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Building appearances profoundly shape the urban visual landscape, influencing city
images and the quality of urban life. Traditional methods for evaluating the perceptual and
aesthetic qualities of building facades are often limited in scope. Despite recent studies
that have sought to understand human perception of urban streetscapes, our grasp of how
individuals perceive building exteriors on a broader scale and the subsequent impact on
holistic street experiences, remains largely unexplored. In this study, we integrate a tra-
ditional survey-based evaluation framework with machine learning techniques to analyse
human perception of over 250,000 building images from Singapore, San Francisco, and
Amsterdam. Specifically, deep learning models trained on crowdsourced ratings of 1,200
building images across six perceptual attributes — complex, original, ordered, pleasing,
boring, and style — achieve over 72% accuracy. This novel approach enables adaptive
and comparative analyses of building appearances across regions, revealing spatial patterns
in the perception of architectural exteriors and their relationships with functions, age,
and location. Moreover, by applying propensity score matching to match images based
on their features, we mark one of the first efforts to investigate the perceptual impacts
of buildings on streetscape perceptions. The results show that streetscapes with higher
levels of complex, pleasing, and historical ambience from buildings elicit more positive
perceptions, whereas modern and monotonous exteriors often evoke holistic feelings of
being “boring” and “depressing”. These findings offer architects and city planners valuable
insights into public sentiment towards city-level building exteriors and their influence on
urban identity and perception.
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1. Introduction

Over the past decades, urban built environments have grown at an unprecedented rate,
shaped by a confluence of socio-cultural, economic, and technological factors, resulting in
diverse and complex urban landscapes. The visual appearance of a city, a crucial aspect
of the environmental aesthetics, is believed to significantly influence people’s perceptions
of a place as well as their physical and mental well-being [1, 2, 3]. Studies have shown
that an appropriate appearance can enhance the emotional appeal of the environment,
thereby affecting human experiences related to outdoor thermal comfort [4, 5, 6], acoustic
perception [7, 8] and perceived safety [9, 10, 11]. Exposure to aesthetically pleasing
environments, such as natural scenes, has been shown to be a key factor in promoting
residents’ health [12, 13, 14, 15, 16], while visual disorder in urban settings may induce
rule-breaking behaviours [17, 18]. Consequently, evaluating the visual appearance of built
environments is pivotal in cultivating urban aesthetics and fostering a more liveable urban
environment.

With the rapid development of urban informatics, the effective and quantitative mea-
surement of visual landscapes has become a key area of interest in the built environ-
ment sector [19, 20, 21]. Recently, street-level imagery has emerged as a valuable data
source, offering a unique perspective and detailed coverage [22]. This facilitates the scal-
able exploration of landscape intricacies from a pedestrian’s viewpoint, including both the
objective measurement of visual elements [23] and the subjective assessment of human
perceptions [24, 25]. Further investigations have also illuminated the impact of visual
components and image features on individuals’ sentiments towards urban environments
[11, 26, 27, 16, 28]. These studies not only evaluate human perceptions in broader extents
but also underscore how landscapes interact with people’s emotions, contributing to more
human-centric urban environments [29].

However, the specific characteristics of visual elements in the built environment, such
as building appearances, types of vegetation, and street designs, along with their spatial dis-
tributions and contributions to individuals’ holistic sensory experiences, have not been fully
explored. Among these elements, architectural exterior designs, which profoundly impact
our daily visual experiences and cultural interactions, have received considerable attention
in previous studies [30, 31, 32] due to their diverse appearances that range from historical
to contemporary eras. Similar to urban street studies, architectural facade evaluation not
only explores the impact of design on the environment, including thermal comfort and
microclimates [33], but also incorporates psychological theories to investigate emotional
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appraisals and elemental evaluations of buildings through aesthetic responses based on
human cognition and perception [34]. Such perceptual assessments attempt to understand
the interaction between human sentiments and architectural semantics [35, 36, 32], thereby
aiding architects and urban designers in improving design principles for the public good
[37]. However, these studies often rely heavily on traditional data collection methods such
as interviews and questionnaires, typically focusing on specific building types or geograph-
ical areas. This approach confines the research to a narrow scope and limits scalability for
cross-regional comparison, thereby posing challenges in evaluating architectural design
at flexible spatial resolutions. Hence, this study aims to broaden our grasp of human
perceptions of buildings within a large-scale urban environment, to compare their spatial
distributions across cities, and to explore how building exteriors influence holistic human
perception of streetscapes. Through this study, we seek to address the following research
questions (RQ):

• RQ1: How well can machine learning be leveraged to describe and compare the
building exteriors in a detailed and scalable manner?

• RQ2: How do the human perceptions vary across cities that are constituted by differ-
ent types of building exteriors?

• RQ3: To what extent do the appearances of buildings impact the overall human
perception of urban streetscapes?

In this research, we integrate a building exterior evaluation framework with deep learn-
ing techniques to measure human perception of building exteriors. First, a dataset of
individual building images is compiled from street-level images taken in three cities: Sin-
gapore, San Francisco and Amsterdam. Second, a subset of these images is equally and
manually assembled across different areas of the cities and various building types. This
subset is then evaluated through a comprehensive online survey, which gathers 33,774
responses from 493 participants. The survey quantifies 1,200 images across six perceptual
attributes: complex, original, ordered, pleasing, boring, and style, as identified from prior
research. Third, deep learning models are trained on this dataset to analyse the entire set of
about 250,000 building images, with the results applied to reveal spatial patterns of human
perceptions on building facades. Moreover, this study conducts a correlation analysis
between perceptions of buildings and their objective information (i.e., functions, age, and
location), to pinpoint distinctive building identities across cities. Finally, through the lens
of the six attributes, this research examines their influence on the holistic human perception
of streetscapes. Our findings show that the proposed perceptual properties are effective in
comparing architectural exteriors across large-scale built environments and elucidating the
impacts of building designs on human perception of streetscapes.
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The contributions of this research are threefold: (1) We introduce a scalable and efficient
deep learning-based framework, featuring six perceptual attributes of building facades, for
analysing and comparing human perceptions of architectural exteriors in different urban
contexts. (2) The characteristics and distribution of building perceptions are revealed and
compared across cities, to facilitate a broader understanding of architectural design strate-
gies. (3) This work is among the first to investigate the influence of building appearances
on human perception of streetscapes in larger regions. This investigation offers architects
and city planners not only an effective framework for evaluating public sentiment towards
city-level building exteriors, but also insights into their influence on urban identity and
perceptions, underlining the significance of architectural design in urban planning and
policy development.

2. Related work

2.1. Traditional approaches in architectural exterior evaluation

Over the past decades, the sensory connection between observers and objects, derived
from psychological theory, has been widely applied in built environment studies [38]. Vari-
ous studies have identified that an appropriate form or appearance may facilitate attractive-
ness and emotional appeal of environments, including the aesthetic quality of architecture,
landscape, and streetscape [39, 37, 40, 41]. These studies highlight conceptual properties
such as coherence, meaningfulness, enclosure, and mystery, which represent individual
perceptions to measure cognitive and perceptual dimensions of the environment [37, 42,
43].

In architectural exterior assessment, conceptual properties offer designers a holistic
view of an individual’s aesthetic response and affective appraisal of buildings. Such as-
sessments are typically conducted through surveys using interviews and questionnaires to
collect people’s ratings and opinions on a building’s physical setting [31, 44, 45]. Different
terminologies and combinations have been explored in various studies, playing a funda-
mental role in identifying specific and relevant aesthetic needs in building designs. Classic
academic works have established correlations between specific perceptual attributes and
preferences for certain buildings. For instance, perceived complexity and impressiveness
have been shown to have a linear relationship, while a U-shaped relationship exists between
complexity and preference criteria, indicating that people tend to favour buildings with a
moderate level of complexity [30, 46]. Other properties, such as inclusion of historical ele-
ments and the exclusion of artificial elements, have been found to increase the pleasantness
of buildings, while to optimise excitement, the use of more natural materials and higher
levels of atypicality would be beneficial [37, 47].
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Among the studies, complexity is regarded as a crucial factor in formal aesthetics and is
frequently adopted as a key conceptual property in assessing building exteriors. Rapoport
[48] describes complexity as tied to the number of noticeable differences in independent
elements and the amount of usable information available to the viewer. A building with
higher exterior complexity tends to deliver more intense visual information, increasing
arousal experiences while typically minimising pleasantness at the extreme ends of high or
low complexity [49]. Order, along with related variables like clarity, coherence, and fitting-
ness, has been confirmed to influence preferences in streetscapes and housing appearances
[50, 31, 32]. It refers to the degree to which a scene cohesive or sensible. Kaplan and
Kaplan [51] highlight that an ordered appearance enhances legibility and identifiability,
simplifying comprehension and recall for observers. Importantly, they also indicate that
a scene can possess high complexity and high coherence simultaneously. Moreover, the
contribution of originality to architecture design, similar to what Devlin and Nasar [31] and
Canter [52] call “novelty”, has also been extensively documented [42, 32, 36]. This term
evaluates the uniqueness of a subject and is identified to significantly influence perceptual
behaviour [53]. Similarly, architecture style represents an important symbolic variable, de-
scribing a general denotative meaning interpreted by individuals [37]. Such interpretations,
as perceived by humans, may vary among different styles [54], illustrating how historical
ambience and detailing can endow building facades with legibility, coherence, and harmony
[55, 56], whereas certain modern cues may elicit pleasure and arousal in observers [35].
This interpretation significantly influences observers’ emotional responses, to the extent
that the presence of historical elements has been identified as beneficial to quality of life
[57].

