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A B S T R A C T

Street View Imagery (SVI) is crucial in estimating indicators such as Sky View Factor (SVF) and Green View
Index (GVI), but (1) approaches and terminology differ across fields such as planning, transportation and
climate, potentially causing inconsistencies; (2) it is unknown whether the regularly used panoramic imagery
is actually essential for such tasks, or we can use only a portion of the imagery, simplifying the process;
and (3) we do not know if non-panoramic (single-frame) photos typical in crowdsourced platforms can serve
the same purposes as panoramic ones from services such as Google Street View and Baidu Maps for their
limited perspectives. This study is the first to examine comprehensively the built form metrics, the influence of
different practices on computing them across multiple fields, and the usability of normal photos (from consumer
cameras). We overview approaches and run experiments on 70 million images in 5 cities to analyse the impact
of a multitude of variants of SVI on characterising the physical environment and mapping street canyons: a
few panoramic approaches (e.g. fisheye) and 96 scenarios of perspective imagery with variable directions,
fields of view, and aspect ratios mirroring diverse photos from smartphones and dashcams. We demonstrate
that (1) disparate panoramic approaches give different but mostly comparable results in computing the same
metric (e.g. from R=0.82 for Green View to R=0.98 for Sky View metrics); and (2) often (e.g. when using a
front-facing ultrawide camera), single-frame images can derive results comparable to commercial panoramic
counterparts. This finding may simplify typical processes of using panoramic data and also unlock the value of
billions of crowdsourced images, which are often overlooked, and can benefit scores of locations worldwide not
yet covered by commercial services. Further, when aggregated for city-scale analyses, the results correspond
closely.
1. Introduction

Largely thanks to panoramas provided by commercial sources such
as Google Street View and Baidu Maps, street view imagery (SVI) rose
to prominence in urban and environmental studies, introducing effi-
cient, large-scale, and convenient means to sense the built environment
and streetscapes (Biljecki and Ito, 2021; Deng et al., 2021; Guan et al.,
2022; Seiferling et al., 2017; Qiu et al., 2022; Ki and Lee, 2021; Helbich
et al., 2021; Kang et al., 2021b; Liang et al., 2023). Among many
applications, it has been monumental for characterising the urban form
and measuring the amount of vegetation, serving a variety of disciplines
that depend on understanding the physical environment quantitatively.

A good deal of approaches quantifying urban morphology and
street greenery were possible before the advent of SVI with other
and well established types of data such as vector geospatial datasets
and satellite imagery (Miao et al., 2020; Gong et al., 2018; Li et al.,
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2018). However, powered by computer vision techniques such as image
segmentation and the multiplication of computing resources, SVI was
rapidly established as a prominent approach to conduct such studies
and it has been complementing, if not overtaking traditionally used
data sources, and also introducing new use cases not possible with
any other source of data (Gaw et al., 2022). The highly visible arrival
of SVI was no accident — the key reasons SVI carved out its own
unique role in the urban data pantheon are readily available datasets,
global coverage, ease of access, high spatial resolution, scalability,
convenience of use, veracity, street-level perspective, and continuous
advancements in computer vision (Biljecki and Ito, 2021; Aikoh et al.,
2023).

Most studies focus on characterising the omnipresent elements of
the urban form — buildings, greenery, and visible sky. Measures that
parameterise them, such as the Sky View Factor (SVF), Green View
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Index (GVI), and Building View Factor (BVF), dominate the multidis-
ciplinary literature (Gong et al., 2018; Lu et al., 2023). The general
tenor of the approaches is straightforward — the proportion of an
image that is detected to represent a particular urban form element
(e.g. greenery, sky) is considered as a proxy of the exposure to it at
that particular (ground-level) location. With the large-scale availability
of street-level imagery and readily available computing resources, the
approach is often scaled using tens of thousands of photos across a
city to conduct urban scale studies at a high spatial resolution. These
simple but powerful metrics have accelerated a great number of studies
to understand their interaction with urban phenomena such as urban
heat island effect, comfort, housing prices, mental health, and mobility
choices (a comprehensive overview will be given in Section 2).

Despite such studies now being almost routinely conducted around
the world, there are two trends and factors that warrant investigation,
which are expected to become even more important in the future.

First — the proliferation of such studies exposed diverging ap-
proaches, and there is a lack of overview of the different instances
used and their comparison. For example, researchers use substantially
different perspectives (e.g. a panorama or fisheye image) and various
parameters to calculate seemingly the same metrics, and there is a
lack of clarity in terminology and measures (e.g. Green View Index
nd Green View Factor both appear in the literature). While SVI con-
inues to be a staple of numerous studies, researchers tend to follow
ertain approaches without motivating their choice and discussing their
mplications, uncertainty, and reliability.

Second — studies predominantly rely on commercial platforms
hat offer panoramic imagery, but crowdsourced (citizen-led) efforts
f collecting street-level images and platforms to store them (e.g.
apillary, KartaView) have emerged as well, gaining attention for the

ame research purposes, similarly as other urban data such as climate
easurements (Meier et al., 2017). While offering advantages such as

lexibility and countering restrictions of commercial services, their no-
able shortcoming is the field of view and coverage — most volunteers
se non-panoramic cameras, e.g. dashcams and smartphones mounted
n cars, offering a limited (single-frame) view. It remains unknown and
ot systematically investigated whether such imagery can rival the well
stablished panoramic imagery that gives a much broader overview
f the streetscape. Moreover, this uncertainty is compounded by the
arge variety of consumer equipment used in practice, e.g. cameras have
ifferent fields of view and aspect ratios.

Conflating the two seemingly disconnected aspects, Fig. 1 illus-
rates the background and motivation for this research. Commercial
ervices offer panoramic imagery (360 degrees horizontally and 180
egrees vertically) enabling a broad perspective and extensive survey
f the streetscape and the built environment in the immediate vicinity
Fig. 1A and B). The panorama is often transformed to another view —
.g. a set of perspective images based on a various parameters (Fig. 1C)
r fisheye directed to the zenith (Fig. 1D). Images are segmented using
omputer vision techniques (Fig. 1C, D, and G) to compute urban
orm indexes such as the Sky View Factor and Green View Index
ased on the proportion of each class in the image (Fig. 1 bottom
ight), and sometimes aggregated. These metrics support numerous
pplication domains, but the difference among various approaches to
erive them has not been investigated. On the other hand, due to the
onsumer equipment and heterogeneous approaches used (Fig. 1E),
he vast majority of crowdsourced imagery has only a single-frame
limited) and perspective view (Fig. 1F, G) both horizontally and
ertically, and in most cases facing forward the direction of the road,
ffering a limited understanding of the built environment (Fig. 1H)
ithout a panoramic view offered by commercial platforms. It is not
nown extensively whether perspective (limited, non-panoramic) single
mages could be sufficient for the same tasks panoramic SVI owes its
uccess in the research community. Finally, not all perspective imagery
n crowdsourced services is front-facing and following the direction of
2

riving, but it may include also lateral perspectives (Fig. 1I), and many
others we investigate in this paper, of which usability and purpose
remain unexplored.

