al., 2009; Roth,
2006). These are typically hindered by low data yield and restricted spatial de-
tail. Additionally, while socio-economic data offered valuable statistical insights,
it fell short in detailing the visual information of urban landscapes (Liu and Song,
2024).

In recent years, the significance of visual data for urban change detection
and monitoring has surged, propelled by advances in remote sensing technology
(Wiatkowska et al., 2021; Wentz et al., 2014; Liang et al., 2023; Ito et al., 2024;
Velasquez-Camacho et al., 2023). This data includes optical remote sensing im-
agery (ORSI) (Zitzlsberger et al., 2021), nighttime light imagery (NTL) (Bennett
and Smith, 2017; Zhang and Seto, 2013), synthetic aperture radar (SAR) (Moul-
ton et al., 2008; Cihlar et al., 1992), and light detection and ranging (LiDAR)
(Venter et al., 2020). These methods facilitate large-scale, multi-level analysis of
urban layout and land use changes at a fraction of the cost of traditional interviews
and surveys, though each carries its own set of pros and cons. While these tech-
nologies offer substantial benefits in monitoring urban environments, challenges
such as VHR’s susceptibility to distortion, SAR’s noise issues, and LiDAR’s high
costs and data complexity remain. Moreover, while these methods of data acqui-
sition perform well in monitoring physical changes in cities, there are limitations
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in directly capturing urban physical changes’ impacts on people, which is a par-
ticular concern according to existing literature (Liu and Song, 2024). Images
acquired from satellite-based or airborne platforms, while effective in detecting
topside changes, are less efficient in capturing subtle changes at the human level
or street scale.

Over the last decade, the proliferation and utilization of SVI around the world
has unveiled new datasets capturing urban changes, proving to be an invaluable
asset for research (Biljecki and Ito, 2021). Offering a distinct vantage point signifi-
cantly different from remote sensing techniques, SVI serves as an easily accessible
data source that captures images from a human perspective (Zhang et al., 2018b;
Biljecki and Ito, 2021). This unique feature enables SVI to convey the details of
urban life and the tangible transformations within cityscapes in ways that surpass
the capabilities of traditional statistical and satellite data (Li et al., 2015). It is
adept not only at documenting broad urban development and renewal endeavors
but also at detailing the minutiae of neighborhood beautification or aggravation
efforts (Zhang et al., 2018a). In terms of time series, SVI tends to provide finer
temporal coverage than ground-based LiDAR, which is more costly and often
lacks optical data (i.e., color). Furthermore, when juxtaposed with social media
imagery, SVI provides superior coverage (Wang et al., 2024; Zhang et al., 2018a;
Liu et al., 2024; Hou et al., 2024). As a result, SVI maintains a good balance be-
tween efficiency, data completeness, and data collection costs, making it a reliable
data source for large-scale mapping of physical urban change.

In recent years, scholars have increasingly employed deep learning techniques
for urban visual element change detection research (Shi et al., 2020). Typically,
evaluation metrics are utilized in supervised learning-based change detection re-
search: the accuracy, which measures the ratio of correctly predicted observations
to the total observations, is used to evaluate the performance of the image classi-
fication task. However, in change detection tasks, we often encounter imbalanced
datasets. In such cases, the F1 score is introduced, as it indicates a balance be-
tween true positive rates and false positives. This helps ensure that the model
correctly identifies both instances where changes have occurred and where they
have not, making it a good choice for evaluating change detection model perfor-
mance.

In 2015, Sakurada and Okatani (2015) proposed a convolutional neural net-
work (CNN) combined with superpixel segmentation for change detection in panoramic
images, achieving an F1 score of 0.639 on their self-collected and annotated
Google Street View (GSV) dataset. Alcantarilla et al. (2018) used coarsely reg-
istered image pairs with an adaptation of Fully Convolutional Network (FCN)
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model for pixel-level change detection, achieving an F1 score of 0.614 on the
same dataset. Chen et al. (2021) introduced the Dynamic Receptive Temporal At-
tention Module (DRTAM), achieving an impressive F1 score of 0.871 on the same
dataset. Researchers have also explored self-supervised learning approaches. For
instance, the Street2Vec method employs a ResNet-50 and multi-layer perceptron
(MLP) model with the Barlow Twins self-supervised learning approach to ex-
tract embeddings from street-level images taken at the same location in different
years (Stalder et al., 2024). These optimized embeddings are insensitive to irrel-
evant changes (e.g., lighting, seasons) but sensitive to structural urban changes,
enabling urban change detection by comparing the cosine distance between em-
beddings. However, they did not demonstrate the explainability of their model,
merely highlighting its performance surpassing generic pretrained embeddings.
This raises concerns about the model’s generalization capabilities in downstream
tasks.

However, when tested on a real-world, randomly sampled, and annotated small-
scale GSV dataset, where annotations were based on the presence or absence of
urban physical changes (0/1 labels), Ilic et al. (2019) developed a Siamese network
model using transfer learning, initialized with pre-trained VGG19 weights from
ImageNet. Their SCNN-FC-8 model demonstrated high efficacy in the street view
dataset, achieving an F1 score of 0.72. Huang et al. (2024) used fine-tuning of the
Dino v2 model to achieve a change detection F1 score of 87.95%. Liu and Song
(2024) employed a Markov SVM classifier integrated with ResNet as the encoder,
achieving an accuracy of 0.76 after training on 2000 samples for 18 epochs. Given
the similarities in labeling, training, and validation setups, their results serve as a
benchmark for comparison with the findings of this study. These advancements
effectively identified physical urban changes but left the exploration of impacts on
human perception for future research.