Besides, pleasure and arousal are key properties commonly investigated in academic
discussions on building exteriors [31, 35, 58, 32]. These dimensions are closely linked to
physiological responses and are essential for evaluating human reactions to architectural
stimuli. Although these dimensions are interrelated, they represent independent aspects
of experience. Russell et al. [59] clarify that pleasure and arousal maintain an orthogonal
relationship, implying distinct influences on human reactions. Expanding on this, Gifford
et al. [35] develop a graphic circumplex method to quantitatively assess pleasure and
arousal levels elicited by images of modern buildings. Their findings indicate a strong
correlation: buildings that are reflective, shiny, taller, more colourful, and ornate tend
to provoke greater arousal, while these architectural qualities do not necessarily provide
significant cues for pleasure. Hence, in this study, pleasantness is utilised to assess affective
expression as the bipolar opposite of displeasure, while excitement (not boring) is employed
to denote arousal, capturing the intensity of physiological activity.

In addition to these six aspects, various attributes such as friendliness, ruggedness,
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and ornateness have been employed to evaluate building facades. In this work, we aim to
explore an adaptable framework to measure building exteriors with perceptual properties
that are distinct and comprehensible. The framework can be progressively expanded to
include other variables in future empirical and theoretical research.

2.2. Street-level imagery in human perception measurement

Street view imagery (SVI) has gained significant popularity in recent studies, providing
a unique street-level vantage point of urban landscapes with broad coverage and precise
spatial detail, and has thus been extensively employed across diverse scales to explore built
environments [22]. These images are often customised to align with the specific objectives
of various studies and are used to train machine learning models for predictive tasks.

In highlighted selection, we emphasise the urban perception studies that use perception-
based labelling to quantitatively and extensively measure human responses to street envi-
ronments. Typically, these studies employ SVI surveys to explore subjective feelings of
participants, categorise images with perceptual labels, and convert these labels into quan-
tifiable attributes [2]. The seminal work by Salesses et al. [24], introduces a methodology
to obtain SVI ratings based on pairwise comparisons and responses to evaluative questions.
This approach explores the perceptual inequalities of safety, class, and uniqueness in cities
within the United States. Expanding upon this foundation, Dubey et al. [25] establish a
crowdsourced dataset known as Place Pulse 2.0, which extends urban perception research to
include six attributes — depressing, boring, beautiful, safe, lively, wealthy — and encom-
passes data from 56 cities. Due to their low-cost and high precision, these methodologies
and datasets have seen extensive use in subsequent urban perception research (e.g., in China
[11, 60], Singapore [61], the USA [62], Chile [26], and other global cities [63]) and serve
as benchmarks for assessing the perceived quality of urban environments [64, 65, 66].
Moreover, several studies have identified specific image features associated with human
perception in streetscapes. For example, Zhang et al. [11] highlight that objective elements,
such as natural features, positively correlate with perceptions of beauty in streetscapes,
whereas buildings often have a negative impact. This trend is also corroborated by Rossetti
et al. [26], who found that images featuring buildings tend to be perceived as livelier but
less beautiful and safe, and more boring and depressing. Additionally, clearer views of the
sky negatively impact perceptions, while low-level features such as edges and blobs have
a positive influence. Further expanding the scope, Zhao et al. [8] extend this framework
to the measurement of soundscape perception, integrating perceptual attributes relevant to
the soundscape domain, such as sound intensity, quality, and sources, along with other per-
ceptual indicators. By incorporating street-level images, these frameworks hold significant
potential to contribute to various urban research fields and deepen our understanding of
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how objective elements sensed by individuals correlate with their subjective perceptions.
To effectively model these complex and nuanced human perceptions, various advanced

machine learning models have been employed. Among these, Convolutional Neural Net-
works (CNNs), have been predominant due to their proficiency in handling and analysing
image data. These models are chosen for their ability to automatically extract and learn
the most predictive features from images, which is crucial for accurately categorising and
quantifying the attributes of urban environments. For instance, a common practice in urban
perception research is employing pre-trained CNN models such as ResNet, fine-tuned on
specific perception datasets like Place Pulse 2.0 [11, 61, 67]. As one of the primary visual
components of the streetscape, buildings have attracted considerable attention in street-
level research. CNNs, such as VGG, DenseNet, and ResNet, are also widely introduced to
achieve, or serve as benchmarks for, the accurate classification of diverse functions [68],
materials [69, 70], styles and ages [71, 72, 73] of buildings.

However, the ways in which individuals perceive and evaluate the exteriors of buildings
from the street level, as well as the variation and distinction of such perceptions across
different cities, and the overall impact of buildings on streetscape perceptions, remain un-
derexplored. Therefore, aligning with previous studies for evaluating architectural exteriors
and measuring street-level perception, this study introduces a synthetic and comparative
framework. This framework is designed to assess the appearance of buildings by CNN
models, uncover patterns of building perception in larger regions, and elucidate the influ-
ence of building design on streetscape perceptions.

3. Research framework

In this study, we introduce a comprehensive and comparative methodology for quantify-
ing human perceptions of building exteriors utilising SVI. The research framework is struc-
tured into three main steps, as illustrated in Figure 1: (1) Section 3.1: Developing building
perception models: We collect building exteriors by detecting and extracting images of
individual buildings from SVI across cities. Then, a subset of images from this dataset
is used to gather perceptual ratings through pairwise comparisons conducted by survey
participants. These ratings span six dimensions: complex, original, ordered, pleasing,
boring, and style. Subsequently, models to predict building perception scores are trained
with these multidimensional labels. (2) Section 3.2: Analysing spatial characteristics: The
trained building perception models are employed to estimate perception scores for the entire
set of extracted SVIs. This process enables us to map these perceptual scores on broader
scales and analyse the correlation between these scores and objective building attributes
(i.e., functions, age, and location). (3) Section 3.3: Understanding streetscape perception:
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Figure 1: The framework to measure human perception of building exterior from street view images at the
city-scale. Source of imagery: Google Street View.

the average perception scores of buildings and the streetscape are calculated separately for
each panoramic images. Propensity score matching (PSM) is then applied to match and
control SVIs with similar objective features, facilitating a detailed investigation into the
effect of building exteriors on streetscape perceptions. Further details on these steps are
provided below.

3.1. Developing building perception models

To gather human perceptions on individual buildings and assess them across broader
regions, we develop a comprehensive workflow, as shown in Figure 2:

Extracting building images. Buildings, as primary visual elements of the streetscape, are
often the focus of imagery datasets aimed at segmentation tasks. However, few datasets
are tailored for the extraction of individual buildings from images. In this study, we
endeavour to apply object detection methods to extract and isolate building images, thereby
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offering a more focused view of the buildings themselves. To achieve this, we employ
the GroundingDINO, a state-of-the-art object detection model equipped with pre-trained
weights capable of detecting arbitrary objects using human inputs such as category names
or referring expressions [74]. Specifically, we utilise the “GroundingDINO-B” checkpoint,
which has been trained on several widely-used object detection datasets, including COCO,
O365, and Open Images, among others. By assigning the category name “building” to
this open-set detector, we can acquire bounding boxes for buildings present in images. To
ascertain the model’s performance on this task, we evaluate it on the “building” category
using the test set of the Open Images V7 dataset. The model demonstrates high accuracy
and reliability in detecting buildings on the test set, achieving an Intersection over Union
of 0.65, a precision of 0.86, and a recall of 0.75.

To collect diverse images of individual buildings, panoramic SVIs are retrieved from
various urban locations. By applying the proposed building detection model to these SVIs,
we obtain the coordinates of bounding boxes for buildings within the images. These
bounding boxes are then processed with an algorithm specifically designed to correct lens
distortion, resulting in normalised views of the buildings as seen from the street. Moreover,
to assemble a targeted collection of building images for the survey, an equal number of
images were collected from different regions of each city. This process adhered to two
key principles: first, images were evenly sampled spatially to encompass a broad data
distribution across urban areas; second, manual selection was conducted to ensure a wide
array of building types and architectural styles were included, thereby creating a dataset
that is both spatially and visually comprehensive for subsequent analysis.