In this paper, for the first time, we build a structured overview of
approaches and a mosaic of indicators found in research. We investi-
gate systematically and comprehensively, with experiments, what are
their relationships, uncertainty, and performance; and how restricted
perspectives in the growing volume of crowdsourced datasets col-
lected by citizens affect the reliability of analyses typically conducted
on panoramic imagery, which are paramount for urban research and
planning.

The broader significance of this work is that its findings may lead
to the standardisation and awareness of different approaches commonly
used in research nowadays, and to giving recognition to crowdsourced
street-level imagery and understanding its potential across many do-
mains. Commercial services such as Google Street View and Baidu
Maps, while with impressive volume of data, are not available every-
where, and this research may contribute to motivating using crowd-
sourced counterparts of this data to fill data gaps around the world,
and lead to developing best practices (e.g. determining the optimal
direction of imaging). Further, giving adequate attention to the theory
and foundations, the paper doubles as an overview of these metrics for
readers who are not acquainted with this topic and the workflows that
underpin numerous studies in multiple application domains.

The outcome of this research is important also for researchers
who use panoramic (commercial) imagery, not only to understand the
interaction among different approaches to make use of panoramas, but
also because if limited views turn out to be sufficient, it may mean
that researchers now use more data than necessary. That is, it may
not be essential to obtain and process the entire panorama, lowering
costs of research as the use cases tend to be data- and power-hungry.
Further, due to the increasing barriers, commercial sources should not
be taken for granted, so researchers in the future may have to switch
to crowdsourced imagery.

2. Background and related work

2.1. Street view imagery

Commercial services such as Google Street View, Baidu Maps, and
Tencent offer billions of panoramic images of numerous urban areas
around the world, enabling immersive insights in the streetscape and
rivalling oblique and satellite imagery traditionally used in many re-
search domains (Helbich et al., 2021; Gaw et al., 2022; Luo et al.,
2022a). Companies provide standardised approaches to collect data
(multiple cameras mounted on cars), resulting in relatively homoge-
neous data characteristics around the world.

The imagery has been used for estimating house prices (Qiu et al.,
2022; Kang et al., 2021a), assessing walkability and bikeability (Ki and
Lee, 2021; Ito and Biljecki, 2021), characterising the urban form (Mid-
del et al., 2019; Hu et al., 2020), revealing the spatio-temporal evo-
lution of urban visual environments (Liang et al., 2023), supporting
epidemiology (Zhang et al., 2021a), estimating solar radiation (Deng
et al., 2021; Lan et al., 2021), mapping street furniture and infrastruc-
ture (Zhong et al., 2021; Zhou et al., 2022b), generating 3D city mod-
els (Pang and Biljecki, 2022), understanding urban agriculture (Hawes
et al., 2022), mapping land cover (Ning et al., 2022a), socio-economic
studies (Suel et al., 2021; Byun and Kim, 2022), extracting building in-
formation (Ning et al., 2022b; Yan and Huang, 2022; Sun et al., 2022),
inferring streetscape quality (Li et al., 2022b) and their vibrancy (Li
et al., 2022a) and disorder (Chen et al., 2022b), and predicting per-
ception (Guan et al., 2022; Verma et al., 2020). For the full list
of applications, see Biljecki and Ito (2021). The process how these
panoramic images are used will be expounded in the next section,
together with the different approaches.

The rise of Volunteered Geographic Information (VGI) (Feng et al.,

2022; Naghavi et al., 2022; So and Duarte, 2020; Yan et al., 2020),
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Fig. 1. An overview of typical practices and motivation for our multivariate work. Please refer to the text for the explanations. Source of the photos A and E: Wikimedia Commons.
Fig. 2. Examples of crowdsourced images acquired from cars at the same location by different contributors, having different directions, fields of view, and aspect ratios. The
increasingly heterogeneous image data on streetscapes necessitates investigation of the influence of myriads of parameters used. While having some advantages, in both cases, their
insight into the streetscape tends to be limited in comparison with panoramic imagery typically found in commercial data. Source of data: Mapillary.
where citizens are producers of geospatial data that can be used freely,
gave impetus to also volunteered street-level imagery and develop-
ment of services such as Mapillary and KartaView, which have gained
attention and now host a large volume of data from all over the
world (Juhász and Hochmair, 2016; Leon and Quinn, 2019; Zhang
et al., 2021b; Mahabir et al., 2020; Ma et al., 2019). VGI efforts
have been contributed by companies as well (Anderson et al., 2019;
Sarkar and Anderson, 2022), which is also the case for street-level
imagery (Huang et al., 2019). Unlike commercial counterparts, the
collection of these datasets is not standardised — anyone, anywhere,
can collect and share sequential images using any kind of camera and
mode of transportation (Hou and Biljecki, 2022; Luo et al., 2022b),
which results in diverse imagery (Fig. 2). While there are different
approaches and while panoramic imagery is supported, most of the
images collected in practice are perspective (non-panoramic, single)
images from dashcams and smartphones mounted inside cars, resulting
in heterogeneous characteristics.
3

Now that billions of images are available for free and without re-
strictions, they have been used for some of the same research purposes
as commercial panoramic imagery (Karasov et al., 2018; d’Andrimont
et al., 2018; Stowell et al., 2020; Lumnitz et al., 2021; Fan et al.,
2021; Ding et al., 2021; Raviscioni et al., 2022; Bianconi et al., 2022;
Inoue et al., 2022b; Nievas et al., 2022; Esch et al., 2022; Yap et al.,
2022a; Yao et al., 2022a; León-Sánchez et al., 2022). Besides acces-
sibility, their advantage is that it is often the only SVI data source
at a location, e.g. in places where commercial services do not have
any coverage yet (notwithstanding the significant accomplishment of
commercial platforms offering data for about half of the world’s juris-
dictions, there remains an extensive portion of the globe they are yet
to cover (Cinnamon and Gaffney, 2021)).

