
Nighttime Street View Imagery: A New Perspective for
Sensing Urban Lighting Landscape

Zicheng Fana, Filip Biljeckia,b,∗

aDepartment of Architecture, National University of Singapore, Singapore,
bDepartment of Real Estate, National University of Singapore, Singapore,

Abstract

This is the Accepted Manuscript version of an article published by Elsevier in the journal Sus-
tainable Cities and Society in 2024, which is available at:
https://doi.org/10.1016/j.scs.2024.105862

Cite as: Fan Z, Biljecki F (2024): Nighttime Street View Imagery: A new perspective for sensing
urban lighting landscape. Sustainable Cities and Society, 116: 105862.

© 2024, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Urban lighting reflects nocturnal activities and it is traditionally observed us-
ing Nighttime Lights (NTL) satellite imagery. Few studies systematically measure
the nightscape from a human perspective. This study brings a new paradigm —
urban lighting sensing via Nighttime Street View Imagery (SVI). The paradigm
draws on the accomplishments of (daytime) SVI and gives attention to its ig-
nored nighttime counterpart. We put forward this idea by manually collecting
2,831 nighttime SVIs across various urban functional areas in Singapore. We in-
vestigated their values by developing a use case for clustering nighttime lighting
patterns. To mitigate the scarcity of nighttime SVI, deep learning regression mod-
els were trained to predict nighttime brightness based on corresponding daytime
SVIs obtained from widely available sources. The results were compared with
brightness data derived from satellite imagery, to affirm the novelty and unique-
ness of nighttime SVI. As a result, there are 7 lighting patterns within the collected
nighttime SVI, distinct in lighted spot features and total brightness. The identi-
fied patterns effectively characterize different urban function scenarios. The best
trained brightness prediction model performs well in revealing the city-scale light-
ing landscape. The SVI-predicted brightness shows a distribution similar to the
brightness from satellite imagery and complements it in urban areas with complex
vertical lighting structures. This study demonstrates the potential of nighttime SVI
as a valuable data source for mapping urban lighting and activities, offering ad-
vantages over satellite data. The proposed paradigm contributes significantly to
cross-modal information mining in urban studies and has potential applications in
scenarios such as light pollution mitigation and crime prevention.
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1. Introduction

Thanks to the natural connection among light, human visual senses, and be-
haviors, artificial lights serve as intuitive instruments to sense the nocturnal hu-
man activities. Nighttime Lights (NTL) satellite imagery is the commonly used
data reflecting artificial lights, specifically for urban light sources, fishing activ-
ities, and oil and gas burning on the Earth’s surface (NASA, 2021; Zhang et al.,
2022). The typical use cases of NTL data include monitoring urban sprawl (Yang
et al., 2020; Duque et al., 2019), economic activities (Mellander et al., 2015; Xu
et al., 2021; Zhang et al., 2024), and population growth (Wang et al., 2020; Yu
et al., 2019). While NTL data has been applied extensively, there are also sig-
nificant limitations of this data in reflecting the lighting information. Common
problems with NTL data include limited availability of high-resolution sources
(Zheng et al., 2023; Zhao et al., 2019), imaging issues such as the blooming effect
and the presence of saturated pixels (Zhao et al., 2018; Hu et al., 2019), and the
scale effect in modeling geographical phenomenon (Zheng et al., 2023). Due to
these challenges, while NTL data is often considered an effective proxy for urban
vitality or economic activity at a large spatial scale (Xu et al., 2021; Hu et al.,
2024), it remains difficult to use NTL data for precise observation and interpreta-
tion of the interaction between urban lighting and activity characteristics at finer
levels of detail.

Another limitation is the mismatch between the human perceived urban light-
ing and the lighting information sensed from satellite level. It is usually less
effective to apply NTL data in analyzing the lighting conditions of street-level
scenarios, such as in assessing road accident risk (Fotios and Gibbons, 2018), in-
vestigating safety perception (Welsh et al., 2022), or understanding the impact of
lighting trespass on buildings and human health (Cho et al., 2015; Ntarara et al.,
2022). These studies are closely related to the lighting in the urban vertical di-
mension, from building facades or streetlamps, and require a human perspective
for perception (Jackett and Frith, 2013; Rahm et al., 2021; Xu et al., 2018; Sung,
2022). However, limited to the top-to-down imaging method, it is insufficient for
NTL data to reveal the diverse urban lighting landscape in urban vertical dimen-
sion, leaving significant gaps in the related fields. Beyond NTL data, some studies
have employed field measurements (Pan and Du, 2021) and numerical modeling
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(Tong et al., 2023) to understand how the vertical dimension of a city is illumi-
nated. Yet, these approaches often suffer from scalability issues due to the lim-
ited sampling points and the considerable workload for comprehensive modeling.
Consequently, while these methods provide valuable insights, their application
remains restricted.

In recent years, Street View Imagery (SVI) data has dramatically expanded
our horizons in perceiving urban built environments (Biljecki and Ito, 2021). The
unique perspective and method provided by SVI are expected to bring new op-
portunities in sensing urban lighting. Specifically, advantages of SVI data include
the high coverage for urban space on a global scale (Goel et al., 2018), relatively
low cost in collection and utilization (Kang et al., 2020; He and Li, 2021), and a
flexible, human-centered perspective for environmental observation (Zhang et al.,
2019; Biljecki and Ito, 2021). These features make SVI a comparable tool to
satellite imagery for urban analytics but with a more detailed, street-level focus.
Moreover, with the technological advancements in deep learning and computer vi-
sion (CV), researchers are able to translate street view features into other forms of
urban information and explore the hidden knowledge embedded in pixels (Ibrahim
et al., 2020). This has further expanded SVI’s potential applications. Some typ-
ical uses of SVI data include identifying specific street and building elements or
spatial attributes (Ki and Lee, 2021; Sharifi Noorian et al., 2020; Ao, 2019), evalu-
ating and classifying urban scenes (Aravena Pelizari et al., 2021; Ito and Biljecki,
2021), and geo-localization and reconstructing of 3D street elements.(Pang and
Biljecki, 2022; Ning et al., 2022; Cheng et al., 2018). Given these unique features
and wide use cases, it is nature to associate SVI with the potential application in
sensing street-level lighting landscape during nighttime.

However, in a stark contrast with satellite imagery, which is captured at any
time and condition, SVI data is almost exclusively acquired during daytime (Lauko
et al., 2020; Hou et al., 2024). The nighttime SVI, which can represent the city life
in contrasting lighting conditions and time periods at street level, is almost non-
existing in major commercial or crowdsourced SVI sources. Compared to taking
images during the daytime, capturing stable images in low-illumination environ-
ments at nighttime presents more technical difficulties and higher costs (Shi et al.,
2018), and often less information can be obtained and recognized. Some studies
focused on nighttime lighting may capture a small number of nighttime SVI to
describe specific lighting characteristics of a scene (Pan and Du, 2021; Lin et al.,
2023). However, the brightness information revealed by the images themselves,
such as the distribution of light sources and lighting intensity, has seldom been the
subject of analysis in the body of knowledge. In a rare and recent case, a small
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quantity of nighttime SVI was collected to evaluate visitors’ sense of safety in city
parks (Lis et al., 2023). However, the study was limited by highly homogeneous
scenes. The potential of nighttime SVI in mapping wider urban lighting landscape
have yet to be explored.

Figure 1: The widely used types of urban imagery and a new instance we propose in this pa-
per. Daytime and nighttime satellite images (top) and street view imagery (SVI), which is almost
always collected during daytime (bottom left), have been used for myriads of purposes. In this
research, we fill this gap and investigate whether there is value in giving attention to an untapped
means of urban sensing – nighttime SVI, conducting a comprehensive study on two aspects: their
acquisition and use cases, understanding urban dynamics they can reveal and their added value
with respect to the traditionally used urban data sources and imagery. Sources of imagery: Mapil-
lary (daytime SVI); Google Maps (daytime satellite imagery); NASA (nighttime satellite imagery).

Given the overlooked significance of nighttime SVI and its potential in street-
level perception, the study explores the usability of nighttime SVI and introduces
a novel urban sensing paradigm to apply nighttime SVI in investigating the night-
time lighting landscape from a human-centered perspective. A conceptual frame-
work of the study is illustrated in Figure 1. The new paradigm is founded on
two bases. Firstly, the nighttime SVI should not be expected to be analyzed in
the same way as daytime SVI (i.e. segmentation, mapping objects) and used for
the same use cases. Instead, the brightness and lighting information embedded in
the image, as unique indicators of nighttime urban environments, can be extracted
from nighttime SVI and be investigated in a similar fashion as NTL satellite im-
agery. Secondly, considering daytime and nighttime SVI as paired reflections of
urban environment at different periods, the street furniture, plants, and building
components in a daytime SVI are assumed to indicate the potential activities and
brightness information of the corresponding nighttime scenario. In this way, the
existing daytime SVI can help address the data scarcity problem and aid in en-
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hancing the utilizing of nighttime SVI in urban research. The new paradigm is
expected to alleviate the limitations of NTL satellite imagery in measuring the ur-
ban lighting landscape and provide appropriate research tools to investigate street-
level lighting conditions, serving various research fields such as crime prevention,
urban disaster mitigation, and energy management.