Human perception labelling. To gather human subjective assessments of building exte-
riors, our study employs a perceptual survey designed based on prior urban perception
studies [25, 75, 66, 8], structured around the six conceptual properties as discussed in
Section 2.1, and further illustrated in Table 1. Specifically, the term “boring” is employed
to denote an absence of excitement, thereby rendering the concept more accessible and
comprehensible to participants. For complex, original, ordered, pleasing, and boring,
participants are presented with pairs of building images during the survey. The central
question guiding their evaluation is: “Given the pairs of building facades, which one do
you think would be more [characteristic]?” The characteristic in question alternates among
complex, original, ordered, pleasing, and boring. For each pairing, participants have the
option to select either the left or right image or to denote that both images represent the
quality to the same degree. “Style”, considered an incomparable property, is designed to
evaluate through a single-choice question with only one building image presented at a time.
Participants are prompted to categorise the building’s architectural style on a scale with five
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Figure 2: The detailed workflow for the development of building perception models. Source of imagery:
Google Street View.

options: “modern”, “somewhat modern”, “no significant style”, “somewhat historical”, and
“historical”. The selected images from different cities are randomly drawn and displayed to
the participants, who are prompted to evaluate the building images in response to a series of
questions that probe specific attributes. Figure 3 shows several examples from the survey
platform.

The survey results are further applied for perception score calculation. In this study,
Microsoft TrueSkill, a method applied in former visual perception studies [25, 76, 75], is
used to ranked scores based on the pairwise comparison results. As a Bayesian ranking
method, TrueSkill calculates a ranked score for each player (in our context, images of
buildings) engaged in a two-entity comparison, by iteratively updating the ranked score
of players after every comparison (in this case, the pairwise comparison results) [77]. For
questions offering a single choice, we categorised architectural styles on a scale from 1 to 5,
ranging from “modern” to “historical”, and computed the average scores of the architectural
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Figure 3: Examples of two types of questions on the survey platform used to collect human perceptions
of building facades. Respondents are prompted to indicate their preferences through a series of questions
targeting specific perceptual properties. Source of imagery: Google Street View.

style rankings received by each building. Thus, a building scoring higher in this style metric
is perceived to be more historical, whereas a lower score suggests a modern perception. To
enhance interpretability, these scores across six dimensions are normalised and adjusted to
a continuous scale of 0 to 10. Through this methodology, we assign perceptual scores in
six dimensions to each building image, establishing the basis of our training dataset for the
study of building exterior perceptions.

Models training and prediction. Similar to Kang et al. [67], we then approach the predic-
tion of perceptual attributes for building facades as supervised classification tasks, struc-
tured in three steps. Firstly, each perceptual score is assigned to one of six predefined
ranges with equal score intervals: 0-1.67, 1.67-3.33, 3.33-5, 5-6.67, 6.67-8.33, and 8.33-10.
This structuring, as shown in Figure 4, aims to enhance the machine’s understanding of
the perceptual characteristics of buildings across different ranges, and facilitate a more
intuitive categorisation into low, medium, and high groups. This categorisation supports
the computation of Top-2 accuracy metrics in subsequent model evaluations. For instance,
class 1 includes building images with scores ranging from 0 to 1.67, while class 2 covers
those with scores from 1.68 to 3.33; both are categorised as “low” within the Top-2 classes.
Prior to model input, the data is divided into training and validation datasets with an 8:2
ratio across cities, ensuring a balanced representation of buildings from different cities in
both sets of data.

To learn this compressed set of variables, we fine-tune CNN models, which were
pre-trained on the ImageNet-1K dataset, using building images alongside their predefined
classes of each perceptual property. Each model is individually tailored to predict one
specific perceptual property in downstream prediction task. Lastly, the prediction task in-
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Figure 4: The scaling of predefined perceptual score ranges into six classes, and the subsequent categorisation
into low, medium, and high groups.

Table 1: The conceptual properties and main survey questions applied in the study, along with their
corresponding terminologies.

Conceptual Property Corresponding Terminologies
Positive Negative

Complex complicated simple
Original unique, impressive, novel uncreative, unoriginal
Ordered ordered, coherent, unified confusing, disorganised
Pleasing enjoyable, pleasing, happy unpleasant, depressing
Boring exciting, arousal dull, monotonous

Style
historical, somewhat historical,

no significant style, somewhat modern, modern

volves each model generating a six-dimensional vector for each building image, where each
dimension represents the probability of the image belonging to one of the six predefined
classes. These output probabilities P are used to compute scores for each building image,
reflecting score of a specific perceptual property. These probabilities are multiplied by
the median value of the ranges associated with their respective classes, transforming the
probability distributions back into a numerical score S , for each image:

S i =

6∑
n=1

(
10
6
·

(
n −

1
2

)
· Pn

i

)
(1)

where i denotes an individual building image, and Pn
i represents the probability of the image

belonging to class n. The term 10
6 ·

(
n − 1

2

)
specifies the median value corresponding to class

n, which scales the impact of each class’s probability on the final score S i.

3.2. Analysing spatial characteristics

For this phase of analysis, we integrate the H3 geospatial indexing system1, specifically
choosing a resolution at level 9, which corresponds to an average hexagon area of 0.105
km2. The purpose of applying the spatial indexing system is twofold: Firstly, it allows for

1Hexagonal hierarchical geospatial indexing system: https://h3geo.org/
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the aggregation and visualisation of perceptual information within discrete units, standar-
dising the scale for comparative cross-city analysis. In practice, the perceptual attribute
values for each cell are computed by averaging the scores of all buildings within that
cell, thus reflecting the area’s collective perceptual trend. Secondly, we compile additional
building attributes within these same units to examine their correlation with the perceptual
ratings generated by the model. This analysis of correlation offers further insights into the
interplay between subjective perceptions of buildings and their objective characteristics, as
well as variations in facade features across different cities.

3.3. Understanding streetscape perception

To uncover the influence of buildings within a streetscape, we apply the Place Pulse
2.0 dataset [25] as the benchmark for streetscape perception analysis. This dataset contains
110,988 images from 56 cities across 28 countries and quantifies human perception of the
streetscape across six dimensions (depressing, boring, beautiful, safe, lively, and wealthy)
based on volunteer labelling. Following a similar approach to our building perception
model training, we first train deep learning models using Place Pulse 2.0 dataset across
these six-dimensional features. Second, we segment our panoramic SVIs into perspective
views to match the format used in the dataset. These perspective images are then assessed
using the streetscape perception models, and the results are averaged to produce compre-
hensive streetscape perception scores for each geographical location.

Furthermore, as identified by previous studies, certain visual elements and low-level
features within the images, such as buildings, vegetation, edges, and blobs, potentially
influence people’s perceptions [11, 26, 27]. As a result, perceptions may vary due to
multiple factors present in images. For instance, a place with a higher visual factor of
vegetation tends to be perceived as more beautiful, even if it contains unpleasing building
exteriors compare to other images that have pleasing building designs. To minimise the
impact and facilitate a robust discussion on the influence of building appearance, we in-
troduce the propensity score matching (PSM) to control and match the SVIs. This method
involves dividing SVIs based on high and low building perceptual properties, then matching
them into strata according to their characteristics (e.g., having a similar amount of visual
elements), allowing us to calculate the average treatment effect of that perceptual property
on street perception.

To accomplish this, we first employ semantic segmentation using a deep learning model
trained on the Cityscapes dataset [78] to extract physical features from each perspective
SVI. This process quantifies the proportions of various visual elements, such as buildings,
vegetation, roads, and sky in images. Second, we retrieve pixel-level features, includ-
ing the number of edges and blobs as well as the mean values of hue, saturation, and
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lightness, using algorithms from the OpenCV library. For each SVI shooting point, we
aggregate the average streetscape perception scores and visual features from perspective
views, together with its average six building perception scores derived from the individual
buildings within the image. Thirdly, the visual features are used in binary logistic models
to calculate propensity scores for the matching process. Each respondent in the treatment
group (e.g., having a high complexity level of building exteriors) is matched to one in
the control group (e.g., having a low complexity level of building exteriors) according to
the propensity scores. Finally, we evaluate the effects of building perceptual properties
on overall streetscape perception by calculating the average treatment effect on the treated
group (ATT) [79]:

ATT = E(Y1 − Y0|D = 1) (2)

where D = 1 indicates the treatment group, characterised by buildings received high
perceptual values. The variable Y1 refers to the streetscape perception score of the treatment
group, and Y0 refers to the streetscape perception score of the control group.