Despite such advantages and the several papers cited in the previous
paragraph, user-generated street-level imagery remains rarely used in
research, and the number of studies relying on it is dwarfed by those
using Google Street View and Baidu Maps (Biljecki and Ito, 2021).
Ostensibly, their disadvantage is the field of view limited by low-cost
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consumer equipment (Fig. 2), in a stark contrast from professional
panoramic imaging systems developed by commercial providers, thus
researchers may have no motivation to use them if an easily available
commercial source of panoramic imagery is available in the same
area (Ali-bey et al., 2022). It is obvious that perspective photos (Fig. 2)
may have shortcomings when sensing elements such as buildings,
greenery, and sky, possibly being limited measuring the built environ-
ment. But is that really the case? Is panoramic imagery truly essential in
such studies? In our work we investigate whether such limited view is
actually sufficient to reliably sense commonly measured environmen-
tal elements of the streetscape for which researchers overwhelmingly
rely on panoramas. Along with that, we investigate also whether the
value of panoramic imagery is unparallelled or it has been overes-
timated for frequently employed analyses, and single-frame imagery
from crowdsourced platforms such as Mapillary has been overlooked
undeservedly.

These issues are also important considering the increasing number
of studies that collect SVI on their own (Peng et al., 2018; Verma et al.,
2019; Ao et al., 2019; Bochkarev and Smirnov, 2019; Gorgul et al.,
2019; He et al., 2020; Wang et al., 2021; Oki and Ogawa, 2022; Kim
and Lee, 2022; Ogawa et al., 2021), many of which are similar to
crowdsourced imagery, e.g. collecting lateral imagery with perspective
cameras (Raviscioni et al., 2022).

2.2. Characterising common elements: sky, buildings, and greenery

Literature review reveals that the most common urban form ele-
ments that are characterised using SVI are buildings (i.e. built form),
greenery (or trees, vegetation), and sky (i.e. open canyon space). Thus,
we focus on them. Because of the similarities of approaches and logic,
and because many studies examine more than one of these elements
in conjunction (Fu et al., 2019; Zhou et al., 2022a; Basu and Sevtsuk,
2022; Kawshalya et al., 2022), they are covered together. The expla-
nations in this section are accompanied by Fig. 3 (the bottom portion
of the image is related to the methodology of this study and it will be
introduced in Section 3).

In general, studies transform the data into a fisheye image pointing
up or into multiple perspective images that form a 360 panorama
(but often not a vertical panorama, with the top and bottom portions
trimmed) (Seiferling et al., 2017; Li et al., 2015; Yao et al., 2021).
The former approach (fisheye) has been influenced by the traditional
way to compute the Sky View Factor — using cameras with fisheye
lenses pointing to the zenith and computing the proportion of the
sky hemisphere visible from a ground-level point (Li et al., 2018;
Gong et al., 2018; Miao et al., 2020; Lan et al., 2021). The latter one
(set of perspective images forming a panorama) is done to mitigate
distortions and facilitate labelling and processing with computer vision
approaches (Zhou et al., 2022a; Beaucamp et al., 2022). It has been
used mostly for parameterising greenery and buildings. For example, a
plethora of studies has computed the Green View Index (GVI), which
indicates the degree to which a person standing in a certain position
can view vegetation (Yang et al., 2009; Ki and Lee, 2021).

Looking at Fig. 3, these general practices appear to make sense —
a fisheye image pointing to the zenith gives justice to the complete
parameterisation of sky and open space. On the other hand, it will not
fully capture vegetation, as some street-side greenery (e.g. grass) will
be left out, thus, panoramas without a full overview of the sky but with
the horizon in their focal point may be more suitable for such purpose.
The same goes for studies that are focused on mapping ground-level
features such as sidewalks (Kang et al., 2021a; Hosseini et al., 2022;
Ning et al., 2022c).

However, there are many studies that do not follow the same
rationale. For example, there are those that characterise the proportion
of buildings with fisheye imagery (Gong et al., 2018). It is rarely
explained why that is the case. It is assumed that researchers do so to
4

avoid including multiple approaches and to keep the derived metrics
in the same context, e.g. when computing both sky and greenery, they
focus on either of the two approaches.

The first issue in this domain are terminological disparities. There
are no standardised names. In fact, in some instances there are no
particular terms used at all — especially in those in which environ-
mental elements of the streetscapes that are analysed are many (Wu
et al., 2020b). Further, researchers tend to use different terms for the
same metric, e.g. the Green View Index is also known as Visible Green
Index (Zhu et al., 2021), an issue that in general pervades lines of
research that parameterise the urban form (Biljecki and Chow, 2022;
Xu and Gao, 2022).

In this paper, influenced by the two most prominent metrics —
SVF and GVI, and following the names of metrics in some established
publications (e.g. Building View Factor in Gong et al., 2018), we
define that metrics should suffix elements with View Factor if they
are computed with fisheye imagery pointing to the zenith, while those
that are computed from horizontal panoramas should use the term
View Index, which suggest how much object pedestrians observe (see
Fig. 3 for reference). Now that the terminology has been clarified, the
application of each of these metrics is overviewed.

The SVF has a long history in domains ranging from satellite posi-
tioning to urban climate studies as it has a direct effect on the amount
of satellite signals and solar radiation received at that point (Chapman
et al., 2002; Chen et al., 2022d; Svensson, 2004; Demuzere et al., 2019;
Wang et al., 2018; Ignatius et al., 2022). It has been also used for
predicting ground shade provided by trees (Li et al., 2018; Sun et al.,
2021a), explaining the urban heat island effect (Martin et al., 2022),
informing urban planning interventions (Ye et al., 2018), forecasting
dengue (Liu et al., 2021), explaining health-related factors and physical
activity (Lu et al., 2019; Yao et al., 2022b), and understanding pedes-
trian volume (Chen et al., 2022c). The counterpart of SVF computed
from panoramas – Sky View Index – has been used in a variety of
studies (Chen et al., 2022a; Jing et al., 2021; Liao et al., 2021; Zhou
et al., 2022c; Gao et al., 2022) (we purposefully do not abbreviate this
metric to avoid the conflict with SVI that is reserved for street view
imagery). Both metrics are encountered with alternative names such as
level of open sky (Chen et al., 2022c), percentage of sky (Verma et al.,
2020), and proportion of sky (Yin and Wang, 2016; Gong et al., 2019a).