In summary, prior studies have mainly leveraged diverse data sources for
change detection, neglecting to evaluate its impacts, particularly regarding human
perceptions. Our research seeks to address this gap by exploring in greater depth
the actual impact of urban physical changes, especially from the perspective of
human perception. We make use of these well-established change detection meth-
ods and take them forward by putting them in the context of impacts, ensuring that
urban change detection not only maps physical alterations but also aligns better
with the needs and well-being of urban residents.
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3. Methodology

3.1. Study Area
In examining the dynamics of the physical environment, we focused on two

considerably different American cities: New York City, a metropolis with a di-
verse demographic and economic composition (Savitch, 2010), and Memphis,
historically known for its industrial base, currently undergoing significant polit-
ical and economic transformation (Raciti et al., 2016). This selection enables
comparing the differences in economic, social, and built environment develop-
ment among large and medium-sized cities. Research in recent years has gener-
ally pointed to the fact that NYC has undergone significant socio-economic trans-
formation, with the phenomenon of gentrification being particularly prominent
(Chapple et al., 2021). While this process has contributed in part to the prosperity
of its metropolitan area, it has also led to significant changes in community struc-
ture, with numerous neighborhoods facing different forms of displacement (Zukin,
1987). In particular, low-income groups have found themselves struggling to cope
with rapidly rising housing prices, a trend that related wage increases and housing
policies do not appear to have effectively mitigated (Zukin, 1987). In contrast,
Memphis, although smaller in size, is a city with a well-known cargo airline hub,
and its economic structure has shown changes and developments in recent years,
which in turn may shape the urban physical environment. Thus, a comparative
study of the two is of some interest, and will contribute towards understanding of
the applicability of the developed method across a variety of urban settings.

3.2. Data preparation
To document the physical changes in NYC and Memphis from 2007 to 2023,

we collected imagery from GSV at sample points with 300-meter intervals across
the cities’ street networks. Panoramic imagery spanning from 2007 to 2023 was
requested and categorized by location for the sample points. However, it should be
noted that not all sample points have imagery for the entire time span. Also, sam-
ple points on the road segments classified as highways and ramps were excluded
due to their lower likelihood of exhibiting urban physical changes at the neigh-
borhood level. The counts of sample points for NYC and Memphis are 26,175
and 20,003, respectively. The distribution of SVI over time was notably uneven.
To mitigate the uneven temporal distribution of SVI, the dataset was segmented
into four periods: period AB: 2007 to 2013; period BC: 2013 to 2016; period CD:
2016 to 2018, and period DE: 2018 to 2023. This segmentation process, involv-
ing 1278 potential configurations, was guided by the need to balance the number
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Figure 3: The sampling process for SVIs, including the steps for panorama cropping and masking.

of images across each time interval, with the final selection informed by a com-
prehensive assessment of the total number of observation points and the standard
deviation of each time segment.

The subsequent processing of panoramic SVIs is shown in Figure 3. To crop
panoramic images, adjusting the Field of View (FOV) and heading to produce
1024x1024 panoramic unfolded SVIs. An FOV of 60 degrees was chosen to min-
imize sky coverage, thereby focusing more on urban streetscapes. Images captur-
ing both sides of the street were gathered, with adjustments made to the heading
based on the heading information from panorama metadata, followed by a modifi-
cation of ±90 degrees. The earliest heading recorded at each standpoint served as
a baseline for aligning subsequent time-series SVIs from different time segments,
ensuring consistency of heading for each standpoint. Furthermore, a pre-trained
VGG model and SVM were employed to screen out SVI with sub-optimal align-
ment, enhancing the dataset’s overall quality.

Our study adopts a broad definition of urban physical changes, specifically
excluding temporary and irrelevant elements such as vehicles, human activities,
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and vegetation changes from the analysis. While vegetation can sometimes be
important, its variability can introduce significant randomness, thereby affecting
the overall performance of the model (Biljecki et al., 2023). By excluding these
elements, we aim to reduce errors and minimize false positives in our analysis.
Semantic-SAM (Li et al., 2023), a semantic segmentation model enable segment-
ing and recognizing streetscapes. The SAM model has been tested on various
urban segmentation datasets(Zeng and Boehm, 2024), achieving accuracy and re-
call rates exceeding 80% for categories including ‘building’, ‘road’, ‘sky’, ‘cars’,
‘bikes’, and ‘people’ . The SAM model was used in this research to differenti-
ate between categories such as ‘building’, ‘road’, ‘people’, ‘cars’, ‘vegetation’,
creating corresponding masks for each SVI.

The categories ‘building’ and ‘road’ were highlighted in white in mask image,
with the remaining categories set to black to exclude temporary elements from
further analysis. The choice of representative images for each standpoint within
a given time segment was determined by comparing the proportion of the sum
of white pixels in the masks on both sides of the street, selecting the side with a
higher white pixel ratio to represent that particular time segment and standpoint.

For the preparation of change detection dataset, 2000 images from each city
were annotated for the training and validation sets, following the methodology of
previous research (Liu and Song, 2024). The images were labeled as either “posi-
tive: detected change in the building and road categories” or “negative: no changes
detected in the building and road categories” by PhD students with backgrounds in
architecture and urban planning. These annotations were cross-validated by three
additional students from computer science backgrounds. The benchmark dataset
includes a variety of weather and lighting conditions, which helps improve the
model’s robustness across different urban scenes.

The annotated data were divided into training and validation sets at a ratio of
0.75 to 0.25. This approach was intended to ensure the model’s accuracy in un-
derstanding and analyzing physical changes in urban street images, thereby sup-
porting further research in urban planning and development.

3.3. Model Description
3.3.1. Change detection model

We address the challenge of urban imagery classification by implementing a
simplified version of change detection model (Liu and Song, 2024), as shown
in the Figure 1, which contains DPSM model (Ding et al., 2020) for feature ex-
traction and SVM (Cortes and Vapnik, 1995) as classifier. The change detection
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model utilizes a Siamese network structure with two convolutional backbones de-
rived from a pre-trained VGG16 model (Simonyan and Zisserman, 2014), whose
parameters are kept constant during the training process. This setup combines
the strong feature-extraction ability of VGG16 with specialized layers and pro-
cesses to enhance the model’s capability of evaluating similarities between pairs
of images. SVM is well-suited for urban change detection tasks and is used in
this research as the classifier because urban change detection is fundamentally a
binary classification problem. SVM excels at handling such tasks by maximizing
the margin between different classes, making it effective for distinguishing subtle
differences in SVIs.