Based on the discussion above, the main research question we seek to answer
in this paper is:

Can street-level imagery taken during nighttime be a novel urban
dataset useful for urban analytics and to what extent can it be used?

Stemming from it, there are four sub-questions this study aims to answer:

Q1: How can we efficiently collect nighttime SVI data?

Q2: Can any significant nighttime lighting patterns be detected from nighttime
SVIs and how are they related to different urban functional scenarios?

Q3: To what extent can we predict the brightness of a nighttime urban scenario
based on its corresponding daytime SVI?

Q4: How different are the urban lighting patterns sensed from street level and
from satellite imagery, and what is the potential benefit of learning the
street-level brightness besides its satellite counterpart?

Taking Singapore as the study area, the research is divided into four stages,
corresponding to the sub-questions. Firstly, we manually collect nighttime panoramic
imagery across various urban functional areas in Singapore and offer insights
about it. Together with the matched daytime counterparts from Google Street
View, we aim to create a novel day-night paired SVI dataset as the basis of sens-
ing urban lighting in this study. Secondly, we identify the homogeneous light-
ing patterns with clustering methods from the collected images. Our goal is to
explore a quantitative and efficient way to represent the lighting information em-
bedded in nighttime SVIs, and enable a multi-area investigation of the association
between lighting conditions and urban functions. Thirdly, we develop a Deep
Convolutional Neural Network (DCNN) model to predict the overall brightness
of the nighttime scenarios based on daytime SVIs. The aim is to gain a scalable
way to learn the street-level lighting landscape at city scale, while also addressing
the scarcity of nighttime imagery by leveraging the more readily available day-
time SVIs. Fourthly, we compare the SVI predicted brightness and the brightness
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derived from satellite imagery. The aim is to gain further understanding of street-
level lighting landscape and to learn the association of this novel dataset we give
attention to with the traditionally used instance collected from satellites.

2. Related work

2.1. Sensing Nighttime Human Activity via Lights
Since the 19th century, the availability of artificial lights have been associated

with wealth and modern society (Green et al., 2015; Levin et al., 2020). Buildings
and roads illuminated by lights suggest nocturnal activities, and the changes in
nighttime lighting landscapes are proved to reflect deep changes in human activ-
ity patterns (Henderson et al., 2012). The following section introduces the obser-
vation of urban lighting from two perspectives: the satellite level and the street
level.

2.1.1. Nighttime Lights Observed from Satellite Platforms
The Nighttime Lights (NTL) satellite imagery has been widely applied to ob-

serve urban lighting from large spatial-temporal scales (Zheng et al., 2023). This
approach has various application scenarios, notably in assessing economic vi-
brancy (Mellander et al., 2015; Xu et al., 2021), mapping population densities
(Wang et al., 2020; Yu et al., 2019), extracting urban functional areas (Hu et al.,
2024), monitoring urban sprawl (Yang et al., 2020; Duque et al., 2019), and energy
consumption modeling (Wang and Lu, 2021; Xie and Weng, 2016). The intensity
of light in these images often associates with urbanization levels(Zhang and Li,
2018), economic activity density (Wang and Sun, 2022), and light pollution extent
(Xiao et al., 2020; Ritonja et al., 2020).

Despite the advances, NTL satellite imagery faces challenges in accurately de-
picting urban lighting conditions and urban activity and function characteristics at
a detailed level. Key concerns include data availability and scale effect. In terms
of availability, the primary data sources for NTL studies include DMSP-OLS,
Suomi-NPP VIIRS, and NOAA-20 VIIRS, which have relatively low spatial res-
olutions (15 arcsec or 30 arcsec) but available to free access (Zheng et al., 2023;
Levin et al., 2020). Issues such as blooming effect and pixel saturation often com-
promise the reliability of these NTL data in mapping built environment details
or human activities (Zhao et al., 2018; Hu et al., 2019). Recent developments in
medium and high-resolution NTL products, such as Luojia-1 (130m), Lookup-1
(60m), and SDGSAT-1 (10m for Pan, 40m for RGB) present new possibilities in
NTL studies. However, the accessibility and spatial coverage of these medium or
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high-resolution NTL products are often restricted, as they are primarily commer-
cial data or data available only to certain organizations.

Another prominent issue in NTL-based research is the scale effect, where the
correlation between light and socio-economic indicators can vary significantly
with different analysis scales or image resolutions (Bennett and Smith, 2017; Guo
et al., 2024; Zheng et al., 2023). This variability introduces challenges in ac-
curately mapping and modeling urban socio-economic indicators based on NTL.
Though there are suggestions to combine NTL sources at different resolutions to
enhance the robustness (Zheng et al., 2023), the choices are limited to combine
low-resolution and high-resolution NTL data, which can also suffer from the avail-
ability of NTL data. There is a lack of another data source similarly reflecting the
nighttime lighting features, beyond satellite platforms, and one that can be less
rigid and available across different scales.

2.1.2. Nighttime Lights Sensed at Street Level
From a human-centered perspective, urban lighting is more commonly sensed

at street level. The association between street-level lighting and nocturnal ac-
tivity and behavior receive significant attention. Proper lighting conditions are
recognized as a positive factor in boosting street activities (Zhang et al., 2021).
Typically, lights are considered a deterrent to criminal behavior (Painter and Far-
rington, 1999; Cornish and Clarke, 2014), and help expand pedestrians’ field of
vision and reduce fear (Kaplan and Chalfin, 2022). In an experiment based in
New York City, Chalfin et al. (2022) demonstrated that neighborhoods that were
temporarily allocated more street lamps had a significant decrease in nocturnal
outdoor crimes. Enhanced street lighting is a possible mechanism to intervene
and reduce crime. Additionally, street-level lights play a crucial role in facilitat-
ing urban traffic, specifically in reducing the frequency and severity of accidents
(Yannis et al., 2013; Wanvik, 2009; Walker and Roberts, 1976). Lights also serve
as key components in shaping and highlighting urban landmarks and public space
in the urban design context (Pan and Du, 2021; Alves, 2007).

Despite the benefits, street-level lighting can also bring negative social out-
comes. Excessive light exposure in the nighttime is reported to interfere with
circadian rhythms (Vallée et al., 2020), reduce melatonin secretion (Chen et al.,
2020), disrupt sleep (Zielinska-Dabkowska et al., 2023), and strain the visual sys-
tem (Lunn et al., 2017). Light trespass is a typical form of indoor light pollution
related to health risks, and it is often caused by excessive light emission from
building facades, billboard, street lamps (Chen et al., 2020; Sung, 2022), featured
in vertical dimension of street-level lighting. Overall, there are close and com-
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plex associations between street-level lighting and nocturnal activities, where the
benefits of lighting must be carefully weighed against its potential health and en-
vironmental impacts.

Various methods have been employed to measure street-level lighting condi-
tions. Self-reported questionnaires and mechanical statistics on street lamps are
common approaches in crime or safety-related studies (Kaplan and Chalfin, 2022;
Chalfin et al., 2022). However, these methods often yield only a vague understand-
ing of lighting conditions and are somewhat subjective. In contrast, in the health
field, field measurements with light meters and numerical modeling are typical
methods for precisely assessing the lighting environment of small-scale outdoor
spaces (Tong et al., 2023; Chen et al., 2020). Nevertheless, these methods are also
limited by the number of sampling points and the workload involved in modeling,
making them less scalable. The NTL satellite imagery has been applied as proxy
of street-level lighting to examine its association with health issues on a large spa-
tial scale (Helbich et al., 2020; Xiao et al., 2020; Ritonja et al., 2020). However,
a significant conflict arises as NTL satellite imagery primarily captures upward
light emissions from a top-down perspective, while light from many nocturnal ur-
ban activities is emitted horizontally and from the vertical dimension of the urban
environment. As a result, NTL data may be insufficient to represent lighting envi-
ronment with diverse vertical lighting structure and in human-centered scenarios.

In summary, due to the limitations of different technologies, it is considered
inadequate to only rely on a single technique in the lighting measurement (Wang
et al., 2023). A combined application of different techniques, incorporating both
vertical and horizontal perspectives of light emission can be significantly more
effective. Additionally, there is a pressing need to explore new data sources and
methods capable of capturing the street-level lighting environment with high detail
and extensive spatial coverage.