The SVF can be computed in many ways, such as 3D city models,
point clouds, building footprints, and most accurately — with field
surveys with cameras equipped with fisheye lenses. But SVI, mimicking
this approach by transforming the cylindrical panoramas into azimuthal
fisheye images, provides a convenient and scalable approach retaining
approximately the same level of quality (Dirksen et al., 2019; Chen
et al., 2020b; Heo et al., 2020; Yuan and Chen, 2011; Li et al., 2015;
Seiferling et al., 2017; Middel et al., 2017, 2018; Gong et al., 2018;
Biljecki and Chow, 2022; Zeng et al., 2018; He et al., 2022b; Lipson
et al., 2022), and it provides some advantages over other datasets.
For example, as 3D city models often contain only buildings (Labetski
et al., 2022; Peters et al., 2022; Wysocki et al., 2022), SVI has gained
popularity over them thanks to the inclusion of all urban features, most
importantly vegetation (Gong et al., 2018).

Moving on to greenery and buildings, both factors and indexes
have been used extensively, e.g. Green View Factor (Peng et al., 2022;
Hua et al., 2022), Green View Index (Chen et al., 2019; Wu et al.,
2019; Chen et al., 2020c), Building View Factor (Gong et al., 2018),
and Building View Index (Chen et al., 2020a). Greenery is commonly
computed conflating trees and grass in a scene (Koo et al., 2022;
Yu et al., 2021; Zhang and Hu, 2022), but there have been more
specific instances such as Tree View Index (Qiu et al., 2022) and Tree
View Factor (Gong et al., 2018), and differentiating different classes
of greenery in cities (Sun et al., 2021b). These metrics have been so
common and successful that they have transcended the street-level, e.g.
some have been adopted at other platforms such as window-level in a

building (Li et al., 2022c).
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Fig. 3. Different approaches to compute the indicators. For the combination of single image parameters, refer to Fig. 4. Source of the imagery: Google Street View.
The proportion of buildings and vegetation, either alone or in
combination, in a street scene have been used for estimating the real
estate premium (Yang et al., 2021b; Chen et al., 2020a), monitoring
street-side changes (Yu et al., 2022), understanding rideshare acces-
sibility (Wang et al., 2022), crime occurrence (He et al., 2022a),
perception (Zhang et al., 2020), and air pollution (Wu et al., 2020a).

These dimensionless metrics are not relevant only in urban canyons
and densely built areas, but rather for a variety of urban configurations.
Thus, in our work, we investigate diverse urban configurations around
the world.

2.3. Related work

In general, little is known about the impact of parameters of imagery
and the topic of errors, uncertainty, and quality in SVI. To the extent
of our knowledge, the only work related to ours is the one by Kim
et al. (2021). It has a dual purpose: understanding the influence of the
sampling rate of SVI (e.g. the difference between retrieving imagery
every 20 or 100 m along a road) and the influence of considering
different combinations of perspective images derived from a panorama
(e.g. perspective image directed at the right side of the car vs a
panorama with a 360 view). The latter part, referred to as directional
setting in their paper, is more related to ours. The study primarily
computes indexes such as SVF for each perspective and its correlation
with the one derived from the panorama at the same location. Their
results suggest that: (i) information is lost when limited views are used;
5

(ii) the results obtained from an image directed at one lateral side (e.g.
camera pointing left; cf. Fig. 1I) can be significantly different from those
aiming to the other side; and (iii) the correlation (i.e. measure for error
or information loss) depends on both the index computed and the view.
For example, having only the front view results in correlations between
0.652 and 0.96 for different indexes, while focusing on one index (sky
view) computed from different directions reveals that the correlation
varies between 0.822 (right view) and 0.961 (back view).

We bring several novelties that have not been focus in research
yet, and several substantial advancements with respect to the state
of the art. First, we systematically and comprehensively investigate a
large number of scenarios occurring in practice and their relationships
(e.g. panoramas obtained from imagery with different aspect ratios,
and panoramas obtained from a different number of images, to name
a few among many). Second, their work is concentrated on the topic
of splitting imagery from panoramas (resulting in fixed fields of view
in both horizontal and vertical dimensions), rather than considering
also the context of crowdsourced imagery in which the field of view
(FOV) is not standard due to myriads of equipment and the fact that
the horizontal and vertical FOV are rarely equal (resulting in a square
image). In our work, we zero in on the topic of field of view for the first
time, and consider multiple options, reflecting different equipment used
in practice. We will demonstrate with experiments that this aspect is
quite important. Third, their work focuses on a single and limited study
area (a town in California in USA), while we include multiple cities
around the world to increase diversity of urban forms. Our decision
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is affirmed by the fact that we obtained different results by city. In
general, SVI studies involving more than one city are scant, thus, our
work contributes as a cross-city comparative study in understanding the
urban form and intra-city distribution of the aforementioned metrics.
Fourth, their results include only one metric (correlation), while our
work adds another metric (mean absolute error) that may be more
suitable for interpreting the results.

3. Methodology

In a nutshell, we generate imagery according to different scenarios
and approaches, and compare the values of the generated metrics based
on a custom-built and highly-adaptable workflow.

3.1. Imagery and perspectives

We consider common practices, and regard the following types of
perspectives (Figs. 3 and 4):

• Fisheye (zenith). These are used to compute the Building/Green/
Sky View Factors.

• Panoramas, which are used to compute the indexes:

– 4-image panoramas that are obtained from four perspective
images extracted according to cardinal directions (0, 90,
180, and 270 degrees). We noticed in literature that they
use different aspect ratios. So we compute three variants of
these 4-image panoramas, using aspect ratios 1/1 (square,
most common), 4/3, and 16/9.

– 5-image panoramas — these are obtained from the 4-images
listed above with an additional one pointing upwards. They
are computed only using square images (1/1 aspect ratio).
One may wonder why simply not focus on this kind of
panorama, which gives an entire overview from a location
and as it should be always possible to compute with com-
mercial services. The reasons depend on the use case —
e.g. in some studies, panoramas tend to mimic the view of
pedestrians, so overhead views are not included.