4. Research areas and data

4.1. Research areas

This study aims to explore and assess the reliability and scalability of a building per-
ception dataset by examining buildings in three distinct cities: Singapore, San Francisco,
and Amsterdam. These cities were chosen due to their diverse architectural landscapes,
which provide a comprehensive base for analysis. Singapore is a highly urbanised metropo-
lis that has rapidly developed over recent decades, containing buildings of various types
and styles. A significant aspect of the city’s urban character is its abundance of high-
rise buildings, which are not merely typical but also functional, housing the majority of
the resident population [80]. In contrast, San Francisco presents a mix of architecture
that combines historical landmarks with contemporary structures, characterised by a wide
range of building styles from Victorian to modern structures. Amsterdam differs from
the aforementioned cities with its well-preserved historic mid- and low-rise buildings,
some of which are complemented by modern additions, creating a diverse and contrasting
architectural experience. By the examination on these cities, the study aims to evaluate the
dataset’s adaptability and to gather insights into how building appearances and styles are
perceived across different urban environments.
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4.2. Data description

4.2.1. Street-level building images
This study evaluated perceptions of buildings using individual building images derived

from panoramic SVIs sourced from Google Street View (GSV)2. To standardise the gath-
ering of SVIs across the three cities, we employed the H3 geospatial indexing system at a
resolution of level 11, corresponding to hexagons of 0.002 km2 each. For each hexagon, the
central coordinate was used to search for and retrieve the nearest panoramic SVI within the
unit. The collection process yielded 30,520, 24,292, and 25,062 images from Singapore,
San Francisco, and Amsterdam, respectively. As illustrated in Figure 2, these images were
then utilised for an object detection task to identify buildings, followed by addressing the
image distortion. To ensure accurate predictions, images smaller than 100x100 dpi were
excluded from the analysis. Finally, 94,632, 63,884, and 92,501 building images were
generated for Singapore, San Francisco and Amsterdam, respectively. For this study, 400
images from each city were selected according to the principles outlined in Section 3.1, for
inclusion in the dataset to gather human perceptual ratings. As a result, a total of 1,200
images were used for the online participant survey, and there were total 249,817 images
remaining for the prediction task.

In this work, we conducted an online survey among students at the National University
of Singapore. To ensure a representative sample for the building perception survey, a pre-
survey was initially conducted to gather general information from potential participants.
A balanced group was then selected based on gender, age, and academic programs for
the building perception survey. Ultimately, the survey garnered responses from 493 partici-
pants, collecting a total of 33,774 responses related to 1,200 building images. Each building
image was rated more than five times to minimise individual bias, ensuring a more balanced
evaluation. While the survey participants were primarily students, we acknowledge that this
group may not fully represent the broader population. The primary aim of this study was to
demonstrate the feasibility of our method rather than to provide definitive perceptual scores.
For future studies or applications requiring precise, demographically tailored insights, this
methodology can be replicated with a broader and more diverse participant pool to enhance
the representativeness and reliability of the results.

Utilising the scoring method mentioned in Section 3.1, the scores for six different
perceptual attributes were calculated for each building image based on the results of the
survey. The samples of building images with their corresponding perceptual scores, as
shown in Figure 5, indicate that different building exteriors may induce different human

2https://www.google.com/maps/
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Figure 5: Building image samples of different cities with their perceptual score of the 6 dimensions calculated
based on survey responses. Source of imagery: Google Street View.

perceptions. For instance, the first building image, featuring blue balconies and prominent
horizontal lines, tends to be perceived as a modern structure and ranks higher in “more
ordered” and relatively lower in terms of being perceived as “more boring”. The fourth
image, which depicts a historical building with rich visual elements, has relatively higher
scores for complexity, originality, and pleasantness compared to the others. Moreover,
Image 6, with its unique shape and abundant architectural features, is perceived as the most
original and complex among the others. Furthermore, such complexity induces a lesser
sense of boredom but does not necessarily contribute to a feeling of pleasantness. After
categorising the scores into six classes as described in Section 3.1, the extreme classes
exhibit fewer labels compared to others. To mitigate this imbalance, we implemented data
augmentation techniques, including horizontal flipping and centre cropping, to enhance the
representation of underrepresented classes in our training set.

3https://data.gov.sg
4https://data.sfgov.org
5https://maps.amsterdam.nl
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Table 2: Objective building indices, derived from various data sources, are calculated for the H3 cells across
three cities. The mean and standard deviation for each index value are indicated.

Variables Description Mean Std. Data source

City: Singapore

Function

Residential density
Residential building

area (ha)
2.369 2.421

Commercial density
Commercial building

area (ha)
0.443 1.439

Master Plan
20193

Industrial density
Industrial building area

(ha)
0.215 0.777

Public housing density
Public housing area

(ha)
1.389 0.946

HDB Existing
Building3

Location Distance to city centre
Straight-line distance

(km)
11.081 4.680 GIS analysis

City: San Francisco

Function

Residential density
Residential building

area (ha)
2.144 1.420

Land Use 20204Commercial density
Commercial building

area (ha)
0.215 0.427

Office density
Office building area

(ha)
0.256 0.606

Age Building age
The average of building

age since completion
68.826 35.357

Location Distance to city centre
Straight-line distance

(km)
4.474 2.127 GIS analysis

City: Amsterdam

Function

Residential density
Residential building

area (ha)
1.041 0.957

Commercial density
Commercial building

area (ha)
0.266 0.519

Amsterdam
Government
Maps Data5

Office density
Office building area

(ha)
0.328 0.631

Age Building age
The average of building

age since completion
56.151 37.544

Location Distance to city centre
Straight-line distance

(km)
4.773 2.379 GIS analysis
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4.2.2. Objective building attributes
Aiming to provide a comprehensive profile of building perceptions and their spatial

patterns, objective building attributes are collected from three aspects: functions, ages, and
locations. These attributes are believed to have potential relationships with urban visual
appearances [65, 11, 81]. Due to the variation in format and openness of the data released
by different cities, we utilised diverse datasets to represent these three aspects, as shown in
Table 2. On the one hand, the building functions and distance to city centre are common
attributes for the three cities. On the other hand, in Singapore, public housing developed
by the Housing and Development Board (HDB) represents a typical building type with
available data for analysis. Conversely, in San Francisco, the age of buildings is the specific
building-level data that warrants further exploration in this study. The attributes of each
research unit are aggregated as mean values to serve as contextual representations of the
area.

5. Results and analysis

5.1. Building perception models

5.1.1. Models evaluation
To identify the suitable model for this study, we fine-tune commonly used CNN ar-

chitectures in urban research, as discussed in Section 2.2, using our building perception
dataset. We compared the Top-1 and Top-2 accuracy metrics of these models to select the
best one for predicting perception scores across the entire image set of individual buildings.
Top-1 accuracy measures the percentage of the validation set which the model accurately
predicts the exact class, while Top-2 accuracy assesses whether the model can correctly
predict the category closest to the original one. As shown in Figure 4, the Top-2 categories
cover perception scores ranging from 0 to 3.33, 3.33 to 6.67, and 6.67 to 10, reflecting a
low, medium and high ranking trend.

Table 3 presents the average values of performance metrics for various CNN models
across the six attributes, with ResNet50 generally outperforming the others. Consequently,
the ResNet50 architecture has been adopted for building perception models in this study.
Table 4 provides further details on the performance of ResNet50 models across perceptual
properties, including accuracy, recall, precision, and F1-score for both Top-1 and Top-2
classes. The models demonstrate strong performance in classifying building images based
on human perception trends, with Top-2 accuracies exceeding 72%, and attributes such as
“complex”, “boring”, and “style” achieving higher predictive accuracies. This suggests that
the complexity and excitement of building exteriors, as well as their architectural styles,
tend to display more consistent visual features across cities, facilitating more accurate
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Figure 6: The results of Class Activation Maps (CAM) overlaid on original images and the building images
cropped according to CAM showing the specific discriminative regions. Source of imagery: Google Street
View.

predictions by the models. Nonetheless, the relatively modest performance on the Top-1
benchmark should be acknowledged. This discrepancy may be attributed to the inherently
subjective nature of human perception, influenced by cultural, historical, and personal
factors that are not easily captured by visual features alone.

Building on architecture research by Lee et al. [82] and Sun et al. [72], Class Activation
Maps (CAM) are further employed to identify discriminative regions that CNN models use
for predictions. This explainable AI technique allows us to understand which parts of an
image the model focuses on, influencing the final classification across the six perceptual
properties. Figure 6 illustrates the CAM results and the discriminative regions extracted
from the original images. The CAM results demonstrate clear yet varied patterns on the
semantic information of the buildings based on different perceptual dimensions, indicating
models’ capacity to discern and learn pertinent architectural features from the imagery.
For example, regions containing rich visual information may prompt predictions of high
complexity, whereas distracting details might result in disordered rankings. Furthermore,
chaotic and uninviting elements in images often lead to low “pleasing” classifications,
while blank and unadorned designs are typically defined as “boring” buildings. Mod-
ern buildings are frequently categorised based on their sleek structures and cold colours,
whereas warmer tones and ornamental architectural features such as columns, arches, and
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belfries are generally associated with “historical” identifications. These patterns not only
illustrate the models’ ability to classify buildings based on various perceptual attributes but
also their adaptability across diverse building types in the cities. The models also prioritise
building features over unrelated elements like vegetation, cars, and pedestrians, enhancing
their focus on relevant architectural details. Overall, these evaluations affirm the robustness
and generalisability of our approach in large-scale urban environments, demonstrating the
models’ capability to align building designs with human perceptual judgements.