The model normalizes inputs to match the expected format for VGG16, using
specified mean and standard deviation values. It then performs feature extraction
using a five-stage pre-trained VGG16 model, where each stage consists of con-
volutional layers followed by pooling operations (Ding et al., 2020). This tech-
nique maintains spatial hierarchies while effectively minimizing dimensions and
preserving essential data. The model applies masks at each stage of feature ex-
traction to focus on relevant areas of the images, thereby sharpening the features’
relevance for similarity evaluation. It generates two similarity scores: one reflects
the average of the features, and the other focuses on variances and covariances to
distinguish textures and details. These scores are combined and processed through
SVM, a network of fully connected layers with ReLU activation and dropout reg-
ularization for classification.

The change detection model was trained over 19 epochs with a batch size of
eight. To address the data imbalance, we adjusted weight using the inverse square
root of the imbalance ratio (1.83) within our cross-entropy loss function. We used
the Adam optimizer to refine the model, starting with a learning rate of 0.0001.
A learning rate annealing strategy was employed at the 19th epoch, lowering the
learning rate to 0.00001 to enhance the optimization process and ensure the model
closely approximates the best solution (Nakamura et al., 2021). The repository of
the model is available in Appendix A.

3.3.2. Human Perception model
Human perception plays a crucial role in how individuals evaluate and expe-

rience spaces, making it an essential metric for assessing the quality of physical
environments (Liang et al., 2024). The ability to monitor urban transformations
and determine whether they have positive or negative impacts is grounded in the
analysis of these perceptions. The Place Pulse 2.0 dataset is a well-established and
widely utilized dataset in urban perception studies, often regarded as a standard
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Figure 4: Examples of perception scores in New York City.

in the field. It has been extensively used in research to train deep learning models
that predict human perceptions from imagery (Dubey et al., 2016; Wang et al.,
2024; Zhang et al., 2018b; Wei et al., 2022; Salesses et al., 2013; Larkin et al.,
2021; Zhou et al., 2021; Kruse et al., 2021; Zhang et al., 2020). This dataset con-
tains over 100,000 Google SVIs rated by more than 80,000 volunteers, have been
shown to reflect human perception scores in categories such as ‘beauty,’ ‘wealth,’
‘safety,’ and ‘liveliness’ through SVI analysis. The crowdsourced nature of Place
Pulse 2.0 ensures a broad and diverse spectrum of opinions, making it a valuable
tool for categorizing urban scenes. Figure 4 illustrates an example of the ‘wealth’
and ‘liveliness’ scores in different areas of New York City, as these two indicators
may be more abstract than others. “Wealthier” refers to visual signs of affluence,
such as well-maintained buildings and clean streets. “Livelier” describes the per-
ceived vibrancy or energy of an area, influenced by elements like colorful archi-
tecture, billboards, public spaces, or other features that suggest activity, beyond
just the presence of people or vehicles.

Our research involves a comparative analysis of images from locations before
and after they have experienced changes, utilizing the Deep Convolutional Neural
Network (DCNN) models developed as part of the work by Hou et al. (2024). This
process involves analyzing pairs of images, before and after the changes, with the
pre-trained DCNN model (Hou et al., 2024) to generate respective human percep-
tion scores, with an accuracy of 76.9% for ‘beauty’, 72.9% for ‘wealth’, 76.7%
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for ‘safety’ and 77.1% for ‘liveliness’. In addition, we have evaluated the uncer-
tainty of our human perception model predictions using Monte Carlo Dropout. In
this approach, each test image is processed 30 times with dropout enabled, and the
final prediction is computed as the mean of these outputs, while the uncertainty
is quantified as the corresponding standard deviation. The result shows that the
average and median uncertainty values across all four indicators (safer, livelier,
wealthier, and beautiful) fall within an acceptable range, supporting the reliability
of the model’s predictions. For a detailed description of the methodology and sta-
tistical results, please refer to Appendix B. Finally, by comparing scores changes
on the detected urban physical changing spot, we are able to determine the trajec-
tory of urban physical changes in terms of human perception, thus evaluating and
discuss the qualitative impact of physical modifications on urban environments.

For further analysis, we manually categorize the pairs of images that show
changes. This inductive approach helps us illustrate and discuss the reasons and
effects of these changes, enhancing our understanding of the different impact of
urban transformations on human perception during the study period (2007-2023).

4. Result

4.1. Change Detection Model Performance
The change detection model classified the changed and unchanged SVI in four

time periods. In the classification task, the label with the higher probability score
was selected as the predicted label. After training, as shown in Figure 5, the
change detection model achieved a validation accuracy of 76.87% in NYC’s train-
set after 19 epochs. For the Memphis dataset, training took 10 epochs, achieving
a validation accuracy of 83.0%.

The analysis of NYC encompassed 16,343 pairs of SVIs from different time
periods, while for Memphis the number is 14,988 pairs. The data points labeled as
“changes detected” were 1,552 in New York City and 1,681 in Memphis. When
compared with state-of-the-art models, using similar data sources, over similar
training epochs (Liu and Song, 2024), our change detection model, which utilized
a relatively simpler model without incorporating rule-based contextual knowl-
edge, reached a comparable or higher accuracy. This outcome was especially evi-
dent in the mid-sized city of Memphis, whose benchmark dataset is unevenly dis-
tributed, as the urban changes are less commonly happening there when compared
to larger cities like NYC. These results highlight the model’s ability to maintain
applicability without the need for supervision of building attributes data, ensuring
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Figure 5: Change detection model results. The figure shows both training and validation loss and
accuracy for the change detection model. It reports that the model achieves its best performance
with the lowest loss and highest accuracy.
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its broader usability, especially in those small cities that lack government official
documents.

4.2. Change Detection Result for NYC and Memphis
The change detection results are presented in two steps. First, we analyze

the spatial aggregation of all image pairs identified as positive, highlighting the
locations and scales of detected changes over the relevant periods. Second, for
each detected change, we evaluate whether it reflects a positive or negative human
perception. The detailed data processing and visualization methods are outlined
below.