2.2. Sensing Urban Lighting Landscape via SVI
Addressing these challenges, Street View Imagery (SVI) has emerged as a

valuable resource in urban research, offering new opportunities to sense urban en-
vironments at a finer scale. SVI provides a unique perspective by capturing the
streetscape from a human-centered viewpoint, thus enabling a potentially more
comprehensive understanding of urban lighting and its interaction with the built
environment. The following section introduces the general data sources, applica-
tions and limitations of SVI, and its potential in lighting sensing.
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2.2.1. SVI Sources, Applications and Limitations
There are multiple SVI sources, spanning commercial and crowdsourced types.

In terms of commercial services, Google Street View is the largest such provider,
covering more than 90 countries and regions (Biljecki and Ito, 2021); while other
map companies, such as Baidu Maps and Tencent Maps, provide similar regional
services (Kang et al., 2020). Besides, a few crowdsourced SVI services have
emerged in recent years, such as Mapillary and KartaView, where SVI, as an
emerging form of Volunteered Geographic Information (VGI), are provided by
contributors around the world and uploaded for free use (Hou and Biljecki, 2022).
Serving research demands in Computer Vision (CV) and autonomous driving
fields, open street view datasets such as Cityscapes (Cordts et al., 2016), ADE20K
(Zhou et al., 2019), CAMVID (Brostow et al., 2009) have also been widely used.

The application of SVI in current urban research is widespread, benefit from
the enrichment of the SVI sources, and the rapid development of deep learning.
Many scholars have systematically reviewed the common deep learning models
for SVI and their specific usage scenarios in urban analytics and research (Ibrahim
et al., 2020; Kang et al., 2020; Biljecki and Ito, 2021; He and Li, 2021; Zhang
et al., 2023a). From a model perspective, the Convolutional Neural Network
(CNN) is a class of deep learning models and structures widely used in SVI anal-
ysis. CNN functions by constructing and differentiating multiple hidden layers
in the neural network, to extract digital features that may or may not be recog-
nized by human eyes from images (Guo et al., 2016; LeCun et al., 2015). CNN
and its derived models can be applied in specific CV tasks such as image clas-
sification, semantic segmentation, object tracking, activity perception and scene
understanding. These tasks further contribute to urban analysis scenarios of spa-
tial infrastructure, transportation, greening, health, and socio-economic activities.
In addition to CNN, other common deep learning models for SVI include the Gen-
erative Adversarial Networks (GAN), used to achieve style transfer (Jiang et al.,
2021) and image restoration (Liu et al., 2021); Graph Neural Networks (GNN),
for linking SVI with street scenes and associated geographic information (Zhang
et al., 2023b).

Though abundant sources and wide applications, the data availability of SVI
in nighttime scenario is a main concern. As poor lighting conditions can amplify
the difficulty of capturing SVIs and reduce the information obtained (Shi et al.,
2018), both commercial and crowdsourced sources strive to collect SVIs in day-
time and in clear and sunny weather. The nighttime SVIs are rarely collected, and
are recognized as noise, considering its limited usability in almost all of the typical

9



applications daytime SVIs are routinely used, such as urban form measurement,
assessing walkability, and supporting real estate valuations (Woo et al., 2024; Bil-
jecki et al., 2023; He and He, 2023). For example, Google Street View does not
collect nighttime SVI data, while KartaView explicitly declines SVI taken at night
and during raining, snowing and fog (KartaView, 2020). A recent investigation on
crowdsourced SVI datasets across hundreds of cities reveals that only about 3.1%
of images in Mapillary are taken during nighttime (Hou et al., 2024).

2.2.2. Potential of SVI in Sensing Nighttime Scenarios
Nevertheless, there are valid reasons to collect, explore and utilize the night-

time SVI, and give more attention to this latent type of urban data and perspective
of SVI. As a direct information holder of urban nighttime environment, a few prac-
tices have demonstrated the value of the data. In automotive industry for example,
nighttime SVIs are applied to improve the robustness of autonomous driving sys-
tem in poorly illuminated environments. A small number of day-night paired SVI
datasets have been collected and released openly for deep learning tasks, such as
TOKYO 7-24 (Torii et al., 2015) and BDD100K dataset (Yu et al., 2020). How-
ever, coordinates and other meta data are generally missing in the datasets, which
limits their application in urban studies, and makes independent and systematic
collection of nighttime SVI as a necessary choice. Furthermore, when compared
to NTL data, which predominantly offers a top-down view of the urban night-
time landscape, nighttime SVI may hold a distinct advantage. While not given
attention hitherto, it is expected that the nighttime SVI can offer a more accu-
rate representation of light source distribution at street level and furnishes a more
versatile and granular perspective for portraying the nighttime urban environment
and activities.

In addition, one growing trend in recent SVI research is that, SVI has been
proved not merely a reflection of urban visual feature, but also a useful medium
for learning cross-modal physical features of urban space, which help solve the
data scarcity problems of nighttime SVI. The type, number, size, and location
of various street features represented in SVI may reflect the properties of sound,
heat, and light associated with the urban environment. For example, Zhao et al.
(2023) develop a a machine-learning framework for portraying large-area urban
soundscapes using SVI features, without ground measurements. Similarly, Ig-
natius et al. (2022) explore the potential of SVI in assisting Local Climate Zone
(LCZ) classification, and in enhancing the understanding of Urban Heat Island
(UHI) in high-density city. Additionally, there have been innovative applications
of GAN models alongside SVI for the day-night style conversion of urban land-
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scapes (Zhu et al., 2020; Anoosheh et al., 2019; Jiang et al., 2021). The cross-
modal adaptability of SVI presents a promising challenge in utilizing daytime
SVI to investigate nighttime urban environments. Liu et al. (2024) discussed the
potential of generating nighttime SVI with GAN models for urban scene auditing
and conducted positive explorations. However, the day-night images collected for
model training in their work are from homogeneous scenes and in limited per-
spectives, which is not applicable for mapping urban-scale, street-level lighting
conditions. In our work, as the paper will describe later, we collect real nighttime
SVI using own data collection.

In conclusion, both collecting and utilizing nighttime SVI itself, and using
daytime SVI as a medium to represent nighttime scene attributes, hold signifi-
cant potential in urban sensing research. Focusing on the most fundamental in-
formation reflected by nighttime SVI, brightness, this study integrates these two
approaches to propose a novel paradigm for nighttime urban lighting sensing. The
details are elaborated in the following sections.

3. Methods

An overall research framework is illustrated in Figure 2, corresponding to the
research questions described in the Introduction. Divided into four stages, the
main tasks include: firstly, a large-scale collection of day-night paired SVI across
multiple scenes; secondly, nighttime lighting landscape analysis with clustering
method; thirdly, nighttime brightness estimation based on daytime SVI; fourthly,
interpretative analysis of the potential connections between SVI predicted bright-
ness, satellite derived brightness. and other urban activity data.

3.1. Collection of Day - Night SVI data
The research first collected day - night paired SVIs in Singapore to investigate

the nighttime urban lighting characteristics. Sources of SVIs include: (1) night-
time panoramic SVIs manually collected with a GoPro Max 360 camera mounted
on a bicycle, and (2) daytime panoramic SVIs collected through the Google Street
View API.

The nighttime panoramic SVIs were systematically collected from five built-
up districts in the city-state, namely the industrial park area in Tuas, the high-rise
residential area in Pioneer and Jurong, the low-rise residential area in Holland Vil-
lage, the university campus, communities, and highway areas in Clementi, and the
low-rise and high rise commercial areas in the Central Area of Singapore. Though
limited image numbers due to workload constraints, the collection encompasses
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Figure 2: Four steps of the research framework. Sources of imagery: Google Street View, Flaticon.
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a diverse range of urban forms and functions, spanning across typical community
types in Singapore, making it broadly representative. Besides SVIs, a luminance
meter is used to measure and record the brightness value of the corresponding
street scenarios for data validation and reference. Figure 3 illustrates both the
image collection points and the device measured luminosity value at the same lo-
cation. A wide variety of urban functional scenarios were captured in the data
collection.

Figure 3: Spatial distribution of SVI collection points, luminosity values (with unit of lux) mea-
sured at the collection points, and sample panoramas in local areas. Source of the basemap: Open-
StreetMap. Sources of SVI: Google Street View (daytime SVI); our manual collection (nighttime
SVI).

The nighttime panoramic SVIs were captured while cycling at a constant speed
using a GoPro Max 360 camera, mounted at a height of 1.7 meters above the
ground. The images were consistently collected from 20:00 to 23:00 after sunset,
and spanning from August to November in 2023. This later timing for collect-
ing images was chosen to minimize the influence of extra sky light sources on
the SVIs while maximizing the lighting information from on-street urban activi-
ties. Following the best practice introduced by Mapillary, a popular platform for
crowdsourced SVIs, the images were first shot as time lapse videos at an interval
of 0.5 seconds and 5.6K resolution, and then single images were extracted with
time stamp and location information. The luminance meter was placed horizon-
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tally upward during measurements, and the luminosity values were matched with
the collected images according to their nearest distance on the timelines. Using
the coordinates of nighttime panoramic SVIs, the nearest daytime panoramic SVIs
were searched and collected from Google Street View.