Table 3: Average validation performance of CNN models across all perceptual properties.

Model Benchmark Accuracy Precision Recall F1-score

VGG16
Top-1 0.424 0.356 0.326 0.320

Top-2 0.693 0.725 0.676 0.684

DenseNet201
Top-1 0.452 0.356 0.347 0.339

Top-2 0.709 0.725 0.662 0.679

ResNet34
Top-1 0.440 0.356 0.329 0.327

Top-2 0.731 0.747 0.684 0.697

ResNet50
Top-1 0.480 0.386 0.353 0.358

Top-2 0.770 0.809 0.699 0.732

ResNet101
Top-1 0.471 0.426 0.364 0.370

Top-2 0.732 0.758 0.675 0.697

5.1.2. Prediction results
All building images from the three cities are processed by the trained models, with

the output probabilities being converted into scores across six perceptual dimensions, as
defined in Equation 1. Figure 7 displays a selection of buildings from Singapore, San
Francisco, and Amsterdam, categorised by their “original” scores. Generally, the model
assigns higher originality scores to buildings with innovative and distinctive architectural
features that carry historical or contemporary significance. Buildings have the lowest
originality scores tend to lack distinctive visual elements and are characterised by flat
mundane appearances, often representing residential or industrial structures. In Singapore,
the most original buildings are typically contemporary in design, featuring unique shapes
and modern elements. In San Francisco, buildings that are considered original often possess
historical significance and are adorned with rich ornamentation. Amsterdam displays a
harmonious blend of historical and modern buildings among those rated as most original,
reflecting a region that integrates tradition with modernity. Furthermore, Figure 8 show-
cases a collection of buildings among cities, categorised by a predictive model based on
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Table 4: Detailed validation metrics for ResNet50: accuracy, precision, recall, and F1-score in building
perception classification tasks.

Properties Benchmark Accuracy Precision Recall F1-score

Complex
Top-1 0.512 0.356 0.355 0.350

Top-2 0.777 0.782 0.666 0.704

Original
Top-1 0.475 0.398 0.332 0.347

Top-2 0.752 0.842 0.627 0.683

Ordered
Top-1 0.450 0.367 0.335 0.344

Top-2 0.719 0.747 0.653 0.681

Pleasing
Top-1 0.438 0.337 0.304 0.311

Top-2 0.764 0.828 0.669 0.721

Boring
Top-1 0.508 0.338 0.312 0.313

Top-2 0.777 0.810 0.744 0.761

Style
Top-1 0.498 0.520 0.479 0.484

Top-2 0.828 0.846 0.833 0.839

their “ordered” score. In this case, buildings with lower-order scores often exhibit unique
or unconventional features, while those with higher scores display more standardised,
symmetrical, and orderly designs. Contrary to the high original buildings, it is common
across the three cities that the highly ordered buildings tend to be modern structures with
a pragmatic design. Despite the variety in building designs across different urban regions,
these results highlight the models’ adeptness at recognising and distinguishing architectural
uniqueness in varied urban settings.

Figure 9 compares the quartiles of predicted scores for buildings in the three cities.
Similar to the insights provided earlier, buildings in Amsterdam indicate a wide range of
architectural style indices, reflecting the city’s rich historical legacy and its harmonious
integration of modern designs. Singapore’s architecture also stands out in the “style”
dimension, with more buildings receiving lower scores compared to the other cities. This,
incorporated the prevalence of ordered and complex buildings, suggests a sense of regular-
ity and urbanisation in its cityscape. In contrast, buildings in San Francisco are generally
perceived as less ordered. Moreover, while all cities display similar levels of “boring”
facades, San Francisco’s buildings show a wider range in this dimension, which may reflect
the city’s diverse and distinctive architectural types and styles. This analyses provide global
insights into the unique architectural identities of each city and how they are perceived by
people.
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Figure 7: Image samples from Singapore, San Francisco and Amsterdam that were predicted with low original
scores (left) and high original scores (right). Source of imagery: Google Street View.
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Figure 8: Image samples from Singapore, San Francisco and Amsterdam that were predicted with low ordered
scores (left) and high ordered scores (right). Source of imagery: Google Street View.
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Figure 9: The comparative distribution of predicted scores for six perceptual dimensions of buildings in
Singapore, San Francisco, and Amsterdam.

To enhance the understanding of building style, the “style” category is divided into
two continuous values: “historical” and “modern” for subsequent analysis. This division
aims to clarify the extent to which buildings are recognised within these styles based on
equations:

H =

S − 5 if S > 5

0 if S ≤ 5
(3)

M =

5 − S if S < 5

0 if S ≥ 5
(4)

where H and M represent the transformed score representing the building’s historical and
modern significance, respectively, and S is the original “style” score assigned to the build-
ings. If “style” scores above 5, indicating a certain historical significance, the score of H
will be set to S − 5, and M will be set to 0. For scores lower that 5, indicating modern
significance, H will be set to 0, while M will be calculated as 5 − S . These attributes are
then normalised and adjusted to a scale from 0 to 10. Following the score adjustment,
Figure 10a and Figure 10b illustrate the spatial distributions of the trends in perceiving
historical and modern building exteriors, respectively.
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(a) Historical index of each view-point

(b) Modern index of each view-point

Figure 10: The geographical distribution of locations identified to have different perceptual levels of historical
and modern buildings in Singapore, San Francisco, and Amsterdam.

5.1.3. Correlation analyses
As indicated by Zhang et al. [11], perceptual properties have potential relationship

with each others, which may vary among cities. Thus, to better elucidate the relationship
of building perceptual properties, a Pearson cross-correlation analysis of the perceptual
indicators is conducted. Due to the insufficient number of building images identified as
having a “historical” sense, this investigation focuses on the relationship between complex,
original, ordered, pleasing, boring, and modern.

As illustrated in Figure 11, the relationship between perceptual scores shares similar
patterns among the three cities. The attribute “boring” has a significant negative rela-
tionship with the attributes of complexity, pleasantness, and originality. Among these,
higher levels of complexity exert the strong positive associations with inciting observer
excitement, aligning with with previous studies [49, 30, 46]. Likewise, buildings that
are original and complex in design also have a positive relationship with perceptions of
pleasantness. There is also a strong positive association between “original” and “complex”,
suggesting that architecturally impressive designs are often seen as visually rich from a
human perspective. Specifically, San Francisco stands out with the strongest relationship
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Figure 11: Cross-correlation matrices among the six perceptual properties using data from Singapore, San
Francisco and Amsterdam, with subsequent subtraction to highlight the significant differences among the
cities.
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between these two attributes, suggesting that the unique architectural design in the city
resonates strongly with observers’ sense of complexity. In Singapore, “complex” and “or-
dered” are significantly positively associated with modernity, reflecting that buildings with
more modern characteristics are often visually complex and organised. The subtraction of
the matrices further highlights the variances in the “boring—ordered”, “original—ordered”
and “original—complex” relationships among the three cities. These variations are mainly
attributable to the perceptions of Singapore’s building exteriors. Unlike in San Francisco
and Amsterdam, the orderly nature of Singapore’s architecture negatively correlates with
perceptions of originality and excitement. This trend may be associated with the design of
Singapore’s residential housing, which, while aligned and balanced, is also highly uniform
and predominantly high-rise. This induces a perception of high visual complexity but lower
originality, appearing more monotonous to observers. A more comprehensive study would
be beneficial to delve deeper into the specific architectural characteristics in these cities and
to validate these hypotheses.

5.2. Spatial analysis of building perceptions

To reveal building perception patterns, the scores from six perceptual dimensions for
each building image are aggregated to represent the overall perception of building exteriors
(within the H3 tessellation units). Figure 12 provides a comparative spatial analysis of
building perception across the cities. Generally, areas with highly complex and original
facade designs are clustered in city centres, where development is dense and the archi-
tecture often features rich innovation and visual appeal. However, the distribution of
order, pleasantness, and perceived monotony of building appearances varies across the three
cities, reflecting their distinct planning strategies, cultures, and historical contexts.