The spatial distribution of the SVIs used for comparisons across different time
intervals is inherently uneven, exhibiting a heterogeneous pattern. To address this,
we employ the Inverse Distance Weighting (IDW) method, a widely used spatial
interpolation technique. IDW estimates the value of an unknown location based
on the known values of surrounding data points, with the influence of each point
decreasing as distance increases. This approach enables us to capture the spatial
patterns of urban changes more effectively by assigning greater weight to points
closer to the location being estimated.

By applying IDW, we generate a continuous surface that reveals where and to
what extent physical changes have been detected across the city. While the change
detection model outputs binary values (0 or 1) indicating whether a change has
occurred, IDW transforms these outputs into a gradient of values between 0 and
1. A value closer to 1 indicates a higher concentration of detected changes in a
given area. For visualization purposes, areas with an estimated value of 0.5 and
above were identified and marked with colors, indicating regions with significant
urban change.

Focusing on the specifics, our examination of SVIs labeled as “1” revealed a
range of urban physical changes over time. To assess the impact of these changes,
it is essential to evaluate shifts in citizens’ perceptions. The perception model
analyzes SVIs of the tested cities across four factors: beauty, wealth, safety, and
liveliness. In this case, we calculated the difference in perception scores between
two time periods and applied hotspot analysis to these differences. This method
identifies regions where the aggregated positive or negative changes in percep-
tion scores deviate from the expected patterns. By mapping these areas, we can
visually represent how perceptions of urban change have shifted over time, dis-
tinguishing areas where scores have significantly improved (hotspots) or declined
(cold spots). This approach allows us to observe how urban changes influence per-
ceptions by highlighting areas with noticeable positive or negative gaps between
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the start and end of each period.
To ensure the thoroughness and dependability of our analysis, we considered

four levels of confidence: 80%, 90%, 95%, and 99%. These confidence levels
help us determine how certain we are that the clustering of perception scores for
beauty, wealth, safety, and liveliness is not due to random chance but instead re-
flects meaningful patterns. The higher confidence levels, such as 99% and 95%,
represent areas where we are highly certain that the clustering is significant and re-
liable, providing robust insights into how urban changes are perceived. In contrast,
the lower confidence levels, such as 90% and 80%, offer a more exploratory per-
spective, allowing us to capture broader regions where perception patterns might
be emerging or less pronounced. By incorporating this range of confidence levels,
we provide a comprehensive analysis that highlights both the most statistically
significant areas and those where perception shifts may be developing. While all
spots with a confidence level greater than 80% are important, the varying thresh-
olds allow us to balance statistical rigor with exploratory insights. In the following
subsection, we will show the results for NYC and Memphis respectively.

4.2.1. New York City
Spatial Agglomeration Analysis. The analysis depicted in Figure 6 illustrates ur-
ban physical changes in NYC from 2007 to 2023, identifying regions of aggre-
gated transformation. Changes are marked in colors, indicating areas with an
estimated change value of 0.5 and above, suggesting notable urban development
or alteration.

Period AB (2007-2013) was marked by recovery and growth following the
2008 financial crisis, we have witnessed widespread urban changes across NYC.
Notably, most areas in Bronx, Northern-Eastern Queens, lower Manhattan and
Staten Island, experienced developments largely driven by housing expansions
and community revitalization efforts. Specifically, starting from 2005, Bronx de-
cided to provide 165,000 housing units on vacant land or redevelop existing es-
tates (Chronopoulos, 2017). Manhattan’s Hudson Yards project, initiated in 2012,
became one of the largest private real estate endeavors in the U.S., transforming
the West Side with its mix of commercial, residential, and public spaces.

Period BC (2013-2016) saw changes in the Northern part of Staten Island, par-
ticularly in Brighton Heights, as well as in Bay Terrace and the southeastern Bronx
(Sound View). During this period, the city continued to focus on post-Sandy re-
covery, particularly in areas like Staten Island. This region has seen a mixture of
residential development and environmental restoration projects, especially in the
wake of Hurricane Sandy in 2012. In addition, Brookville in Queens near JFK
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International Airport, and waterfront area Coney Island in Brooklyn likely saw
development driven by new developments in the neighborhoods.

Period CD (2016-2018) highlighted substantial changes across Staten Island,
including Mid Island, New Springville, and Richmond. A part of reason is driven
by the demand for more affordable housing options in NYC, initially spurred in-
terest and investment, which may have had ripple effects in adjacent areas like
Mid Island and New Springville. For Queens, a spatial aggregation of detected
changes was found in Eastern side, specifically in Jamaica center. Jamaica center
is a highly strategic location with multiple rail lines connecting Manhattan, JFK
airport and Long Island.

Period DE (2018-2023) indicated a shift towards smaller and more segre-
gated changes, with no large-scale developments observed. However, mid-scale
transformations in upper Manhattan, near Manhattanville and Rockaway Beach in
Queens.

Throughout these periods, Queens, Staten Island, and the Bronx consistently
showed a high concentration of changes, particularly near waterfronts and mass
transit hubs. At the early stage, the scale of detected changes tends to be larger
and the distribution is spread-ed city wide. However, as the time goes by, the
scale of urban changes tends to be smaller and dis-aggregated. Developments
often included mixed-use projects, affordable housing, flood defense projects and
new public spaces. Despite these extensive changes, the broader impact of new
developments on the urban fabric and community life remains to be fully assessed.

These results can be cross-validated with the research of Chapple et al. (2021),
which employs traditional data analysis methods for evaluating gentrification and
displacement risks, analyzing regional housing, income, and other demographic
data.

Perceptual Impact Assessment. As illustrated in Figure7 and Figure 8, evaluat-
ing the impact on people’s perceptions across distinct temporal period using four
dimensions: ‘beauty’, ‘wealth’, ‘safety’, and ‘liveliness’. The principal insight
reveals that the study, anchored in an analysis of changes, underscores an align-
ment between the perceived urban physical changes impact and the outcomes from
change detection efforts. This alignment especially emphasizes that the scale of
changes in locales at the periphery of the city surpass those observed within the
core city.