While collecting SVI data, we identified several potential sources of bias. For
instance, the camera shake while cycling may cause blurry images, and sudden
changes in lighting conditions could result in overexposure. Additionally, urban
canyons might affect GPS positioning accuracy and amplify the positional dis-
crepancies between the collected nighttime SVI and the searched daytime images.
To mitigate the impact of these biases, we manually inspected and cleaned the col-
lected data. A total of 2831 pairs of well-matched day-night SVIs were selected
for subsequent analysis, including nighttime lighting landscape investigation and
the training for a brightness prediction model. Another 50 689 daytime SVIs in
Singapore, across 2015–2023, were collected to scale the trained model to predict
the nighttime brightness across the city.

3.2. Nighttime Lighting Landscape Analysis
The urban nighttime landscapes are essentially composed of objects illumi-

nated and visible at night. The research explores the consistency patterns reflected
in nighttime lighting landscape, by analyzing the size and distribution patterns of
various lighted spots in nighttime SVIs and the total luminosity of the scene.

3.2.1. Lighted Spot Detection
The first step is to extract the significant lighted spots from nighttime SVIs. As

shown in Figure 4, a series of CV methods were applied, including the image pro-
jection transformation, pixel-level brightness calculation, and lighted spot contour
extraction. Specifically, the research first attempted to transform the panoramic
images from an equidistant cylindrical view into a top-down fisheye view. The
nighttime panoramic SVIs were initially produced with an equidistant cylindri-
cal projection via the GoPro Max camera, and the projection tended to overly
emphasize ground features at lower elevations while compressing and distorting
elements such as buildings, trees, and streetlights at higher elevation. The latter
plays a crucial role in constituting nighttime lighted spots. By transforming the
panoramic SVIs to top-to-down fisheye format, the proportions of various built
environment elements were balanced in the images.

On this basis, the study attempted to convert the color mode of the SVIs from
RGB to grayscale and calculate the brightness of each pixel. The pixel-based
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brightness formula is given by:

Pixel based Brightness = 0.299R + 0.587G + 0.114B

where R represents the red channel value of the pixel, G represents the green chan-
nel value of the pixel, B represents the blue channel value of the pixel. Then, the
method extracted the continuous contour lines and areas whose pixel-level bright-
ness is significantly higher than the surroundings as lighted spots. The developed
procedure has also uniformly removed the ground portion from the images, be-
cause it tended to be identified as lighted spots in the algorithm, while introducing
significant noise due to its color and material variance in different lighting sce-
nario.

Figure 4: Workflow to extract lighted spot features from nighttime SVI. The panoramas are trans-
formed into a top-down fisheye view with the pixel-level brightness calculated. Continuous pixels
that are significantly brighter than the surroundings are extracted as ‘lighted spots’.
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3.2.2. K-means Clustering
It was assumed that the urban lighting landscape can be described via a series

of fixed and generic lighting patterns behind the diverse nighttime lighting sce-
narios. The research utilized the k-means clustering method(Hartigan and Wong,
1979) to identify the generic lighting patterns, based on the similarities and differ-
ences in the features of nighttime SVIs and the luminance meter records (Wang
and Biljecki, 2022). Each nighttime SVI collection point served as an observation,
and the lighted spots characteristics within the images, including the total area of
lighted spots, and average distance of lighted spots to the image centroid, together
with total luminosity measured from light meter, were calculated to represent the
overall features of the corresponding nighttime lighting scenarios. The study em-
ployed the silhouette method (Rousseeuw, 1987) to determine the optimal number
of clusters, denoted as K. One-way Analysis of variance (ANOVA) and Tukey’s
honest significant difference (HSD) post-hoc test were applied to investigate and
validate differences between the clustering groups. The clustering results were
further compared with the daytime street view elements, road levels, and urban
function labels corresponding to the respective street scenes in frequency distri-
bution. The aim was to interpret the association between nighttime lighting con-
ditions and daytime street view elements, as well as various urban activities and
functions.

3.3. Nighttime Street Brightness Prediction
After the initial exploration of the urban lighting landscape represented by

nighttime SVIs and luminance meter records, the study trained a deep learning
model to predict the brightness of corresponding nighttime scenes using daytime
SVIs. By further scaling the model to cover daytime SVIs across Singapore, the
research aimed to gain insights into the urban-scale nighttime lighting landscape
characteristics.

3.3.1. Model Training
Building upon pre-trained image classification models, the research employed

the transfer learning approach to train a regression model to predict nighttime
street-level brightness based on daytime SVIs. TensorFlow was used as the train-
ing platform, and various mainstream architectures were explored and compared,
including EfficientNet (Tan and Le, 2020), Vision Transformer (ViT) (Dosovit-
skiy et al., 2021), VGG16 (Simonyan and Zisserman, 2015), and ResNet50V2 (He
et al., 2015, 2016). Among them, VGG16 and ResNet50v2 are well-established
deep convolutional neural networks, both excelling in image classification tasks.
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EfficientNet and ViT represent modern advancements, with EfficientNet balanc-
ing accuracy and efficiency through systematic scaling, and ViT leveraging the
transformer architecture to capture long-range dependencies, performing excep-
tionally well on large-scale datasets. These selected models were all pre-trained
on the ImageNet image classification dataset (Deng et al., 2009). By retaining the
pre-trained model weights, removing the classification head, and introducing new
dense layers and activation layers, the study adapted the pre-trained models for
regression tasks.

Figure 5: Workflow for model training.The daytime SVIs are the model inputs, and the expected
outputs are the brightness of nighttime scenario corresponding to the daytime SVI.

Figure 5 illustrates the model training process. The training of the brightness
prediction model relied primarily on 2500 pairs of matched daytime and night-
time SVIs. To efficiently scale the model to cover a large-scale SVI dataset, the
study used equidistant cylindrical views of daytime SVIs as model inputs, as it is
a common format the daytime SVIs are stored and released. Principal Compo-
nent Analysis method (PCA) (Wold et al., 1987) was applied to extract a principal
component from the device measured luminosity and the brightness calculated
from nighttime SVI, as an integrated brightness variable to predict. The aim was
to maintain the maximum of brightness characteristics captured in two lighting
sensing methods, while eliminating the potential impact of outliers. The dataset
was divided into training, testing, and validation sets in a 3:1:1 ratio, with image
resizing and pixel value normalization applied consistently. Mean Squared Error
(MSE) was the primary metric for monitoring training, supplemented by Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE) for model com-
parison. Given the relatively small training dataset and the study’s broader focus,
fine-tuning was limited to basic model hyper-parameters and training strategies.
Our focus on hyper-parameter selection was primarily driven by comparing the
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performance of different base model architectures. The model architectures served
as feature extractors, each incorporating a dense layer with 16 units, ReLU activa-
tion, and a final dense layer for regression. More denser layers or larger layer size
were avoided due to performance degradation in early tests. Additionally, each
model was trained for a maximum of 50 epochs. The learning rate was initially
set to 0.0003, with a reduction applied if performance did not improve within 3
epochs, and early stopping was triggered after 10 epochs of no improvement. To
validate the performance of deep learning methods, we also fitted traditional re-
gression models such as Ordinary Least Squares (OLS), Random Forest (Breiman,
2001) and XGBoost (Chen and Guestrin, 2016) as baselines. The inputs for these
models included segmented street view features extracted from daytime SVIs and
the road classes of the image locations, with the same integrated nighttime bright-
ness values from PCA serving as the output.

3.3.2. Further Analysis
We scaled the best trained model to 50 689 daytime SVIs across the entire

Singapore, to predict the nighttime brightness of the corresponding scenarios and
map the city-scale lighting conditions. With the SVI predicted brightness values,
the study investigated its spatial distribution difference and correlation with the
urban-scale brightness features obtained from the NTL satellite imagery. Previ-
ous study by (Lin et al., 2023) has preliminarily revealed the correlation between
illuminance measured on the street-level and Digital Number (DN) from satellite
imagery. Our goal is to assess in which areas and in which ways, the two sensing
methods and data sources can capture the urban lighting information similarly and
differently.

The NTL data was primarily sourced from the Sustainable Development Sci-
ence Satellite 1 (SDGSAT-1) developed by the Chinese Academy of Sciences
(CAS)1. The satellite employs glimmer imager with an imaging resolution of 40 m
for RGB band and a swath width of 300 km (Guo et al., 2023). The imagery over
Singapore was captured on June 29, 2023. There are two additional NTL sources
applied in this study, to validate SDGSAT-1’s imagery with different resolution
and capture time. The additional NTL sources include Luojia-1 NTL imagery
from Wuhan University2 and Visible and Infrared Imaging Suite (VIIRS) Day
Night Band (DNB) NTL imagery from Earth Observation Group (EOG)3. The

1https://www.sdgsat.ac.cn/
2http://59.175.109.173:8888/index.html
3https://eogdata.mines.edu/products/vnl/#monthly
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former was retrieved on September 30 in 2018 with a resolution of 130 m, and
the latter was a monthly cloud-free composite from 2023 May with a resolution
of 500 m.