• Perspective images (limited views), which represent those taken
from consumer cameras and which are found in crowdsourced
services, but are also used to construct panoramas when using
commercial services (previous point). We regard 8 different di-
rections: the same 4 as above (0, 90, 180, and 270 degrees) and
4 additional (diagonal) ones between (45, 135, 235, and 315
degrees), which are not common in practice, except in few publi-
cations (Chu et al., 2022) and some crowdsourced circumstances
where e.g. dashcams are misaligned, but may be interesting to
investigate as they combine longitudinal and lateral imagery (e.g.
45 — one that includes a bit of the front view and glimpse on
the right). In parallel, to consider the heterogeneous equipment
used in practice, we introduce multiple fields of view — 70,
80, and 90 to approximate typical ranges found in wide-angle
cameras in consumer smartphones, and 120 to include those
that are typical for dashcams and ultrawide-angle cameras in
smartphones. Another motivation for the different FOVs is that
nowadays, smartphones tend to have multiple cameras (e.g. wide-
and ultrawide-angle), thus, given the choice, one may wonder
which of these may be better to use for urban sensing. In our
exploration of the metadata of a crowdsourced platform,1 we
find that most commonly images have aspect ratios of 4/3 and
16/9, but we include also 1/1 for consistency. Permuting all these

1 We examined metadata of 100k randomly sampled images from Mapillary
rom around the world collected and uploaded to the platform in the past
ecade.
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parameters, in total, we have 96 such images (Fig. 4), which
we analyse separately. Because of the limited perspective, to
distinguish them from panoramas, we call the indexes computed
from such single perspectives as limited indexes.

3.2. Investigated metrics and statistics

We investigate the following five relationships (Fig. 3), and for
notation we assign a letter to each. For each relationship, we compute
one or two of the following metrics: Pearson correlation coefficient (R)
and Mean Absolute Error (MAE). For all relationships, we compute the
correlation coefficient to indicate the statistical relationship between
two variables. However, we compute the MAE only for those metrics
that are comparable, as MAE is used as measure of errors between
observations expressing the same phenomenon (e.g. we do not do that
when comparing indexes to factors, as it is meaningless to talk about
errors in that sense).

Statistic A — Factors and indexes. We start by investigating what is
the relationship between the factors (obtained from fisheye) with the
indexes obtained from panoramas (both those computed from 4 and 5
images). Comparing these two key means to measure the urban form
(Section 2.2) will shed light on their correspondence and potential
differences.

Statistic B — Indexes from different variants of panoramas. While panora-
mas are used frequently, there are multiple ways to generate them:
comprising 4 and 5 images. Thus, we analyse their difference across the
three indexes. Besides R, for this relationship, we compute also MAE.

Statistic C — Indexes and limited indexes. This is the central part of the
work, analysing the value of single (limited) views in comparison with
panoramas, helping to answer whether crowdsourced SVI, which tends
to have non-panoramic imagery is sufficient for sensing the urban form.
Using this relationship, we analyse a large number of perspectives with
different fields of view, directions, and aspect ratios. Thus, it helps
us to understand and compare a variety of questions and scenarios,
such as whether having a wide-angle camera pointing longitudinally
is better than a ultrawide-angle camera pointing laterally; or if we
had the choice of collecting data with a typical smartphone camera,
in which direction it would be most useful to point it when measuring
e.g. the Green View Index. This part is also of relevance to researchers
using panoramic imagery, as it will help understanding does it make
sense to use the entire panorama if one of its parts is sufficient, i.e.
can panoramic imagery be reduced to a limited perspective, achieving
similar results but decreasing the complexity of studies.

Statistic D — Factors and limited indexes. Similarly to C, this statistic
also caters to understanding the usability of perspective cameras, but in
comparison to metrics derived from fisheye imagery. That is, the results
obtained from single-frame views are compared to those derived from
fisheye imagery.

Statistic E — Different aspect ratios. This relationship regards the dif-
ferent aspect ratios found in practice, and it has two related parts.
First, it focuses on 4-image panoramas, it compares the different aspect
ratios when generating them, e.g. 4/3 vs 16/9. Second, it seeks to
understand the role of consumer cameras with different aspect ratios
(e.g. smartphones and dashcams, both used in crowdsourced imagery,
tend to have different aspect ratios; see Fig. 2).

3.3. Study area, data, and image segmentation

Departing from the vast majority of studies focusing on a single
city (Section 2.2), we choose five cities, with diverse morphological,
geographical, and planning characteristics around the world: Amster-

dam (the Netherlands), Hong Kong (China), Kampala (Uganda), San
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Fig. 4. The single image scenarios we simulated, as permutations of common aspect ratios, fields of view, and directions. We compute the three indexes of the urban form (which
we dub as limited indexes to distinguish them from those generated from 360 imagery) for each scenario. Not all scenarios are shown for space constraints. The figure also expounds
the metrics relevant for the limited perspectives. Source of the imagery: Google Street View.
Francisco (USA), and Singapore. The importance of measuring the
urban form across diverse areas has been attested to identifying that
all of these cities have been subject of past studies on the urban
form (Mukisa et al., 2019; Rafiee et al., 2016; Liang et al., 2019;
Sevtsuk et al., 2021; Wong and Kardinal Jusuf, 2010; Hosseini et al.,
2022; Yang et al., 2021a; Gong et al., 2019b; Chen and Biljecki, 2023).
Fig. 5 illustrates the diversity of our study areas, and considering such
will reveal whether the relationships we investigate will be consistent
across various morphologies. The data has been obtained from Google
Street View. We have obtained imagery at 691,750 locations. For each
location, we have obtained a fisheye image, a few panoramas (5-image,
and multiple 4-image panoramas with different aspect ratios), and the
96 limited perspectives as illustrated in Fig. 4, resulting in nearly 70
million images (and more than 200 million metrics we compute from
them). For the hemispherical transformation of the panorama into the
fisheye photograph looking vertically (upwards with the zenith in the
centre), we use the upper half of a panorama, and reproject it. The
7

factors have been computed using approaches found in the state of the
art (Miao et al., 2020; Xia et al., 2021; Gong et al., 2018).

For the segmentation, we used Cityscapes2 as the training dataset,
which is a large-scale database that focuses on semantic understanding
of urban street scenes. It provides semantic, instance-wise, and dense
pixel annotations for 19 classes, including the ones in focus (c.f. Fig. 1).
By comparing different semantic segmentation models, we adopted the
state-of-the-art model, DeepLabV3, as the Mean Intersection over Union
(mIoU) can exceed 80% in this task (Chen et al., 2018).

The statistical distributions (Fig. 5) reveal the diversity and data
distribution in our study. For example, one might have expected that
Hong Kong, well known for its urban jungle dotted by the world’s
largest number of skyscrapers, would yield a distribution with higher
building indexes/factors and lower sky view indexes/factors than other
cities. However, much of the imagery is taken all around the city,

2 https://www.cityscapes-dataset.com/

https://www.cityscapes-dataset.com/
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Fig. 5. Distribution of values in the cities with example scenes from the study area. The values are derived from fisheye imagery looking up towards the zenith, but the visual
samples of scenes are from a different perspective — standard panoramic imagery as they may be more suitable for a visual impression of the examples in question. Source of
imagery: Google Street View.
including suburban villages, country parks and nature reserves, adding
to the diversity of settings in our research.