During the AB period, enhancements in ‘beauty’, ‘wealth’, ‘safety’, and ‘live-
liness’ were noted in the southern Bronx and Staten Island. A decline in ‘beauty’,
‘wealth’, ‘safety’, and ‘liveliness’ was noted in central Manhattan, with‘safety’
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Figure 6: Detected urban physical changes in NYC. The maps show the locations of detected
changes.
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Figure 7: ‘Beauty’ and ‘Safety’ perception score changes in NYC.
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Figure 8: ‘Wealth’ and ‘Liveliness’ perception score changes in NYC.
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specifically facing a downturn in the southwest of the island.
In the BC period, ‘beauty’ and ‘safety’ marked increases in northern Queens,

with ‘safety’ and ‘wealth’ improving in the central to lower Manhattan areas. All
four factors saw slight enhancements on Staten Island. Proximate to Midtown
Manhattan and its neighboring areas to Queens, ‘beauty’, ‘wealth’, ‘safety’, and
‘liveliness’ experienced varying degrees of reduction. The nexus between north-
ern Brooklyn and Queens recorded declines in ‘liveliness,’ ‘safety,’ and ‘wealth.’

The CD period showcased bigger scale of increases in all four factors com-
pared to the BC period within the northern Bronx, southern Brooklyn, and their
intersecting areas with Queens, alongside the southeastern edge of Staten Island.
Comparably notable decreases were observed in central Manhattan, adjacent to
the East River and Brooklyn, the central regions of Queens, and the southern
boundary between the Bronx and Manhattan.

In the DE period , ‘beauty’, ‘wealth’, ‘safety’, and ‘liveliness’ scores increased
in the southern Brooklyn and northern Bronx, with more modest uplifts in north-
ern Queens. The eastern portion of Queens recorded relatively minor decreases
across all dimensions, while central and northern Brooklyn witnessed comparable
reductions on a small scale and threshold of change.

The analysis reveals that the detected changes in perception score align closely
with the input detected physical changes data. Throughout the four phases ex-
amined—AB, BC, CD, and DE—the AB phase witnessed the most significant
changes in perception scores due to detected changes, with the latter three phases
showing comparably small quantities of changes. Notably, major perception al-
terations were concentrated along the East River and around TOD theory oriented
key transportation centers, with changes in perception scores ranging from a min-
imal 0.01 to between 4.45. Variations in the ‘wealth’ factor may suggest a con-
nection to gentrification (Glaeser et al., 2020).

Upon a thorough examination of the SVI pairs labeled as “1,” the detected
changes were categorized into distinct groups: Road Signs, Street Furniture, Sheds,
Building Facades, Renovations, and New Constructions, as depicted in the Fig-
ure 2. These modifications are dispersed across a variety of locations, emerging at
different times and with varying frequencies. Such a pattern underscores the need
for detailed analysis to grasp the full extent of their impacts comprehensively.

4.2.2. Memphis
Spatial Agglomeration Analysis. The analysis depicted in Figure.9 illustrates ur-
ban physical changes in Memphis from 2007 to 2023, identifying regions of ag-
gregated transformation.
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Figure 9: Detected urban physical changes in Memphis. The maps show the locations of detected
changes.
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Memphis’s development shows progressive changes during the AB, BC, CD,
and DE stages. Through each detected change is smaller in scale than in NY, but
they are distributed more evenly across the city.

In the AB period (2007-2013), changes were mostly found in the downtown
and southern parts of the city. Specifically, Parkway Village, representative of
the southern districts, experienced multiple scattered but comparable large scale
changes. Substantial private investments and worsening safety led to a middle-
class exodus, ultimately causing economic collapse and the closure of many stores
(Steimer and Steimer, 2024).

During the BC period (2013-2016), the Core City, University, Frayser and
Raleigh districts experienced changes across several blocks. In the northern part,
especially Raleigh, with the decline of the car dealership industry, the city govern-
ment purchased the original community center’s shopping mall in 2016 and began
renovating it as a municipal center. The renewed building includes administrative
and public library functions. The project continued until 2020, and changes were
detected by the model in the CD/DE periods (Appeal, 2016; City of Memphesis,
2023). Additionally, the Core City and East districts’ main commercial area ex-
perienced comparable large-scale changes (MLK50: Justice Through Journalism,
2022).

During the CD period (2016-2018), changes were detected in the southern
part of the city, including Parkway Village, Whitehaven, the University area, and
the Core City. These changes mainly occurred in residential areas, likely due
to improvements in neighborhood streets and housing renovations or rebuilding.
These areas, located on the city’s periphery, have long suffered from high vacancy
rates and community decline (MLK50: Justice Through Journalism, 2022). The
movement of people led to renovation of building’s facades, while vacant houses
resulted in deteriorating landscapes. Both positive and negative changes were
observed.

In the DE period (2018-2023), the city experienced more widespread, smaller-
scale changes. In 2019, Memphis started to implement the ‘Memphis 3.0’ plan,
which included over 100 projects focused on economic development and urban
environmental improvements (Memphis et al., 2020). This plan involved multiple
rounds of public participation for each community, analyzing local issues, espe-
cially in vulnerable city regions and communities (Wiloandco, 2024). The plan
outlined key development projects and also small-scale projects, such as adding
public spaces and enhancing landscapes, aimed at improving community vitality
and overall quality of life. These small scaled projects are abundant in the quan-
tity and scattered around the city, aligning with the change detection results for
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the DE period.
This series of urban developments is closely linked to Memphis’s land poli-

cies. Before ‘Memphis 3.0’, the city had not updated its urban planning for
nearly 40 years, resulting in a disconnect between planning and land use regu-
lations (Saija et al., 2019; Barlow et al., 2015). The previous strategy focused
on urbanizing undeveloped land as a way to drive economic growth. Memphis
established the Center City Commission to attract private investment through in-
centives. However, due to a lack of effective constraints on private investors,
this approach primarily served private interests, benefiting affluent communities
the most. Meanwhile, communities most in need of resources struggled with
ongoing disinvestment (Waters, 2022). Such developments repeatedly occurred
as the economic situation remained stagnant, necessitating further land sales and
the turnover of underutilized commercial buildings. The 2019 Memphis 3.0 plan
shifted focus toward equitable economic policies to ensure that most Memphians
could effectively benefit from limited investments, resulting in smaller but more
practical urban changes (Opticos Design, 2024).