In Singapore and Amsterdam, the spread of high complexity and originality extends
beyond their central areas, indicating a diffusion of innovative architecture into other dis-
tricts. In contrast, San Francisco’s complex and orderly facades are primarily concentrated
in and near the city centre, suggesting a modularly developed urban core. In Amsterdam,
buildings perceived as well-ordered are distributed in a pattern that inversely correlates
with complexity and originality, highlighting a unique architectural stratification within the
city. These outcomes are likely due to the city’s historically small building blocks, which
contribute to a visually diverse and rich environment, potentially clashing with perceptions
of symmetry and uniformity. In San Francisco, extensive areas characterised by varied
types of small residential blocks are rated low in terms of “complex” and “ordered”, while
areas known for their high-quality Victorian and Edwardian homes are associated with the
highest levels of originality and pleasure. In Singapore, buildings generally score higher
in terms of orderliness compared to the other cities, yet these areas are perceived as less
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pleasant. This perception may be attributed to Singapore’s extensive urbanisation and the
prevalence of high-rise residential buildings, which can evoke feelings of congestion and
stress, thereby impacting the perception of pleasantness. Amsterdam displays the opposite
trend, with its central areas offering a variety of low-density and historical districts, which
contribute to a higher perception of pleasantness.

To deepen our understanding of the interaction between human perceptions and the
built environment, we undertook a cross-correlation analysis, comparing perceptual scores
against the objective characteristics of buildings as discussed in Section 4.2.2. Table 5
shows the relationship between various urban land uses — residential, commercial, and
office or industrial — and their correlation with perceptual qualities, alongside other at-
tributes such as the prevalence of HDB flats in Singapore, the age of buildings in San
Francisco and Amsterdam, as well as the locations of areas (distance to city centre).

In general, the three cities indicate unique fabrics and architectural features in the
relationship between perceptions and building functions. In San Francisco and Amsterdam,
residential areas with high coverage are significantly positively correlated with pleasing
architectural designs and strongly negatively correlated with perceptions of being boring
and modern. This suggests that these areas resonate with appealing design and visual ex-
citement while offering a non-modern aesthetic. Conversely, in Singapore, area covered by
HDB buildings correlates positively with orderliness but conveys a sense of monotony. This
observation, as discussed in Section 5.1.3, reflects a standardised architectural approach in
public housing that priorities functionality and uniformity. While this approach contributes
to coherent urban order, it may lack the variability needed to stimulate excitement and
interest. In San Francisco, districts with commercial and office buildings are associated
with complexity and organisation, but in all three cities, these areas do not show a strong
relationship with building perceptions. Future studies could incorporate additional factors
such as building height, colours, and materials to deepen the analysis.

Additionally, in both San Francisco and Amsterdam, areas with older buildings exhibit
a strong negative correlation with perceptions of being “boring” and a positive correlation
with originality and pleasantness. In San Francisco, older districts feature significantly
more complex and original designs compared to those in Amsterdam, highlighting distinct
variations in design across different building age groups in the former. Regarding distance
to the city centre, both San Francisco and Amsterdam display similar trends: complexity,
originality, and pleasantness decrease towards the periphery, while perceptions of buildings
as boring increase. Interestingly, the two cities show opposing trends in the correlation
between “modern” and distance to the city centre. As illustrated in Figure 12, modern
buildings in Amsterdam are typically located outside the central area, while in San Fran-
cisco, they are concentrated in the city centre. Singapore exhibits a weak correlation in
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Figure 12: The spatial distribution of six perceptual properties of Singapore, San Francisco and Amsterdam.
Basemap: (c) OpenStreetMap contributors.
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Table 5: Spearman correlations between perceptual properties and objective building attributes. The
combinations with moderate or strong correlations are highlighted.

Complex Original Ordered Pleasing Boring Modern

City: Singapore

Residential density 0.1232 *** 0.020 -0.1023 ** 0.0911 ** -0.0308 -0.0775 *

Commercial density -0.0763 * 0.1088 *** -0.257 *** -0.0407 -0.0239 -0.1613 ***

Industrial density -0.0618 0.1081 *** -0.1746 *** 0.0382 -0.0579 0.0198

Public housing density 0.0605 -0.1678 *** 0.3785 *** -0.1467 *** 0.2594 *** 0.2626 ***

Distance to city centre 0.1131 *** -0.1682 *** 0.312 *** -0.0969 ** 0.1879 *** 0.1102 ***

City: San Francisco

Residential density 0.2138 *** 0.366 *** -0.1082 ** 0.3159 *** -0.3045 *** -0.3722 ***

Commercial density 0.255 *** 0.0542 0.2388 *** 0.0299 -0.1361 *** 0.0008

Office density 0.2633 *** 0.0227 0.3103 *** -0.0046 -0.1216 *** 0.2366 ***

Building age 0.452 *** 0.5436 *** 0.0433 0.4833 *** -0.519 *** -0.4201 ***

Distance to city centre -0.6848 *** -0.515 *** -0.4977 *** -0.5296 *** 0.609 *** -0.2963 ***

City: Amsterdam

Residential density 0.1597 *** 0.2335 *** 0.0958 ** 0.5034 *** -0.3609 *** -0.542 ***

Commercial density 0.2538 *** 0.2251 *** 0.1165 *** 0.1109 *** -0.1791 *** -0.0497

Office density 0.2197 *** 0.1241 *** -0.0248 -0.1284 *** -0.031 0.3034 ***

Building age 0.1861 *** 0.2784 *** -0.2093 *** 0.5417 *** -0.4467 *** -0.6356 ***

Distance to city centre -0.4438 *** -0.4811 *** 0.0288 -0.5102 *** 0.5579 *** 0.3325 ***

*Note: All correlations presented are Spearman correlation coefficients. * p < 0.05, **
p < 0.01, *** p < 0.001.

these relationships, indicating a varied distribution of perceptual types of buildings across
the city. These findings underscore the unique dynamics between urban form and perceived
attributes, showcasing distinct trends in how architectural and urban features are perceived
across different cities.

5.3. Building exteriors in streetscape perceptions

In this section, we discuss the influence of buildings’ perceptual properties on holistic
streetscape perceptions. Using SVIs with comparable features, as described in Section 3.3,
we categorise them into control groups (with lower perceptual property values) and treat-
ment groups (with higher perceptual property values) by employing PSM. Following this,
we evaluate the standardised difference (denoted as δ) for each covariate to ensure there
are no significant statistical disparities between the treatment and control groups after the
matching procedure. As detailed in Appendix A, the δ values post-matching are below
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Figure 13: Examples of matched pairs from the control group (low building complexity) and the treatment
group (high building complexity), based on propensity score matching conducted using the proposed image
features. Source of imagery: Google Street View.

10%, indicating an acceptable level of balance consistent with previous studies [83, 84].
This effective pairing, exemplified in Figure 13, sets the stage for further analysis of how
perceptions of buildings affect streetscape perceptions.

Figure 14 reports the average treatment effect of treated (ATT) of each building per-
ceptual properties. Here, the scale of streetscape perception score is set to 0 to 10, and
the coefficients of ATT mean that the average values of streetscape perception score in the
treatment group are higher than that of the matched respondents in control group. This
indicates that to what extent the level of building perceptions positively (yellow bar) or
negatively (blue bar) contributed to each indicator of streetscape perception.

Generally, certain perceptions of buildings–complex, original, pleasing, and historical—
are significantly positively correlated with higher scores of positive streetscape percep-
tion, including safer, wealthier, livelier, and more beautiful environments. Among these
attributes, pleasing architectural design is noted for its particularly strong influence on
streetscape perception, underscoring the significance of aesthetically appealing appear-
ances in urban settings [9, 10, 5]. Furthermore, buildings that convey a sense of higher
complexity and historical ambiance are also identified as making substantial positive con-
tributions to streetscape perceptions. While ordered buildings may impart a monotonous
aspect to streetscapes, they contribute significantly to perceptions of safety and wealth. This
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Figure 14: Average effect of treatment on the treated regarding building perception properties across various
streetscape perception attributes. (* p < 0.05, ** p < 0.01, *** p < 0.001. NA means “not applicable”.)

32



aligns with prior research suggesting that disordered physical environments can diminish a
sense of safety [85]. Moreover, a higher level of modernity in building design is found to
have significant negative effects on positive streetscape perception, particularly decreasing
the sense of liveliness in streetscapes, with a coefficient of -0.504. In contrast, original
buildings can enhance the perception of liveliness, wealth, and beauty in a place.

Regarding the perceptions of “boring” and “depressing” in streetscapes, a higher degree
of modern and monotonous building appearances is found to be positively associated with
these negative sentiments. Additionally, the findings highlight the importance of historical
elements within streetscapes and the quantity of visual elements on building exteriors,
which can mitigate negative feelings towards streetscapes. This investigation confirms
that the perceptual properties proposed in this study are significantly related to human
perception in the urban environment. Although the effect of building exteriors may not be
as strong as the visual ratio of vegetation, sky, and buildings identified in previous studies,
this study real the trends and extent to which such properties affect human perception in
the built environment, which is critical for future urban renovation and building design.