The OLS regression model was initially employed to establish a potential lin-
ear relationship between predicted brightness and satellite derived brightness. By
conducting a local Moran’s I analysis on the residuals of the OLS model, the study
examined whether there is spatial auto-correlation in the interaction between SVI
predicted brightness and satellite derived brightness. If such auto-correlation ex-
ists, the spatial-lag regression model was applied to refine their relation, with spa-
tial neighboring effect taken into account. In addition, the study also investigated
the correlation between two brightness features and the urban activities features
represented by POI counts. The aim was to check whether there is a potential of
SVI predicted brightness to map the urban activities distribution, and compared
to the satellite derived brightness, if it is possible for the SVI predicted brightness
to be a meaningful alternative or a supplement to NTL data derived from satellite
imagery.

4. Results

4.1. Lighting Landscape Clustering
4.1.1. K-means Clustering Result

The section details results from k-means clustering analysis, where seven clus-
ters were identified as optimal for a balanced and informative partition of lighting
scenarios. As shown in Figure A.15 and Figure A.16 in the appendix, this decision
is supported by the mean silhouette scores derived from 50 random experiments
conducted for each k value. Although the silhouette score is highest at k=3, we
chose k=7 because it achieved the highest silhouette score improvement among
all k values greater than 4, allowing us to better capture the diversity of the light-
ing scenes. Additionally, the one-way ANOVA and the Tukey’s HSD test further
revealed significant differences in three lighting features between different clus-
tering groups, as shown in Table A.3, A.4, A.5, and A.6. Figure 6 displays the
distribution of these seven unique clusters in the feature space. Key differences
among the clusters are primarily in the total luminosity of the scene and the area
covered by lighted spots. There is an observable trend from Cluster 0 (lower
luminosity and smaller lighted spots) to Cluster 2 (higher luminosity and larger
lighted spots). In clusters with similar luminosity and spot area, the distance of
lighted spots from the image center offers additional differentiation. Cluster 6, for
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instance, has lighted spots further from the center, indicating a higher position-
ing relative to the horizon, while Cluster 1 features the darkest scenes with the
smallest and lowest lighted spots.

Figure 6: Clustering visualization in 3D feature space.

The study also examines the relationship between nighttime lighting patterns
and daytime street view features, along with road levels. As shown in Figure 7,
across the clusters, flat elements (such as roads and pavements) and sky elements
remain consistent in proportion. However, clusters with brighter and larger lighted
spots tend to have more construction features and fewer natural elements. In terms
of road levels, brighter clusters (e.g. 2, 3, 4, 5) have a higher presence of secondary
roads and fewer residential roads, contrasting with darker clusters (e.g. 0, 1, 6).
Notably, there is a consistent varying pattern observed from the night time lighting
patterns and the daytime street view and road levels, suggesting that road scenes
perceived and functioning differently during the daytime are likely to maintain the
difference in nighttime lighting characteristics.

4.1.2. Relation between Lighting Pattern and Functional Scenario
The significance of different lighting clusters can be further analyzed in rela-

tion to their real-world locations and functional scenarios. Figure 7 illustrates the
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(a) SVI proportion for all clusters. (b) Road proportion for all clusters.

Figure 7: Cluster average of the street view element proportions and road level proportions.

spatial distribution of different nighttime lighting clusters in local areas of Singa-
pore and measures the conditional frequencies of various lighting patterns in each
urban functional scenario. Notably, clusters with higher luminosity and larger
spot areas (e.g. 2, 4, 5) are predominantly found in the Central Area of Singapore.
Bright and prominently sized light spots in SVIs correspond to storefronts along
streets, large billboards, and architectural windows, as well as other facade light-
ing, indicating significant service and commercial characteristics of street facades.
Low-rise commercial areas commonly found in the Central Area, such as China-
town and Haji Lane, and high-rise commercial areas like Raffles Place and City
Hall, can be further distinguished based on the size and proximity of light spots
in road scenes. Due to differences in street height-to-width ratios and the princi-
ple of objects appearing larger when closer, in narrow low-rise commercial areas,
light sources closer to the camera on street facades appear as larger lighted spots
above the horizon line. Conversely, in high-rise commercial areas, where streets
are wider, light sources on street facades are reflected in the images as dimmer
and closer to the horizon line (see ??).

In industrial parks, highways, and campus environments, most road scenes are
characterized by lower total luminosity, smaller lighted spot area, and light spots
closer to the horizon line (Cluster 1). These scenes typically have fewer or no
buildings enclosing them and can be in lack of prominent lighting sources. As for
the differences among them, highways have a higher proportion of road scenes
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Figure 8: Spatial distribution of different lighting pattern clusters (left) and their conditional fre-
quency distribution in different functional scenarios (right). Specifically: (a) Tuas is a typical
industrial area; (b) Pioneer and Jurong West are modern residential areas characterized by high-
rise blocks; (c) Holland Village is characterized by low-rise residential buildings; (d) Clementi and
Kent Ridge encompass diverse road scenarios, including university campus, highway, and high-
rise residential community; and (e) the Central Area is characterized by a mix of low-rise and high-
rise commercial buildings. We summarize and normalize the conditional frequencies of different
clusters appearing in the functional scenarios above to illustrate the association between lighting
patterns and activity scenarios, as shown in the right plot. Source of the basemap:OpenStreetMap.
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with higher brightness and light spots (Cluster 6), where streetlights overhead
often serve as the main lighting source. The industrial park and the campus are
very similar in lighting patterns, while campus scenes are brighter, as indicated by
the higher frequency of Cluster 3.

Furthermore, different types of residential neighborhoods in Singapore may
exhibit contrasting lighting characteristics. For low-rise residential areas, most
road scenes have lower brightness, smaller light spots, and light spots close to the
horizon line (Cluster 1). However, a certain proportion of scenes are in low-light
environments with relatively higher light spots (Cluster 0). Singapore’s current
low-rise residential areas generally follow the colonial-era planning traditions,
with narrow roads and closely packed independent or terraced houses with walls
along both sides of the street. These areas have strong enclosure from the street
interface but weaker service functions, which may explain that why most of the
scenes are not fully illuminated. In contrast, high-rise residential areas show a
more diverse lighting pattern, with significantly brighter lighting patterns (Cluster
2, 3, 4) and the low-brightness lighting patterns that dominate in low-rise areas
(Cluster 1) both having a prominent presence. Singapore’s high-rise residential
areas emphasize vertical density, the mix of commercial and residential functions,
and the modernity of transportation and lighting facilities. Thus, the complex
lighting characteristics in high-rise residential area may be influenced by three
main types of light sources: the illumination from service interfaces of commu-
nity commercial and public facilities; resident window lights and the constant illu-
mination maintained in corridors for safety reasons; and the lamp lighting serving
the extensive commuter traffic. It is also noticeable that, high-rise residential areas
and commercial areas show similar proportion of cluster 2, which suggests sce-
narios with considerably high brightness. Though different in distribution of other
lighting patterns, there are comparable lighting intensity in high-rise residential
areas and commercial areas in Singapore.

4.2. Brightness Prediction
4.2.1. Model Performance

We assess the performance of various models in predicting nighttime bright-
ness based on daytime SVIs. Table 1 presents a comparison of MAE, RMSE
and MSE for models on both training and testing datasets. The EfficientNetB3
model achieved the lowest RMSE and MSE scores and a significantly lower MAE
score on the testing set, leading it to be selected as the model for further night-
time brightness prediction. Machine learning models performed worse compared
to deep learning models. While vectorized contextual information, such as road
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classes and segmented street view elements, also contributes to inferring night-
time brightness, utilizing daytime SVI as input proves to be a more direct and
efficient approach.

It is observed that most models present a tendency of over-fitting on the test
dataset. To gain further insight into the potential causes and impacts of over-
fitting, we conducted an error distribution analysis on the EfficientNetB3 model.
Figure 9 displays the spread of prediction errors across the training, validation,
and testing datasets. On the testing and validation sets, the errors follow a broader
distribution ranging from -5 to 5, indicating that the model has a tendency to pre-
dict higher brightness values for dark scenes and lower values for bright scenes.
Figure 10 provides a closer examination of specific instances of overestimation
and underestimation, showcasing their corresponding daytime SVIs and spatial
distribution. An interesting pattern emerges in open, low-density areas with street
lamps at regular intervals. These street lamps, while occupying only a small por-
tion of the SVI pixels, play a significant role in determining the brightness of
corresponding images. Their impact is pronounced when they are situated near
the photo collection points or directly above it. Nevertheless, for the majority of
other scenarios not dotted with street lamps, the model performs better. The bias
introduced by street lamps is relatively contained due to their fixed placement at
regular intervals. These lamps influence only specific, localized areas within the
SVIs, leaving the majority of the image unaffected.