4. Results

Because of the large number of results but limited space, this section
features the most important results across the five statistics in focus.
Most of the attention is given to limited perspectives, the central focus
of this paper, which are dealt with by statistics C and D. The scatter
plots contain a random subset of the observations to avoid clutter.

4.1. Factors and indexes (Statistic A)

Fig. 6 portrays the relationship between the indexes (computed from
4- and 5-image panoramas) as correlation coefficients and scatter plots.
There are a few important observations. The correlation coefficients,
while in general strong, are different for the three urban elements.
The weakest (albeit still strong) relationship is for greenery. This could
be explained by the fact that the Green View Factor (computed from
fisheye) misses ground-level vegetation such as grass, which are in-
cluded in Green View Indexes (both 4- and 5-image panoramas). On
the other hand, 4-image panoramas have a limited peek into overhead
greenery, which are well captured in fisheye imagery. Therefore, a
key observation is that the different approaches may capture different
aspects of urban greenery.

As expected, all elements in 4-image panoramas have a somewhat
weaker correlation than 5-image panoramas (their relationship is in-
vestigated in the next section as a separate statistic). As it is the case
with tall greenery, 4-image panoramas in high-rise settings may not
be able to capture the full vertical extent of buildings (hints of these
cases are visible in Fig. 3 and some example images in Fig. 5), which
affects the computation of the Sky View Index as well, resulting in
over- and under-estimations, respectively. A 5-image panorama exhibits
a very strong correlation with its counterparts (factors) derived from
fisheye imagery; in fact, it suggests that in many cases there is not
much difference between using a panoramic image and fisheye, but not
8

always and especially for greenery the correspondence may vary and
be less strong.

Finally, in Fig. 7, we reveal major discrepancies between the two.
The two perspectives yield almost the same results across three indexes
in cases of low-rise architecture and in homogeneous streetscapes. Fur-
ther – unsurprising but worth mentioning – the discrepancies tend to be
quite small or none where there are no particular features present (e.g.
the GVI and GVF are both zero in areas without any or with very little
greenery, thus, their mismatch is also around zero; see some settings in
Fig. 5). The major discrepancies where the fisheye perspective provides
substantially different results from panoramas are often locations with
high-rise buildings and grasslands. That is, the fisheye perspective will
capture the full vertical extent of a building (and any other tall feature
such as overhead vegetation), while panoramas will provide a complete
view of the ground-level where the grass is (which in the fisheye
perspective is below the horizon and cut off).

4.2. Indexes from different variants of panoramas (Statistic B)

There is a strong relationship between the indexes derived from
the 4- and 5-image panoramas (Fig. 8). If the goal of a study is to
capture the entire streetscape including the overhead view, clearly a
5-image panorama will give more meaningful results. However, the
results indicate that when one uses 4-image panoramas, the results are
close to the 5-image approach.

4.3. Indexes and limited indexes (Statistic C)

In this statistic, we investigate the use of perspective images com-
monly found in crowdsourced imagery. To simplify the interpretation of
the large number of combinations, we consider the most common ones
in practice: images with 4/3 aspect ratio taken with wide and ultrawide
cameras (FOVs of 70, 80, 90, and 120 degrees) and the ultrawide
instance (FOV of 120 degrees) that has the aspect ratio of 16/9 to
account for contributors that use dashcams and similar (denoted with

an asterisk in the visuals).
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Fig. 6. Relationship between deriving the urban form from panoramas and fisheye imagery, with multiple scenarios on how panoramas are generated (Statistic A).
Fig. 7. Examples of major (left) and minor (right) discrepancies between computing factors and indexes, from fisheye and panoramas, respectively (Statistic A). The images are
sourced from Google Street View.
In Figs. 9 and 10 we give the results for all these combinations. The
most important result is that in many scenarios, the measured indexes
are very strongly correlated with metrics obtained from panoramas,
suggesting that images with limited perspectives, which are considered
to hamper their adoption in the research community, may actually be
useful for inferring the urban form and come close to the metrics esti-
mated from panoramic imagery. The strongest correlation is exhibited
by ultrawide-angle longitudinal recordings, e.g. images with a FOV of
120 degrees taken in the direction of driving have correlation coeffi-
cients of 0.942, 0.950, and 0.927 with those obtained from panoramas,
for the BVI, GVI, and SVI, respectively. Conveniently, this appears to
be the most common provenance found in practice in crowdsourced
street-level imagery.
9

The results are different for all the considered characteristics of
equipment. As it was the case in the previous statistics, the results also
differ for each element of the urban form, but they are in line with each
other across the characteristics such as field of view and direction. In
the continuation, we dissect them.

Starting with the direction — there is a significant influence in
which direction the camera is pointing, confirming the findings of Kim
et al. (2021). In the cases of all elements, the images tend to give
more truthful results if they point front (0) or back (180) rather than
to the sides (90 and 270). Moreover, while front and back views tend
to achieve almost the same results, the left or right direction (90 vs
270 degrees) of the side views has a notable difference on the results.
The diagonal views (45, 135, 235, and 315 degrees) do not bring
much value, as they have only a marginal improvement over lateral
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Fig. 8. Relationships between indexes derived from different panoramas (Statistic B).
Fig. 9. Correspondence of a single street view with a full panorama (5 stitched images) for different urban form metrics (Statistic C).
views, and cannot compete with front and back views. Thus, starting
to collect such imagery in practice would not be helpful, but at the
same time such imagery, which is sometimes found in practice, would
not compromise estimating these metrics.
10
The FOV has a notable influence on the results (see Fig. 10).
However, while it is not a surprise that images obtained with ultrawide
cameras will give better results than those with a narrower angle, the
results suggest that it is not as important as the direction of view. For
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Fig. 10. The performance of using perspective (single) street view imagery for inferring the urban form depends on the camera type used and direction of the view (Statistic C).
The asterisk indicates the images with the wider aspect ratio, which is frequent for ultrawide angle cameras.
example, a wide-angle camera (e.g. FOV = 80) pointing longitudinally
(direction = 0 or 180) will give more truthful results (R = 0.89, for BVI)
than an ultrawide-angle camera (e.g. FOV = 120) directed to the side
(e.g. direction = 90) (R = 0.86), despite the much wider view offered
by the latter.