6. Discussion

6.1. Application of building exterior evaluation

Buildings, as the dominant elements in cityscape, have attracted attention from a wide
variety of fields that explore urban physical appearance and the visual factors influencing
human perceptions. Various insightful studies have conducted architectural design evalu-
ations on groups of buildings, but rarely on a large scale. Therefore, understanding their
roles and impacts is vital in shaping urban environments that are both aesthetically pleasing
and functionally efficient. The contributions of this work are significant in three aspects:
First, it integrates building exterior evaluation criteria with the current urban perception
framework, offering a novel approach to assess architectural design perceptions across
large-scale urban regions. Second, the study delves into the relationship between human
perceptions and building attributes, identifying unique characteristics and spatial patterns
for different cities, thereby enhancing our understanding of urban architectural diversity and
its perception by residents and visitors. Finally, we deepen the exploration of current urban
perception research by assessing the impact of building perceptions, uncovering the trends
and extent of their influence. By integrating perceptual properties into an existing urban
perception framework, this study offers a comprehensive and comparative understanding
of human perceptions of architectural designs across different cities. This approach aids in
summarising and balancing the architectural imagery within different city regions, promot-
ing a more human-centric urban design by understanding how constructions and designs

33



contribute to the overall image of these areas. Looking ahead, incorporating other robust
and multifaceted building perceptual attributes into this framework can further enhance our
ability to create more liveable cities.

Benefiting from the geo-referencing capabilities of street-level imagery, this study rep-
resents a preliminary effort to identify, investigate, and understand the spatial patterns of
human perception regarding building exteriors. Utilising geo-tagged images allows for
the mapping and uncovering of the typical perceptual identity of architectural designs in
various urban environments. In our analysis, the concentrated modern areas in the northeast
of San Francisco suggest a strong, centralised architectural identity, while the city centre of
Amsterdam showcases the significance of historical and exciting constructions. By reveal-
ing these building perception patterns, urban planners and architects can gain a macroscopic
perspective of entire cities and urban regions. This method can optimise the cityscape
in various ways, including monitoring changes in urban appearance, organising visually
appealing districts for tourism, and identifying buildings that require exterior renewal.
Furthermore, as highlighted by Qiu et al. [75], subjective streetscape perceptions exhibit
strong strength in explaining housing prices. Incorporating the perspective of building
perception into street-level studies of other urban factors—such as socioeconomic [86, 87],
urban activities [88, 89], and residents’ mental well-being [90, 91, 16]—this approach can
enhance the dimensions of urban informatics and promote more engaging cities.

In this study, the geographic information of buildings is connected with the perception
levels of different areas for the first time, providing novel insights into urban design. For
instance, Amsterdam’s residential areas, which display a less modernised ambience com-
pared to other cities, have a strong positive correlation with the complexity and excitement
levels of buildings. Conversely, Singapore’s HDB flats, while correlating with orderliness,
are perceived as dull, reflecting a functional but monotonous design. This underscores the
importance of considering both physical characteristics and human perceptions in urban
planning and architectural design to create environments that are both aesthetically pleasing
and functionally relevant. Aligning with the existing practices of generative design [92, 93],
the potential benefit of these results lies in the creation of comprehensive building profiles,
which can be enriched with additional labels and keywords related to visual features,
perceptions, geographical locations, and cultural backgrounds. This enhances the ability of
machines to better understand and generate exterior designs for architects and city planners.

Urban perception, as a focal topic in urban studies, has received unprecedented attention
in recent times. While numerous studies have established connections between visual
elements of street views and human perceptions [11, 26], the influence of building exteriors
in this process has remained largely unexplored. This research seeks to bridge this gap by
employing PSM to assess the impact of architecture designs on the perception of urban
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streetscapes. Our findings highlight the importance of a building’s historical ambience in
enhancing the quality of streetscapes, closely followed by its pleasantness and complexity.
Extending the works of Zhang et al. [11] and Rossetti et al. [26], which identify cars,
sidewalks, and vegetation as influential factors in safety perception, our study reveals that
streetscapes featuring more complex and aesthetically pleasing building designs are also
deemed to be safer. Besides, to foster a livelier, more exciting, and impressive urban
environment, minimising the monotonous and modern sense of architectural design would
be advantageous. This approach reveals the significant contributions of building exteriors
to individuals’ perceptions of their urban surroundings, providing direct insights for future
urban development and design strategies.

6.2. Limitations and future work

There are some limitations in our study that should be addressed in future research.
First, participant backgrounds play a crucial role in evaluating building exteriors, as prefer-
ences for facade designs may vary among different groups [31, 30, 36, 46, 32]. For instance,
Imamoglu [30] found that non-architecture students tend to rate both traditional and modern
house facades as more complex compared to architecture students. Additionally, the human
perception of urban environment is influenced not only by visual factors but also by non-
visual elements such as human activities, cultural familiarity, and historical context [94, 95,
96]. Kang et al. [67] identifies disparities in safety perception between deep learning-based
measurements and survey-based measurements within neighbourhoods. Future studies
could delve deeper into these aspects, seeking to provide a global understanding of the
perception biases regarding building exteriors that arise from different socio-demographic
backgrounds.

Second, although our current dataset serves as a general representation of urban build-
ings, balancing thoroughness and efficiency, its scope remains relatively limited, compris-
ing only 400 labelled building images per city. This constraint may affect the precision of
our predictions across all building types. When applying our models to new urban areas, the
potential biases introduced by visual variances in building designs among different regions
should be considered. We believe that the current dataset is suitable for cities that share
similar architectural features with those selected for the study, while further investigation
into its reliability and sensitivity in culturally distinct regions would be beneficial. Building
on our framework, future endeavours can focus on gathering a more comprehensive and
diverse collection of building images, thereby covering a broader spectrum of architectural
appearances. Moreover, while our study offers a method for capturing building exteriors in
urban settings, it focuses mainly on the most visible aspects of facades from roads due to
the nature of street-level imagery. To expand the scope of our research, exploring other data
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sources like Mapillary, which accesses areas beyond drivable roads and the typical scope
of GSV [97], could offer a more extensive study of building appearances.

7. Conclusion

Architectural appearance, shaped by buildings that dominate cityscapes, is integral
to city planning and human well-being [57, 5, 3]. Traditional studies on architectural
evaluation, however, have often concentrated on small, specific groups of buildings, fo-
cusing on their visual aspects without considering their broader distribution within urban
spaces. To address this gap, we leverage street-level imagery to develop a comprehensive
urban perception framework that combines traditional survey-based building evaluation
methods with advanced deep learning methods, thereby broadening the scope of building
exterior evaluations to encompass larger urban areas. In line with the escalating interest
in urban perception, this research dives into an unexplored domain: the perception of
building exteriors, and does so within the broader streetscape context and their interplay
with objective building attributes and streetscape perceptions. Our methodology includes
conducting surveys to gather human perception scores for building images, employing ma-
chine learning techniques to assess a wider array of buildings across different urban regions,
and conducting the propensity score matching to evaluate how buildings affect streetscape
perception. This comprehensive and innovative approach allows us to uncover and compare
the distinctive characteristics of architectural designs in various cities, highlighting their
potential connections to the built environment and human perceptual behaviours.

To address the research questions posed in the Section 1, our experiments demonstrate:

• RQ1: The proposed framework is capable of precisely capturing the degrees of
various perceptual attributes associated with building exteriors in Singapore, San
Francisco, and Amsterdam, achieving over 72% accuracy in perception classification
tasks.

• RQ2: Cities exhibit distinct yet homogeneous patterns in the perception of build-
ing exteriors, linked to their unique urban functions, cultural attributes, and plan-
ning strategies. For instance, Amsterdam’s residential areas show pleasing, non-
modernised development; San Francisco’s office and commercial zones feature com-
plex, orderly structures; and Singapore’s public housing designs suggest order but a
sense of monotony.

• RQ3: Building perceptual properties demonstrate varying degrees of influence on
holistic streetscape perceptions. Pleasing appearances and complex, historical fea-
tures of buildings generally elicit positive responses on streetscapes, while modern
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and monotonous facades are tend to evoke holistic streetscape perceptions of being
“boring” and “depressing”.

This work supports urban design theories and practices by decoding individuals’ opin-
ions on architectural designs of cities. It provides an effective method for city governments
or planners to capture the overall image of city’s building design and pinpoint key areas
primed for future developmental enhancements and targeted interventions. We believe that
this method also holds a great opportunity to be integrated with broader urban informatics
studies, fostering a deeper understanding of the interrelations between human experiences
and the built environment, which will contribute to future building architectural design and
urban planning.
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Appendix A. Balance check before and after propensity score matching for each
building perceptual properties

Table A.1: Balance check before and after propensity score matching for perception scores “complex”.