Models MAE RMSE MSE

Train Test Train Test Train Test

OLS 1.3321 1.3407 1.6598 1.6605 2.7549 2.7572
Random Forest 0.5009 1.3605 0.6245 1.6812 0.3900 2.8263
XGBoost 0.2618 1.4802 0.3649 1.8505 0.1331 3.4242
EfficientNetB0 0.4022 1.3190 0.4998 1.6362 0.2498 2.6770
EfficientNetB3 0.2616 1.2815 0.3313 1.5687 0.1098 2.4607
Vision Transformer l32 0.5794 1.4172 0.7316 1.7624 0.5352 3.1060
Vision Transformer b16 0.3781 1.2696 0.4733 1.5724 0.2240 2.4726
VGG16 1.3083 1.3718 1.6293 1.6896 2.6545 2.8549
ResNet50V2 0.2055 1.3114 0.2648 1.6240 0.0701 2.6373

Table 1: Model performance comparison.
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Figure 9: Error distribution across training, validation and test sets.

Figure 10: Samples of overestimated and underestimated brightness values. Source of the
basemap: OpenStreetMap.
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4.2.2. Model Scaling
To gain insights into the nighttime lighting landscape at the street level on a

larger scale, we further scaled the best model to cover daytime SVIs throughout
Singapore. By comparing the spatial and data distribution of predicted nighttime
brightness with nighttime brightness obtained from SDGSAT-1 satellite imagery,
we aim to understand whether the predicted brightness can be a valid represen-
tation of night time lighting landscape, and to what extent the two brightness
features convey the same information.

Figure 11: A comparison of predicted brightness and the satellite derived brightness. Source of
the basemap: OpenStreetMap.

Figure 11 illustrates the spatial distribution of the predicted street-level bright-
ness and the satellite based NTL brightness, and their aggregated mean values
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by H3 hexagon grids. The resolution of H3 grids is set to level 8, with an aver-
age hexagon area of 0.737 km2. All of the features are divided into 10 quantiles
and visualized on a consistent scale for comparative analysis. It is found that the
predicted brightness generally follow similar spatial distribution pattern with the
satellite based NTL brightness. However, there are also significant discrepancies
in local areas.

4.3. Further Analysis on the Predicted Brightness
The study investigates the distinct features of SVI predicted brightness, by

interpreting its discrepancy with satellite derived brightness and exploring its re-
lation with multiple urban activities. For the first task, an OLS regression model
is fitted based on the aggregated values, to model the potential linear associa-
tion between the SVI predicted brightness and the satellite based brightness.Then
residual distribution of the model presents a refined look of the discrepancies be-
tween two brightness measurements. Spatial auto-correlation analysis is applied
to the residuals to check the potential spatial pattern in the discrepancies.

According to the analysis, the R-squared of the OLS model is 0.3644, with
the coefficient of mean brightness being 0.6228 and the corresponding probability
below 0.05. The result suggests that every unit change in predicted brightness
might explain a 0.62 change in the same direction of satellite derived brightness,
and the two show a significant and moderate correlation. Figure 12a illustrates
the spatial distribution of the residuals in the Singapore scale and n Figure12b, the
Local Moran’s I analysis highlights significant high-high and low-low clustering
of residuals in the overestimated and underestimated areas. It is found that the pre-
dicted brightness and satellite derived brightness are aligned well with each other
in most of the cells. There are significant and continuous discrepancies mainly
exist on the Singapore Central Area and port terminal area on the south, and the
Changi Airport area on the east, showcasing an underestimates of SVI predicted
brightness to the satellite derived brightness. Besides, several continuous grids
showing overestimates are located on the west and north of Singapore. According
to the analysis above, it is argued that the predicted brightness can be meaningful
proxy of urban lighting, while its discrepancy with satellite derived brightness in
local urban areas require further explanation, and in fact, as we will discuss in the
next continuation, is the affirmation of the uniqueness and usefulness of the novel
perspective we introduce.
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(a) Spatial distribution of residuals in Singapore.

(b) Significant spatial clustering detected among the residual distribution.

Figure 12: Residual analysis for OLS regression model, suggesting the discrepancies between the
traditionally used nighttime satellite imagery and the street-level counterpart that we study in this
paper. Source of the imagery and basemaps in the examples: Google Street View and Google
Maps.
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4.3.1. Discrepancy between Brightness Distributions
We explain the discrepancies between street view imagery and satellite im-

agery in reflecting nighttime brightness characteristics based on the differences in
their imaging features. These imaging differences can be specifically described
as, different imaging perspectives and targeted light sources, different spatial cov-
erage, and different imaging resolution and continuity. We provide a detailed
discussion on how these differences in imaging characteristics contribute to the
observed discrepancies in two brightness distribution.

Initially, it is posited that the observed discrepancies between street view and
satellite imagery in capturing nighttime lighting information stem from their dif-
fering observational perspectives. Street view imagery records light at ground
level, encompassing a spherical perspective where street lamps, building facades,
and vehicle headlights are primary light sources. In contrast, satellite imagery cap-
tures a broader, top-down view of urban areas, emphasizing light sources elevated
above ground level and unobscured by trees or buildings. Correlating residual
distribution with real-world map reveals that the urban functions and morphol-
ogy are highly homogeneous and unique in the highlighted area may have derived
from special lighting pattern sensed differently by street view imagery and satel-
lite imagery. For instance, in the Central Area with high development intensity
and densely distributed with high-rise commercial building, there are significantly
more rooftop and facade lighting on the higher elevation, which may overshadow
the street-level lighting in the satellite imagery, leading to underestimation. In
contrast, the rural road areas in northern Singapore, characterized by dense veg-
etation, may obscure street-level lights from satellite detection, leading to over-
estimation in these areas. In the port and airport areas, intense industrial and
aviation lighting, often inaccessible to street-level imagery, results in an under-
representation of SVI predicted brightness to the satellite derived brightness.

In addition, the study also considers the role of coverage difference between
SVI and satellite imagery in explaining the distribution discrepancies of the two
brightness features. The NTL satellite imagery can often cover the whole urban
boundary and reflect lighting information from both roads and blocks’ inner envi-
ronment within a grid. While the daytime SVIs are generally available on public
roads, with its city-scale coverage dependent on the density and distribution of
road network and with a evident focus on the road environment. It is assumed
that significant coverage difference between the two imagery types, especially the
missing of SVI coverage, can result in extra discrepancies in the brightness distri-
bution.
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By creating and merging 30 m buffers for daytime SVI collection points, and
calculating the proportion of buffer area to each grid, the study first measures
the daytime SVI coverage in Singapore. Then the residuals from the initial OLS
model are divided in 4 groups according to 4 quantiles of SVI coverage percep-
tion and are compared in box plot. As shown in Figure 13a, the daytime SVIs
show an unbalanced distribution from south to north and from west to east. The
rural and industrial area on the west of Singapore have significantly lower SVI
coverage compared to the middle and east of Singapore. The areas are featured
with farms, natural reserves and new-developed port and industrial areas, where
latest SVI collection can be insufficient. According to the box plots in Figure 13b,
when the SVI coverage is low, the satellite derived brightness are tended to be
overestimated, with residuals showing a lower mean value and in lower general
distribution in the axial. When there is a high SVI coverage, most of the NTL
brightness can be correctly estimated, though there can be more high-residual
outliers.

(a) The unbalanced SVI coverage in Singapore. (b) Residual distribution under SVI coverage.

Figure 13: Relation between OLS model residuals and SVI coverage.

Beyond the discrepancies caused by imaging perspective and coverage differ-
ence in certain urban areas, the imaging difference in resolution and continuity in
street view imagery and satellite imagery can also play a positive role. The spatial
auto-correlation analysis in Figure 12c has revealed the existence of spatial neigh-
boring effect unexplained in the residuals from the OLS model. It is assumed that
the geographic neighboring effect of urban lighting pattern is overwhelmingly em-
bodied in the satellite imagery, while not fully represented in the solely captured
SVIs. Specifically, satellite imagery captures the lighting characteristics from a
continuous geographical space at one time. The satellite derived brightness in a
hexagon grid may not only be the representation of the lights from the grid itself,
but also affected by light sources from nearby grids. Typically, the problems can
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be reflected as the light pollution or glare occurring in low-resolution satellite im-
agery. In contrast, the nighttime SVIs capture lighting pattern at discontinuous
local spaces and at multiple times. There can be relatively weaker representation
of spatial continuity in the SVI predicted brightness, however the spatial resolu-
tion can be higher.