Perceptual Impact Assessment. For the perceptual impact of all detected changes,
as shown in the Figure 10 and Figure 11, it is found that during the AB peri-
ods, overall, changes in ‘beauty’ score and ‘liveliness’ score were smaller, while
changes in ‘safety’ score and ‘wealth’ score were larger. Safety improvements
were concentrated in the central-northern part of the city, while declines were seen
in the southeastern areas. The positive changes in ‘safety’ and ‘wealth’ scores in
the central-north were due to public-private partnerships, allowing private invest-
ments to supplement public funding for major projects, such as developing his-
toric districts, re-purposing buildings, and improving riverfront areas (Memphis
et al., 2020). In contrast, deteriorating safety conditions in the southern city led
to upscale establishments being replaced by lower level smaller businesses, which
later resulted in vacant retail spaces and homes, contributing to the declines of the
scores in the southeast.

During the BC and CD periods, overall changes were smaller in comparison
with period AB. In the BC period, changes were evenly distributed across the city,
with spotty urban renewal perception changes in areas like Westwood, White-
haven, and Parkway Village in the south part of the city. ’Wealth’ score changes
were concentrated in Core City, University, South, and Whitehaven. In the north,
Raleigh and Frayser saw decreases in ’wealth’ and ’safety’ scores.

The CD period witnessed declines in downtown for ‘safety’, ‘liveliness’, and
‘wealth’ scores. There were small increases in ‘beauty’, ‘wealth’, and ‘safety’
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Figure 10: ‘Beauty’ and ‘Safety’ perception score changes in Memphis.
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Figure 11: ‘Liveliness’ and ‘Wealth’ perception score changes in Memphis.
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scores in the mid, south and north part of the city. ‘Beauty’ score improved
in parts of Jackson, South, and Whitehaven, while ‘safety’ score improvements
were concentrated in the western part of Jackson. ‘Wealth’ score increases were
mainly in the northern part of Frayser. These areas, located on the periphery of the
expanding city core, indicate that some previously vulnerable communities have
received more attention and experienced positive urban changes.

In the DE period, downtown, midtown, and the southern city experienced de-
clines in ‘beauty’, ‘wealth’, and ‘safety’ scores. In midtown, areas like University,
Lamar, and East districts saw increases in ‘beauty’ and declines in ‘liveliness’
scores, with small improvements in ‘safety’ and ’wealth’ scores. There is a fo-
cus on mixed-use infill development along streets and the renovation of decaying
buildings in these areas in the Memphis 3.0 plan, showing signs of gentrification.
Additionally, in Raleigh and Parkway Village, positive perception changes were
detected, contrasting with previous periods. The Memphis 3.0 plan specifically
mentions new plans for mixed-use projects in these areas, providing more oppor-
tunities for small businesses (Memphis et al., 2020).

Overall, in the early stages of the study period, many positive changes oc-
curred in the city center. However, over time, by the end of the study period,
positive changes were more concentrated in relatively peripheral areas, with some
previously seen as negative areas showing positive signs.

5. Discussion

In order to visualize the specific content of the changes, we extracted the el-
igible images from the our database of this study for further analysis. Specif-
ically, images exhibiting a confidence level of 80% were arranged based on a
sorted order of variations in perception scores, leading to the selection of pairs
of time-series SVIs across four time periods for illustration. These image pairs
were labeled with cluster IDs, while the time period was marked by varied stock
colors, complemented by a corresponding map to pinpoint the locations of the
physical changes detected. This categorization enabled a focused examination of
the prevalent types of detected physical change impacts for subsequent in-depth
analysis.

In NYC’s case, as shown in Figure 12, urban changes are detected in four
different categories: furniture, sheds, facades, and new construction. For the de-
tected changes classified as furniture, the DE time periods (2018-2023) witnessed
changes due to the global spread of COVID-19, which profoundly affected street-
level businesses(Meng et al., 2024). Initiatives such as the NYC Department of
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Figure 12: Categories of perception score changes in New York. (Numbers below each pair of
images are cluster IDs).

Transportation’s Open Restaurant Program facilitated distinctive adaptations dur-
ing this unique period (DOT, 2020). The detected urban physical changes labeled
as cluster ID 9634 and 8188 led to an uplift in perception scores across vari-
ous aspects, spanning from a minimal decrease of −0.02 to an increase of up
to 1.87. Despite a marginal reduction in the perceived aspects of ‘beauty’ and
‘wealth’, these adaptations significantly bolstered the perception of ‘safety’, with
increases surpassing 1.87. Such interventions, including the deployment of open
wooden semi-open spaces for retail, outdoor dining, and social interactions (Gib-
son, 2020), contributed to fortifying communal bonds amongst citizens during and
after the pandemic (Hu and Rosa, 2020).

The time periods AB, BC, and CD (2007–2018) highlighted the adverse im-
pact of safety sheds installed along the East River due to deteriorating facades.
While intended to enhance pedestrian safety, these semi-permanent structures led
to a decline in resident perceptions, with reductions in safety indicators ranging
from -0.86 to -4.42, especially in cluster ID 6920. Ironically, the sheds became
potential hubs for nocturnal crime (Aneja, 2020). The absence of such sheds
in the DE period reflects the success of removal efforts initiated in 2019 by the
Adams administration and various NGOs (Siff, 2023). This underscores the im-
portance of accelerated assembly, rigorous inspections, and strategic facade ren-
ovation planning to improve urban livability and pedestrian experiences (Harlem
World Magazine, 2023).