As another outlook on the results, we computed the proportion of
imagery that has an index within 0.05 of the one computed from a
4-image panorama, as the standard way to compute such metrics. For
FOV = 120 and direction 0 (one of the most common combination of
parameters found in practice), for building, greenery, and sky, in 78%,
62%, and 72% of cases, respectively, such images yield indexes that
are within 0.05 in value from those derived from 4-image panoramas.
Such conclusion uncovers the tremendous potential of freely available
crowdsourced imagery collected with low-cost cameras. Further, the
results suggest that in most studies researchers may be using much
more data than they need. Instead of using several images from stitched
panoramas in Google Street View, they may reduce data sourcing
to single images, dramatically simplifying workflows and reducing
computational complexity while maintaining comparable accuracy.

The results so far have been analysed for all five cities together.
For further analysis, the discrepancies are grouped by city and urban
form (Fig. 11). The middle plot illustrates the difference between the
limited indexes from the panoramic indexes for each city (the top part
of the figure shows the metrics together for reference). It suggests that
there are some differences among the cities. While indexes related to
buildings and greenery are comparable among cities, they are a bit
more pronounced for the Sky View Index, with each city having its set
of results. The differences are not substantial, thus, we conclude that
our findings apply worldwide to most if not all cities.

Next, we focus on decomposing the results by the urban form,
focusing on the sky, which exhibited larger differences than the other
two elements in the previous paragraph. We bin the locations into
10 quantiles by the value of the SVF of each, and analyse the errors
for each quantile (bottom plot in Fig. 11). The results are analysed
in isolation for multiple FOVs and directions, and exhibit different
behaviour. It can be concluded that the urban form has some influence
on the results, and the exact statistics will depend for a particular
city. Further, the results among the cities may not only be due to the
different urban form, but also the different approaches to collect data
in them. For example, in some cities, Google Street View collects data
from parks and hinterlands (Chen and Biljecki, 2023), which have a
significantly different array of indexes and factors, but such acquisition
may not be conducted in some other cities, biasing the results.

Finally, in Fig. 12, we give examples for very accurate and least
accurate estimations, to give an understanding of scenarios that are
suitable and less suitable for imagery with limited views. In these
examples, we focus on forward-facing perspective views (direction =
0) at the field of view of 90 degrees and aspect ratio 4:3. Analysing
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the differences in the indexes computed from such perspective and
panoramic imagery, we uncover that many of the major discrepan-
cies in which the perspective images are not representative of the
surrounding (panoramic) environment are those collected at the end
of a street where a particular element (building, greenery) dominates
the image. Further examples include images collected on underpasses
(specifically for the Sky View Index), bridges over water (i.e. having
an open sky around but not in front), hilly areas, and situations with
large objects on the sides that are missed in front-facing images such as
sideways trees outside the view (for similar scenarios see also the top
left and middle left settings in the image as examples for greenery and
building, respectively). In contrast, locations where a single image is
representative of the entire surrounding are typically homogeneous and
symmetric landscapes or those that are diverse but where by chance the
metrics correspond in both perspectives (e.g. in the figure, the middle
right example indicates a heterogeneous and asymmetric setting where
the GVI is 0.254 both when computed from a single and a panoramic
image).

4.4. Factors and limited indexes (Statistic D)

Similarly as the previous statistic, we analyse the performance
of limited perspectives with the data that is usually obtained from
commercial services, this time with the factors, which are derived
from fisheye images. Fig. 13 suggests that albeit the correlations are
weaker than it is the case with panoramas (Statistic C), they are still
very strong for certain combinations, such as an ultrawide angle front-
facing image. We hope that these results will motivate future studies
to consider crowdsourced imagery in research that is traditionally
engaging commercial (panoramic) data.

4.5. Different aspect ratios (Statistic E)

Finally, we examine the influence of the different aspect ratios. For
limited perspectives, a hint of this influence is given in the previous
two statistics (see Figs. 9 and 13), in which a certain scenario (FOV
= 120) is compared between 4/3 and 16/9 perspectives, which are
found across different cameras used in practice, and the results show
an almost negligible influence. The influence of the aspect ratio is
elaborated further here.

We start with the different aspect ratios (4/3 and 16/9, see Fig. 4
for their comparison) of perspective images. For BVI and GVI, in all
cases of directions, the correlation coefficient is above 0.99 and the
errors are small (MAE of up to 0.04), and in the shadow of the
previous characteristics that have a more profound influence. Even in
the least favourable combination (direction = 90 and FOV = 70) the
correlation coefficient is still very strong (R = 0.975), not necessitating
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Fig. 11. The results (Statistic C in this case) are influenced not only by the different element of the urban form (i.e. building), but also city and its urban morphology.
Fig. 12. Examples of large errors (left) and accurate instances (right) when computing indexes from panoramas and limited views (Statistic C). The forward-facing image, from
which the limited indexes are computed, is the second one in each row. The images are sourced from Google Street View.
further research on this aspect that appears to have a consistently small
12

influence.

Next, we investigate the relationship between regular 4-image
panoramas (computed from perspective images with an aspect ratio
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Fig. 13. Correspondence of a single street view with a fisheye for different urban form
metrics (Statistic D).

of 1/1) with those computed with narrower aspect ratios such as 4/3
and 16/9, which are found in some instances. The correlations for 4/3
panoramas are 0.994, 0.994, and 0.990, for building, green, and sky
view indexes, respectively. The results for 16/9 variants are: 0.978,
0.977, 0.961. Unless there is a strong reason (such as perception studies
that would mimic the human vision, e.g. see Walker et al., 1990) to
extract narrow panoramas, it is better to follow usual practices with
1/1 aspect ratios.

5. Aggregating the measurements: urban scale analysis of the sky
view

The point-level results are often aggregated to understand the spa-
tial distribution of the urban form in cities and the relationships with
other variables (e.g. socio-economic indicators) (Demuzere et al., 2019;
Gong et al., 2019a; Liao et al., 2021; Liu et al., 2021; Sun et al.,
2021a,b; Verma et al., 2020; Wang et al., 2018; Wu et al., 2020b; Zhang
et al., 2019) (Fig. 1 bottom right), e.g. at the scales of blocks (Yao et al.,
2021), subdistricts (Lu et al., 2019), districts (Seiferling et al., 2017),
and city-scale (Middel et al., 2018). Researchers also aggregate data at
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regular grids (Chen et al., 2022c; Gong et al., 2019a; Dirksen et al.,
2019; Verma et al., 2020; Ito and Biljecki, 2021). Such spatial aggrega-
tions are predominantly focused on the mean value of an indicator at
all imaged points in a zone (e.g. cell of a grid), but some researchers
compute also the variation therein, such as standard deviation (Middel
et al., 2018).