To comprehensively test the hypothesis above, a spatial lag regression model
is applied to refine the correlation between SVI predicted brightness and satellite-
derived brightness, considering geographic neighboring effects, SVI coverage dif-
ferences, and varying urban development intensities and functions. For each
hexagon grid, the average of predicted brightness from the Queen neighboring
grids was calculated as a spatial lag variable. Additional independent variables
include the SVI buffer area proportion, the maximum Gross Plot Ratio (GPR)
per grid, and the presence of ports and airports in the grid. The study also in-
corporates VIIRS-DNB and Luojia-1 NTL images with different resolutions to
assess imagery resolution impacts on brightness feature extraction and model fit-
ting. The comparative analysis of Adjusted R2 metrics in Table 2 reveals that spa-
tial lag models consistently yield higher R2 scores than OLS models, highlighting
the importance of spatial neighboring characteristics in the relationship between
SVI predicted and satellite-derived brightness. Models using lower-resolution im-
agery show more significant improvements in Adjusted R2 scores in spatial-lag
models than OLS models, suggesting that low-resolution nighttime images may
more substantially obscure actual lighting conditions due to radiance and noise
issues. Additionally, by accounting for the uneven distribution of SVIs, GPR, and
port/airport facilities, both OLS and spatial-lag models demonstrate improved fits,
supporting the three hypothesis proposed to explain the discrepancies.

4.3.2. Relation between Brightness and Activities
The aforementioned analysis attempts to reveal the differences in how street

view images and satellite imagery capture urban lighting characteristics. The fur-
ther questions are, what is the practical significance of these differences and how
can brightness predicted from SVI help us better understand the nocturnal func-
tions and activities of a city? Figure 14 demonstrates the correlation between SVI
predicted brightness, satellite-derived brightness, and the number of various types
of Points of Interest (POIs) within each grid. At urban scale, the POI counts in
shopping and food, culture and tourism, and public services and amenities show
significantly higher correlation with satellite-derived brightness than the SVI pre-
dicted brightness. For POI health and education POI, the correlation of SVI pre-
dicted brightness is broadly on par with satellite-derived brightness. While for
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SDGSAT–1 Luojia-1 VIIRS–DNB
40m 130m 500m

OLS Regression
Adjusted R2

SVI Brightness 0.3195 0.3829 0.2944
SVI Brightness|SVI Coverage 0.3805 0.5162 0.3636
SVI Brightness|SVI Coverage|GPR 0.5106 0.6227 0.4018
SVI Brightness|SVI Coverage|GPR|Port/Airport 0.5421 0.6546 0.4680

Spatial Lag Regression
Adjusted R2

SVI Brightness 0.3920 0.4879 0.4168
SVI Brightness|SVI Coverage 0.4262 0.5726 0.4548
SVI Brightness|SVI Coverage|GPR 0.5180 0.6383 0.4622
SVI Brightness|SVI Coverage|GPR|Port/Airport 0.5515 0.6742 0.5359

Table 2: A summary of adjusted R2 across different OLS and spatial-lag regression models.

recreation and sports POI, the SVI predicted brightness shows a notably stronger
correlation than the satellite derived brightness. The detailed classification method
of POI is introduced in the Appendix B.

These findings first suggest that the two types of brightness differ in their
ability to map various urban activities. This disparity may partly stem from the
imaging differences discussed earlier. On the other hand, it is also related to the
distribution and clustering patterns of various urban activities. In Singapore, for
instance, influenced by the city’s planning traditions, shopping, dining, and vari-
ous daily convenience services are typically concentrated in shopping malls and
neighborhood hubs, and exhibiting a high degree of geographical concentration in
specific urban and regional centers (Sim et al., 2002; Hee and Ooi, 2003). Since
these services are often indoors and not street-facing, there can be weaker cor-
relation of SVI predicted brightness with such services. While in the satellite
imagery, the spatial concentration of the activities, through their lighting features,
can be better captured at a global scale, which interpret a generally higher corre-
lation score. Conversely, facilities like hospitals, schools, and parks, which have
independent layout requirements and include outdoor areas, may have their night-
time lighting characteristics better captured by SVIs. The facilities and related
activities are not evident in NTL imagery, reported as in previous research.

Furthermore, it is found that as the resolution of satellite imagery decreases,
its brightness’ correlation with various POI counts generally diminishes. This in-
dicates that the resolution of satellite imagery may have an important impact on its
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Figure 14: Correlation between different brightness features and different POI counts.

ability to map urban activities. Compared to the low resolution NTL imagery suf-
fering more from the light pollution, high resolution NTL imagery are expected
to more precisely capture the intensity and location of lighting sources, which
contributes to a better mapping of urban activities. However, the high-resolution
NTL imagery can be rare and often limited as open-sourced data in current urban
research. In light of this, by comparing the correlation scores of SVI predicted
brightness and different satellite derived brightness, with POI count, it is possi-
ble to roughly estimate SVI predicted brightness ’s potential and compatibility,
in replacing satellite imagery in revealing characteristics of nocturnal urban ac-
tivities. While the correlation of POI counts with SVI predicted brightness is
overall weaker than that with high-resolution satellite imagery‘s brightness, from
SDGAST-1 and Luojia-1, it is on par with and in certain activity categories ex-
ceeds, the brightness from the widely used but lower precision VIIRS-DNB im-
agery. In summary, SVI predicted brightness can serve as a novel nighttime ur-
ban lighting intensity indicator, and hold significant and competitive potential in
revealing characteristics of nocturnal urban activities compared to the NTL im-
agery.
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5. Discussion

5.1. Diverse and Consistent Urban Lighting patterns Reflected in Nighttime SVIs
The research endeavors to apply clustering methods, to explore potential ho-

mogeneous patterns within street-level lighting landscapes. The measured lumi-
nosity of the scene and the area of lighted spots extracted from nighttime SVIs, are
identified as primary attributes for differentiating lighting patterns, whereas the av-
erage distance of spots from the image centroids aids in subdividing different pat-
terns. Based on the analysis in the Section 4.1.2, there are seven generic lighting
patterns extracted from the nighttime SVIs. We can discern that each urban func-
tional space can be typically described by one or two primary lighting patterns,
characterizing their usual illumination features, and distinguished by another pos-
sible secondary lighting pattern from other functional scenes. For different ur-
ban functional scenes, the dominant lighting pattern may share commonalities,
depending on the human activities and location’s characteristics within the scene.
For example, Cluster 1 is predominantly lit by industrial parks, highways, and uni-
versity campuses; Cluster 5 is prevalent in low-rise commercial areas, high-rise
commercial areas, and high-rise residential areas. The aforementioned findings
structurally describe the mapping between street-level urban functional character-
istics and generic lighting patterns, making a pioneering contribution to the study
of the nighttime urban built environment and human activities. The study reveals
the readability of urban lighting landscape, and also highlights the potential value
of collecting nighttime SVIs in a larger-scale and identifying different lighting
patterns as prototypes.

5.2. SVI based Brightness vs Satellite based Brightness
This study trains deep learning models for predicting Singapore’s nighttime

brightness features at city scale based on daytime SVIs. It further probes the rela-
tionship between SVI-predicted brightness and satellite derived brightness, aim-
ing to unravel the significance of nighttime SVIs as a potential complementary
of nighttime satellite images. Regression analysis yields Adjusted R² values of
0.3195 and 0.3920 for the OLS and spatial lag models respectively, indicating a
significant, moderate correlation. While global spatial consistency is observed,
significant local discrepancies highlight the distinct but related dimensions cap-
tured by SVIs and satellite imagery. These differences are attributed to variations
in imaging perspectives, spatial coverage, and resolution and continuity between
the two sources. In addition, by linking the POI count with the brightness dis-
tribution, the study reveals that the two types of brightness differ in their ability

34



to map various urban activities. SVI predicted brightness shows stronger correla-
tion with POIs that have requirements in independent layouts and outdoor fields,
such as schools, hospitals, and parks. Besides, the lower the resolution of satellite
imagery, the more similar the performance between SVI predicted brightness and
satellite derived brightness in mapping the urban activities. The above findings
suggest that the SVI predicted brightness can be competitive nighttime lighting
indicators to reveal the urban activity features. Especially, it is argued that when
there is a lack of high-resolution NTL image, or the street-based distribution are
stressed for urban activities, the SVI predicted brightness can be a better fit com-
pared to the traditional satellite derived brightness indicators.