Facade renovations detected in SVIs span several areas, including Lower Man-
hattan, Queens, the link between Downtown Brooklyn and Manhattan, and the
southwest Bronx, across the AB, CD, and DE periods. These renovations dis-
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play a diverse changes, encompassing commercial facade updates, color shifts
in single family homes and community centers, the removal of declining busi-
nesses (Lee, 2023), and the emergence of graffiti. For instance, cluster id 9098
in Crown Heights, Brooklyn, noted for its graffiti, saw a detrimental impact on
urban aesthetics due to low-quality graffiti between 2018-2023, leading to a per-
ception decrease in safety and liveliness by -0.85 to -4.39. Conversely, cluster
id 9907 in Downtown Brooklyn showed a notable improvement post-renovation,
with a liveliness score increase of 3.08 and a ‘wealth’ increase of 2.23 during the
AB period, highlighting potential gentrification concerns. Additionally, cluster
id 6945 in Chinatown, Lower Manhattan, faced storefront vacancies spurred by
rent hikes. A mere facade clean-up resulted in a modest perception improvement
ranging from 0.59 to 1.54, with a ‘wealth’ increase of 1.25. This scenario subtly
illustrates the gentrification challenge confronting local small enterprises in Chi-
natown post the 2008 East Village/Lower East Side Rezoning, where rental prices
surged despite the community’s median income stagnating around $40,000 (Xu,
2013).

During the BC, CD, and DE periods, new constructions led to varied changes
in perception across four key indicators with changes ranging from -0.08 to a 5.72,
notably in liveliness. Cluster id 7363 present a glass façade building inserted
in the historical street, located in Park Slope, Brooklyn, saw 2 points ‘wealth’
score increased, suggesting potential links to gentrification. In fact, Park Slope
has becoming a sought-after location for Manhattan residents. A 2011 survey
highlighted a 19.3% surge in median housing prices over five years, positioning
Park Slope’s housing market 145.28% above Brooklyn’s median sales price.

In the time period CD, DE ranging from 2016 to 2023, the Brooklyn area wit-
nessed two instances of new construction that led to urban physical changes, yield-
ing favorable perception score changes spanned from 0.19 to 1.69, with safety im-
provements being the most notable of 1.69. Specifically, for the site identified as
cluster id 14249, the increase in perceived ‘wealth’ score after new construction
was moderate at 0.88. However, improvements in safety and liveliness were ex-
ceeding 1.5. This balance suggests that the new constructions enhanced neighbor-
hood comfort and safety without triggering the adverse effects typically associated
with gentrification. The thoughtful approach to these constructions is praisewor-
thy for its sensitivity to the existing urban fabric and community well-being.

Between 2016-2023, two instances of new construction-related urban physical
changes were detected in the Brooklyn area, bringing positive evaluation results.
The score changes ranged from 0.19 to 1.69, with the most significant change be-
ing in safety, reaching 1.69. For cluster id 14249, the change in ‘wealth’ score
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after the new construction was only 0.88, while other data, including safety and
liveliness, increased by more than 1.5. This ensured that the comfort of the neigh-
borhood residents was maintained without risking gentrification caused by the
physical changes of the construction. The design is commendable for its consid-
eration.

In Memphis case, as shown in the Figure 13 urban changes are detected in four
different categories, including facade, sign changes, renovation, and new construc-
tion.

For facade changes, we observed color changes and beautification efforts in
various buildings during the BC, CD, and DE periods. Clusters 6486, 8049, and
10198 showed increases in all four factors from 0.1 to 3.55. Meanwhile, cluster
5804 showed an increase in ‘beauty’, with declines in ‘liveliness’, ‘safety’, and
‘wealth’ scores.

For sign changes, from AB to DE, all examples showed declines in ‘beauty’
and ‘wealth’ scores, ranging from -0.03 to -0.63. These changes occurred in the
Frayser, Core City, South, and Whitehaven districts, covering retail sign changes
and gas station signs. This reflects the industrial shifts possibly due to land poli-
cies in Memphis (MLK50: Justice Through Journalism, 2022).

During periods AB and BC, both northern and southern districts experienced
renovation and new construction. Clusters 10195, 3649, and 1712 showed upward
trends in most indicators, ranging from 0.1 to 3.19. In periods CD and DE, clusters
4018, 3719, 8578, and 2346 showed changes, including facade reconstruction,
additions, renovations, and new single-family houses. All four indicators showed
downward trends, ranging from -0.46 to -2.78.

Looking at the spatial aggregation of urban change in NYC and Memphis and
the corresponding changes in human perception from a comparative perspective,
we can draw some interesting findings. Urban change in Memphis shows a grad-
ual shift from a pattern of few and relatively concentrated development to many
and dispersed, while NYC has been characterized by small and dispersed. Com-
bined with the corresponding changes in perceived scores, we get a glimpse of
potential differences in the motivations and processes of urban change in the two
cities.

Change in NYC has been driven in large part by economic and neighborhood
needs. At various times, Queens, Staten Island, and the Bronx have consistently
shown a high concentration of change, especially those area close to waterfront
and mass transit hubs. These developments typically include mixed-use projects,
affordable housing, flood control projects, and new public spaces. While the mod-
ifications brought about by the COVID-19 pandemic (e.g., outdoor dining spaces)
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Figure 13: Categories of perception score changes in Memphis. (Numbers below each pair of
images are cluster IDs).

have slightly reduced perceived ‘beauty’ and ‘wealth’, they have generally im-
proved the sense of safety and community connection. While the broader impacts
of these changes on the urban fabric and community life have yet to be fully as-
sessed, they have dramatically changed the face of NYC and the way residents
live.

In contrast, the changes in Memphis have generated different public percep-
tions in different areas. Some areas have progressed through facades beautification
and signage updates, while others have declined under the influence of industry
shifts and local policies. This pattern of growth has often ignored social and spa-
tial inequalities, leading to increased fragmentation and suburbanization within
the city. While the challenges of downtown Memphis remain, the public planning
project referenced in “Memphis 3.0: Two Tales of the Same Plan” demonstrates
that while the project was initiated by the public sector and managed by the Of-
fice of Public Planning, in practice it relied more on private funding and resources
(Memphis et al., 2020). This reflects the passive role of municipalities in planning,
which may lead to instability and lack of sustainability in long-term development.