Covariate
Before matching After matching

Treatment
(mean)

Control
(mean) δ (%) Treatment

(mean)
Control
(mean) δ (%)

Building 0.144 0.161 -8.874 0.144 0.151 -3.794

Sky 0.306 0.332 -20.820 0.306 0.302 3.449

Road 0.417 0.386 21.109 0.417 0.413 3.039

Vegetation 0.109 0.102 6.468 0.109 0.110 -0.831

Edge Count 0.168 0.152 24.018 0.168 0.169 -0.475

Blob Count 0.114 0.095 22.756 0.114 0.113 0.772

Hue Mean 0.440 0.421 16.351 0.440 0.441 -1.052

Saturation Mean 0.614 0.616 -1.486 0.614 0.612 2.937

Lightness Mean 0.268 0.268 -0.301 0.268 0.268 -0.294

Table A.2: Balance check before and after propensity score matching for perception scores “original”.

Covariate
Before matching After matching

Treatment
(mean)

Control
(mean) δ (%) Treatment

(mean)
Control
(mean) δ (%)

Building 0.163 0.142 10.554 0.163 0.151 5.759

Sky 0.308 0.331 -18.350 0.308 0.311 -2.357

Road 0.394 0.408 -9.631 0.394 0.396 -1.213

Vegetation 0.115 0.096 16.914 0.115 0.121 -5.295

Edge Count 0.164 0.156 11.926 0.164 0.163 1.849

Blob Count 0.094 0.115 -26.077 0.094 0.093 1.039

Hue Mean 0.440 0.421 16.436 0.440 0.441 -0.762

Saturation Mean 0.609 0.621 -12.123 0.609 0.607 2.393

Lightness Mean 0.278 0.258 18.208 0.278 0.275 2.752
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Table A.3: Balance check before and after propensity score matching for perception scores “ordered”.

Covariate
Before matching After matching

Treatment
(mean)

Control
(mean) δ (%) Treatment

(mean)
Control
(mean) δ (%)

Building 0.137 0.168 -16.148 0.137 0.143 -3.538

Sky 0.302 0.336 -27.416 0.302 0.292 8.009

Road 0.417 0.385 22.256 0.417 0.409 6.746

Vegetation 0.116 0.095 18.863 0.116 0.129 -10.082

Edge Count 0.176 0.144 47.041 0.176 0.183 -9.734

Blob Count 0.130 0.080 63.404 0.130 0.125 4.541

Hue Mean 0.429 0.431 -2.005 0.429 0.430 -1.103

Saturation Mean 0.612 0.618 -5.929 0.612 0.603 9.367

Lightness Mean 0.262 0.274 -11.380 0.262 0.260 2.238

Table A.4: Balance check before and after propensity score matching for perception scores “pleasing”.

Covariate
Before matching After matching

Treatment
(mean)

Control
(mean) δ (%) Treatment

(mean)
Control
(mean) δ (%)

Building 0.140 0.165 -12.490 0.140 0.136 2.265

Sky 0.317 0.321 -3.049 0.317 0.324 -5.610

Road 0.399 0.403 -2.260 0.399 0.401 -0.911

Vegetation 0.120 0.090 27.169 0.120 0.116 3.708

Edge Count 0.168 0.152 23.071 0.168 0.164 5.364

Blob Count 0.096 0.114 -22.286 0.096 0.092 5.301

Hue Mean 0.438 0.422 13.859 0.438 0.437 0.993

Saturation Mean 0.608 0.622 -14.265 0.608 0.610 -1.316

Lightness Mean 0.274 0.263 10.325 0.274 0.275 -1.336
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Table A.5: Balance check before and after propensity score matching for perception scores “boring”.

Covariate
Before matching After matching

Treatment
(mean)

Control
(mean) δ (%) Treatment

(mean)
Control
(mean) δ (%)

Building 0.146 0.159 -6.618 0.146 0.152 -3.323

Sky 0.332 0.307 19.688 0.332 0.332 0.007

Road 0.404 0.398 4.466 0.404 0.401 2.065

Vegetation 0.096 0.114 -16.351 0.096 0.093 3.399

Edge Count 0.150 0.170 -28.767 0.150 0.150 -0.205

Blob Count 0.110 0.099 13.823 0.110 0.109 1.706

Hue Mean 0.418 0.443 -21.502 0.418 0.417 0.831

Saturation Mean 0.619 0.611 9.011 0.619 0.618 1.465

Lightness Mean 0.259 0.278 -17.014 0.259 0.258 1.057

Table A.6: Balance check before and after propensity score matching for perception scores “historical”.

Covariate
Before matching After matching

Treatment
(mean)

Control
(mean) δ (%) Treatment

(mean)
Control
(mean) δ (%)

Building 0.153 0.152 0.652 0.153 0.153 0.096

Sky 0.344 0.313 24.914 0.344 0.341 1.912

Road 0.386 0.405 -13.178 0.386 0.386 -0.097

Vegetation 0.093 0.109 -14.588 0.093 0.095 -2.607

Edge Count 0.160 0.160 0.022 0.160 0.162 -2.838

Blob Count 0.099 0.106 -10.038 0.099 0.098 1.809

Hue Mean 0.417 0.434 -14.835 0.417 0.414 2.434

Saturation Mean 0.610 0.616 -6.932 0.610 0.610 0.583

Lightness Mean 0.267 0.269 -1.577 0.267 0.269 -2.338

40



Table A.7: Balance check before and after propensity score matching for perception scores “modern”.

Covariate
Before matching After matching

Treatment
(mean)

Control
(mean) δ (%) Treatment

(mean)
Control
(mean) δ (%)

Building 0.158 0.147 5.260 0.158 0.163 -2.932

Sky 0.295 0.343 -38.906 0.295 0.284 8.123

Road 0.414 0.389 17.206 0.414 0.402 8.175

Vegetation 0.111 0.100 10.001 0.111 0.126 -8.585

Edge Count 0.166 0.154 17.092 0.166 0.171 -6.945

Blob Count 0.115 0.094 25.535 0.115 0.109 6.446

Hue Mean 0.436 0.424 10.335 0.436 0.433 3.124

Saturation Mean 0.617 0.613 3.930 0.617 0.612 5.571

Lightness Mean 0.261 0.275 -12.652 0.261 0.259 1.948
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characteristics of historical building façades in the context of malaysia, Urban Design
International 19 (2014) 113–124.

[57] T. G. Yahner, D. J. Nadenicek, Community by design: contemporary
problems—historic resolve, Landscape and Urban Planning 39 (1997) 137–151.

[58] T. Heath, S. G. Smith, B. Lim, Tall buildings and the urban skyline: The effect of
visual complexity on preferences, Environment and behavior 32 (2000) 541–556.

[59] J. A. Russell, A. Weiss, G. A. Mendelsohn, Affect grid: a single-item scale of pleasure
and arousal., Journal of personality and social psychology 57 (1989) 493.

[60] Y. Liu, M. Chen, M. Wang, J. Huang, F. Thomas, K. Rahimi, M. Mamouei, An
interpretable machine learning framework for measuring urban perceptions from
panoramic street view images, Iscience 26 (2023) 106132.

[61] X. Liang, T. Zhao, F. Biljecki, Revealing spatio-temporal evolution of urban visual
environments with street view imagery, Landscape and Urban Planning 237 (2023)
104802.

[62] Z. Wang, K. Ito, F. Biljecki, Assessing the equity and evolution of urban visual
perceptual quality with time series street view imagery, Cities 145 (2024) 104704.

[63] Y. Hou, M. Quintana, M. Khomiakov, W. Yap, J. Ouyang, K. Ito, Z. Wang,
T. Zhao, F. Biljecki, Global streetscapes—a comprehensive dataset of 10 million
street-level images across 688 cities for urban science and analytics, ISPRS Journal
of Photogrammetry and Remote Sensing 215 (2024) 216–238.

[64] C. Harvey, L. Aultman-Hall, S. E. Hurley, A. Troy, Effects of skeletal streetscape
design on perceived safety, Landscape and Urban Planning 142 (2015) 18–28.

[65] N. Naik, S. D. Kominers, R. Raskar, E. L. Glaeser, C. A. Hidalgo, Computer vision
uncovers predictors of physical urban change, Proceedings of the National Academy
of Sciences 114 (2017) 7571–7576.

46



[66] J. Luo, T. Zhao, L. Cao, F. Biljecki, Water view imagery: Perception and evaluation
of urban waterscapes worldwide, Ecological Indicators 145 (2022) 109615.

[67] Y. Kang, J. Abraham, V. Ceccato, F. Duarte, S. Gao, L. Ljungqvist, F. Zhang,
P. Näsman, C. Ratti, Assessing differences in safety perceptions using geoai and
survey across neighbourhoods in stockholm, sweden, Landscape and Urban Planning
236 (2023) 104768.

[68] J. Kang, M. Körner, Y. Wang, H. Taubenböck, X. X. Zhu, Building instance
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