5.3. Potential Applications and Limitations of Nighttime SVI
Based on our investigation, there are promising applications of nighttime SVI,

and thus we believe that this latent urban dataset warrants more attention. By
identifying typical lighting patterns and sources via Nighttime SVI, we can op-
timize light placement and intensity to enhance regional characteristics (Alves,
2007), or reduce light trespass in densely populated residential areas, address-
ing the potential health concerns (Vallée et al., 2020; Chen et al., 2020; Sung,
2022). With its unique horizontal perspective, Nighttime SVI serves as a valu-
able data source for assessing window lighting and estimating vacancy rates in
residential and commercial properties. This is significant for urban planners or
policymakers as it provides insights into urban ghost cities (Yin et al., 2024; Shi
et al., 2020) or hollowing phenomena (Batty, 2023). However, personal privacy
may be compromised due to this granular observation. Nighttime SVI can also be
applied as direct material for auditing local environment in crime prevention and
environmental psychology research. Additionally, nighttime SVI can effectively
cover areas with dense tree canopies or tall buildings, where NTL data may fail
to achieve a sufficient coverage. Combining SVI with satellite imagery offers a
comprehensive view of urban lighting across different altitudes and dimensions,
potentially improving traditional NTL data applications like energy consumption
modeling (Wang and Lu, 2021) and economic observation (Xu et al., 2021).

Despite these potentials, we must also acknowledge the complexities of ur-
ban nighttime environments and the possible limitations of Nighttime SVI. Urban
lighting levels can fluctuate between early evening and late night due to changes
in shop activity, streetlight intensity, and traffic flow, making the collection times-
tamp crucial for accurate analysis. Geographic factors, including climate and sea-
sonal variations, further influence lighting conditions. For example, dense sum-
mer foliage in temperate regions may obstruct streetlights and building illumi-
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nation, whereas such obstructions are minimal in winter. The complexity and
temporal dynamics of urban lighting environments present challenges for relying
solely on static nighttime images for urban sensing. Nevertheless, similar issues
are also present in traditional practices based on NTL data.

6. Conclusion

This paper puts forward the idea of using street-level imagery taken during
nighttime as a potentially useful dataset for sensing urban lighting conditions,
which has been ignored so far, despite the immense popularity of its daytime
counterpart. Collecting and utilizing nighttime SVIs as primary data source, this
study analyzes the street-level urban lighting landscape at city-scale from human
perspective, and explores its extensive connections with urban functional sce-
nario, built environment forms, and activity distribution. Besides pioneering this
paradigm, the main contributions of this research are addressing the limitations in
nocturnal urban studies that have long relied on NTL satellite imagery, suffering
from a singular observation perspective and low data resolution, and systemat-
ically and insightfully investigating the basic properties of nighttime SVIs and
their relationship with other conventional urban data sources. It is argued that
nighttime SVI can be the basis of a novel urban sensing paradigm and provide
feasible information in expanding our cognitive dimensions of urban environment
and activities.

Our investigation highlights the potential applications of nighttime SVI for
a more comprehensive understanding of urban lighting. Firstly, nighttime SVI
can serve as an independent medium for describing and measuring the street-level
lighting landscape, capturing the distribution of light sources along the urban ver-
tical dimension. This will significantly enhance studies that require high-detail
investigations of lighting environments, particularly in areas such as the health im-
pacts of light pollution and crime prevention. Secondly, by integrating nighttime
SVI with daytime SVI and leveraging deep learning technologies, it can comple-
ment NTL satellite imagery by inferring street-level lighting intensity across large
spatial scales. This application offers differentiated urban activity information and
perspectives that may be overlooked by NTL, while potentially better supporting
traditional NTL applications, such as sensing urban vitality and functional struc-
ture, and predicting energy consumption.

Nonetheless, being the first such study, it has some limitations that offer op-
portunities for future work. It does not consider the role of nighttime light color
characteristics in differentiating urban functional areas. This issue stems mainly
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from the complexity and instability of nighttime color measurement. However,
specific light color spectra and color richness could indicate different urban activ-
ities, making this a viable direction for future research. Additionally, the fact that
all nighttime SVIs were collected from Singapore could impact the generalizabil-
ity of brightness prediction models to other global cities. Future research could
benefit from collecting nighttime SVI from a broader range of sources. Beyond
manual collection, potential supplemental sources include nighttime SVIs from
Mapillary and nighttime city walk videos from open access platforms. Diverse
datasets will help improve the robustness of the models.
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Appendix A. Silhouette Analysis

Figure A.15: Average silhouette scores for different k (50 Experiments per k). Though k=3 has
the highest silhouette score, we choose k=7 for better diversity.

Figure A.16: Results from the silhouette analysis with k=7 and random seed = 238.

38



Feature F-statistic p-value

Total Area 691.9921 0.0
Total Luminosity 869.8054 0.0
Average Distance 686.0040 0.0

Table A.3: ANOVA results for different lighting features across clusters.

Group 1 Group 2 Mean Diff. p-adj Reject

0 1 -4194.3325 0.0 True
0 2 24838.0110 0.0 True
0 3 4588.1625 0.0 True
0 4 22391.5417 0.0 True
0 5 40916.2308 0.0 True
0 6 3258.4487 0.0127 True
1 2 29032.3435 0.0 True
1 3 8782.4950 0.0 True
1 4 26585.8742 0.0 True
1 5 45110.5633 0.0 True
1 6 7452.7812 0.0 True
2 3 -20249.8485 0.0 True
2 4 -2446.4693 0.1514 False
2 5 16078.2198 0.0 True
2 6 -21579.5623 0.0 True
3 4 17803.3792 0.0 True
3 5 36328.0683 0.0 True
3 6 -1329.7138 0.838 False
4 5 18524.6891 0.0 True
4 6 -19133.0930 0.0 True
5 6 -37657.7822 0.0 True

Table A.4: Tukey’s HSD Test results for total area across clusters.
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Group 1 Group 2 Mean Diff. p-adj Reject

0 1 -2.8601 0.0001 True
0 2 33.3785 0.0 True
0 3 13.3819 0.0 True
0 4 3.3151 0.0001 True
0 5 13.4703 0.0 True
0 6 21.7076 0.0 True
1 2 36.2387 0.0 True
1 3 16.2420 0.0 True
1 4 6.1752 0.0 True
1 5 16.3305 0.0 True
1 6 24.5677 0.0 True
2 3 -19.9967 0.0 True
2 4 -30.0634 0.0 True
2 5 -19.9082 0.0 True
2 6 -11.6710 0.0 True
3 4 -10.0668 0.0 True
3 5 0.0885 1.0 False
3 6 8.3257 0.0 True
4 5 10.1552 0.0 True
4 6 18.3925 0.0 True
5 6 8.2372 0.0 True

Table A.5: Tukey’s HSD Test results for total luminosity across clusters.
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Group 1 Group 2 Mean Diff. p-adj Reject

0 1 -25.5540 0.0 True
0 2 -11.6235 0.0 True
0 3 -17.3549 0.0 True
0 4 -18.3024 0.0 True
0 5 -7.6999 0.0 True
0 6 3.4640 0.0 True
1 2 13.9306 0.0 True
1 3 8.1992 0.0 True
1 4 7.2517 0.0 True
1 5 17.8542 0.0 True
1 6 29.0180 0.0 True
2 3 -5.7314 0.0 True
2 4 -6.6789 0.0 True
2 5 3.9236 0.0 True
2 6 15.0874 0.0 True
3 4 -0.9475 0.7395 False
3 5 9.6550 0.0 True
3 6 20.8188 0.0 True
4 5 10.6025 0.0 True
4 6 21.7663 0.0 True
5 6 11.1638 0.0 True

Table A.6: Tukey’s HSD Test results for average distance across clusters.
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Appendix B. A Re-classification of POI Types

New POI Types Original POI Types

Shopping & Food cafe, food court, restaurant, fast food, bakery, bar, pub,
convenience, furniture shop, supermarket, outdoor shop,
doityourself, florist, bicycle shop, bookshop, chemist,
clothes, computer shop, department store, greengro-
cer, jeweller, pharmacy, shoe shop, gift shop, kiosk,
beauty shop, car dealership, garden centre, butcher, sta-
tionery, mobile phone shop, toy shop, general, mall,
newsagent, arts centre

Cultural & Tourism artwork, museum, cinema, theatre, nightclub,
theme park, zoo, stadium, hotel, guesthouse, hostel,
motel, tourist info, viewpoint, monument, observa-
tion tower, lighthouse, ruins, battlefield, picnic site,
camp site, chalet

Public Services & Amenities atm, bank, travel agent, police, fire station, town hall,
public building, library, embassy, prison, commu-
nity centre, post office, post box, toilet, drink-
ing water, waste basket, recycling, recycling paper,
recycling glass, bench, vending machine, vending any,
telephone, car rental, car sharing, car wash, bicy-
cle rental

Health & Education doctors, clinic, hairdresser, dentist, veterinary, school,
kindergarten, college, university

Recreation & Sports playground, swimming pool, sports centre, ice rink,
dog park, pitch, park

Table B.7: New classification scheme of POI types. The original POI types are re-classified to five
new types, based on their similarity and difference in activity features.
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