NYC attempts to balance economic development with social justice and em-
phasizes public participation in its urban consolidation and planning strategies,
while Memphis focuses more on economic growth and the promotion of private
interests. These differences reflect the fundamental differences between the two
cities in their approaches to urban development and socio-spatial inequality. The
contrasts reveal the different paths Memphis and NYC have taken in adapting to
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and managing urban change and the socio-economic drivers behind them, and
highlight the importance of planning strategies and public engagement in shaping
the future of cities.

Of course, there is room for improvement in this study. The first issue concerns
SVIs. Due to inherent limitations of the street view system, some areas exhibit an-
gular deviations and uneven distribution. This problem was particularly evident
during our test in Memphis, where SVIs were often poorly captured, less abun-
dant, blurry, distorted, or severely tilted. We look forward to further refinement
of this data source in small to medium-sized cities. The second issue is the inter-
pretability of the model. Like many AI/ML models today, two of the models used
in the paper remain black box to humans to a certain degree. Although we scruti-
nized the categories detected by the change detection model, it would be helpful
to add an explainable component for the deep learning model to show where its
attention is focused. This will provide further validation. Third, our study fo-
cuses on applying machine learning to detect urban changes in street view images
and assess their impacts on human perception within the study area. However,
the experimental design and analysis do not directly support specific or detailed
policy recommendations. Additionally, while the model can be retrained without
modifying its architecture, extending these findings to other cities would require
further data collection, annotation, and analysis. Despite these constraints, we
have made the model available for the community, enabling further experimen-
tation and adaptation in different contexts. Future research could address these
aspects across diverse urban contexts. Finally, while we have employed several
spatial analysis techniques that are sufficient for the scope of this study, we ac-
knowledge that future research could benefit from more formal spatial statistical
approaches to further refine and deepen our understanding of spatial patterns.

6. Conclusion

In this work, we propose a framework to assess fine-grained urban change at
scale with time series SVIs. We propose an end-to-end change detection pipeline
to identify urban change points at scale. In conclusion, by comparing urban
change and its impact on human perception in NYC and Memphis, we reveal the
distinct paths taken by these cities in addressing urban development and socio-
spatial inequality. In NYC, early large-scale changes transitioned to smaller, dis-
persed modifications, reflecting ongoing urban development and revitalization ef-
forts. Perceptual assessments aligned with these changes, indicating significant
impacts on ‘beauty’, ‘wealth’, ‘safety’, and ‘liveliness’, especially in peripheral
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areas. In Memphis, the model detected more evenly distributed but smaller-scale
changes, consistent with the city’s shift towards equitable economic policies and
community-focused developments. This comparison emphasizes the crucial role
of planning strategies and public participation in shaping the future of cities. Fur-
thermore, our research highlights the importance of integrating human perception
into the evaluation of urban changes. By bridging the gap between physical ur-
ban development and resident experience, it offers a comprehensive framework
for creating more livable, inclusive, and resilient urban spaces.

We see this study as a step forward in utilizing SVI, an increasingly important
dataset in urban studies (Hou et al., 2024), for large-scale urban change moni-
toring. By integrating a change detection model and a human perception model
into the workflow, we bring an innovation in detecting the scale and magnitude
of urban change and evaluating the impact of urban change on human percep-
tion. Based on this advancement, we interpret the model results by integrating
urban development plans, enhancing the interpretability and policy relevance of
the model.
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Appendix A. Model Repositories

The change detection model is available at:
https://github.com/Yevsquant/UrbanChangeDetection

The human perception model is available at:
https://github.com/strawmelon11/human-perception-place-pulse

Appendix B. Human Perception Model Uncertainty Analysis

In this section, we have illustrated how we have quantified the uncertainty of
our model in human perception predictions by employing Monte Carlo Dropout
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during inference. In this framework, for each image in the test set, the model per-
forms N = 30 stochastic forward passes with dropout enabled. The final predicted
score for an image is computed as the arithmetic mean of these predictions,

µ =
1

30

30∑
i=1

si,

and the associated uncertainty is quantified by the standard deviation,

σ =

√√
1
30

30∑
i=1

(si − µ)2.

Both µ and σ are scaled to the 0–10 range, which provides a direct measure of the
prediction variability induced by the dropout mechanism.

To ensure that our evaluation comprehensively covers the full range of spatial
perception, we applied a stratified sampling approach based on these scores in all
the images we have used for the city of Memphis in the study. First, the continuous
score range (0–10) is divided into three intervals: low (0–3), mid (3–7), and high
(7–10). For each perception indicator, the number of images within each of these
intervals is determined, and proportional sample sizes are calculated so that the
final test set comprises 2,000 images in total.

Figure A.14 presents a combined scatter plot that visualizes the relationship
between predicted scores and their corresponding uncertainty for all four percep-
tion indicators. In this plot, each point represents an image, with its predicted
score on the x-axis and the computed uncertainty on the y-axis. The results show
the majority of images for most indicators exhibit uncertainty values below 1.0,
indicating high model confidence. In contrast, the livelier indicator tends to show
a broader spread in uncertainty, which suggests that predictions for liveliness are
more variable and possibly more subjective. The beautiful indicator, on the other
hand, demonstrates the lowest overall uncertainty, implying more stable and con-
sistent predictions, which aligns with the findings in the existing research (Rui
and Cai, 2025).

Furthermore, an examination of the scatter plot indicates that images with
extreme scores (either very low or very high) generally tend to have lower un-
certainty, whereas those with mid-range scores display higher variability. This
observation suggests that when the visual features are clear and distinctive, the
model is more confident in its prediction, while ambiguous or borderline cases
naturally result in greater prediction variability. Overall, the average and median
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Figure B.14: Combined scatter plot showing the distribution of uncertainty values across the
dataset.

uncertainty values across all indicators fall within an acceptable range, supporting
the reliability of the model’s predictions while simultaneously providing a useful
measure to flag images that may require further review.

Declaration of Generative AI and AI-assisted technologies in the writing pro-
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During the preparation of this work, the authors used ChatGPT in order to
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