As another angle of interpreting the results, we aggregated them in
a city-scale analysis and compared the results to gauge the performance
of single-frame images for this purpose. In this analysis, we focused on
Singapore (a morphologically diverse city; see Fig. 5), the sky view,
and the perspective image that is commonly found in crowdsourced
imagery and when generating panoramas (direction of zero and FOV of
90 degrees), and compared the results to values obtained from fisheye
and panorama (Statistics C and D; see Sections 4.3 and 4.4).

We aggregated the results according to a regular grid system (H3,
a geospatial indexing system that partitions the world into hexagonal
cells3) that is composed of hexagons, and it has been adopted in various
disciplines (Bousquin, 2021; Woźniak and Szymański, 2021; Zhao et al.,
2023; Liang et al., 2023). Each cell has the area of about 0.10 sq. km.
and it contains 51 panoramas on average.

To put the results in context and enable straightforward comparison,
for each approach, we compute the standard score (Z-score) of each
cell — the number of standard deviations a value is above or below
the mean value at the city scale. The resulting two maps (Fig. 14)
are very similar to each other. The correlations between the two
are very strong (0.951), with the one to a 4-image panorama even
stronger — 0.981. Computations for building and greenery exhibit a
similarly strong relationship. This finding indicates that non-panoramic
SVI, typically found in platforms curating user-generated data, may be
used for some use cases without a noticeable loss in accuracy. It also
suggests that when the results are spatially aggregated, they tend to
be more accurate, diminishing the image-level uncertainty of different
perspectives (e.g. the R for that scenario at the image-level, i.e. Statistic
D, is noticeably smaller — 0.84; see Fig. 13).

6. Discussion

6.1. Main insights and recommendations

The previous section has presented a comprehensive series of novel
and insightful results, which will be elaborated further and untangled
in this section.

When it comes to existing practices using panoramic imagery, it
seems that there is a general correspondence in the results among
the different approaches, with some exceptions in specific settings
(cf. Fig. 12), and with varying magnitudes (e.g. for green view, the
correlation is less strong than for sky view).

Because in certain cases single images come very close in deriving
the same results, instead of fetching and processing numerous images,
perhaps the process could be reduced considerably by deriving only the
one with the most favourable combination of the direction and field of
view, which may simplify data collection and reduce the computational
complexity of their processing.

This result is also favourable for crowdsourced street-level imagery
in which non-panoramic imagery still accounts for the vast majority
of imagery found in mainstream platforms such as Mapillary and
KartaView. Do we therefore suggest to replace commercial data sources
with crowdsourced alternatives in future studies? Yes and no. It is
certainly good news that in the majority of cases, a limited view may
be sufficient to infer the urban form, potentially unlocking the value
of billions of user-generated free images, some of which are available
in locations where commercial services provide no coverage (León-
Sánchez et al., 2022). But issues remain, and further investigations are

3 https://h3geo.org/

https://h3geo.org/
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Fig. 14. Exposure to sky, at the urban scale and aggregated in a regular grid, computed from two entirely different perspectives (limited image akin to one taken from a smartphone
vs panoramic fisheye image) have a very high degree of correspondence. Basemap: (c) OpenStreetMap contributors.
necessary. For example, quality of volunteered SVI is heterogeneous,
primarily in terms of completeness and image quality (Quinn and León,
2019; Hou and Biljecki, 2022), aspects that are out of scope of this
paper.

The results also depend on the urban form element that is mea-
sured. Estimating the sky view seems to be most sensitive one (cf.
Fig. 10), thus caution should be exercised in morphologies with street
canyons and researchers should be aware of the shortcomings of certain
configurations.

As it is the case with other error propagation studies, the interpre-
tation of the results much depends on what the data is used for. For
example, an error of 0.05 in the computation of the Sky View Factor
may not be a big deal in the general characterisation of the urban form,
but may be influential in some other use cases. Experiments for specific
use cases (e.g. using the Green View Index for walkability studies)
need to be conducted to understand sensitivity to errors and establish
application-specific data requirements.

6.2. Influence of the driving direction

The cities we focused on have different traffic rules. That means that
in bidirectional traffic, a city that drives on the left hand side of the
road, e.g. Singapore, the direction 90 degrees (on the right side of the
car), may capture a wider spatial extent than the one that drives on the
right (e.g. NYC), in which case the view in the same direction is closer
to the street-side (see the top part of Fig. 15). We investigate this matter
and group the results by this aspect — it appears that there is a notable
influence of this aspect (see the middle of Fig. 15), which we raise for
the first time in the SVI community, and which may warrant further
investigations considering the growing volume of comparative studies
involving multiple cities, which may involve contrasting traffic rules.
The analysis focuses on the performance of the perspective images
versus panoramas (Statistic C). For longitudinal views (directions of 0
and 180), there is no significant difference in the results, in contrast
with the situation for lateral directions (90 and 270). However, in all
cases, left-hand traffic cities have better results, suggesting that the
influence may be biased by the physical difference among cities (e.g.
see the previously discussed Fig. 11).

The different elements are affected differently — building and
greenery exhibit mostly similar results, but they are different from sky.
In the case of the Sky View Index, in almost all directions there is no
difference for left- and right-hand traffic, including for the direction
of the camera on the left (270), while a notable difference is found in
the opposite side direction (90). The illustration and the examples from
crowdsourced imagery in the figure affirm these results by demonstrat-
ing that the same direction from different sides of the road does not
reveal sky and buildings entirely, and it is heavily influenced by the
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physical configuration of the streetscape. Further aspects that influence
such results may be the share of one-way or bidirectional roads and
their width.

This aspect remains inconclusive and open for debate, but necessary
to bring in this paper as it was not raised in literature so far and it may
be relevant for studies involving multiple cities. It is a conjecture that
will require further analysis, as it is not possible to isolate the effect of
the side of the traffic with the influence of the urban form of the city
and other influencing factors. For example, detailed geospatial analysis
examining the influence and contribution of the e.g. the number of
lanes of a road, directionality, and size of street/building setbacks and
buffers, and accounting for the urban form (e.g. comparing only clusters
of similar streets in different cities) will reveal the interaction of these
aspects precisely.

6.3. Limitations and directions for future work

A part of the limitations of this study are generally caused by SVI
and their analysis, and this work is driven by practices of typical studies
in the field, mirroring their limitations. SVI is a boon and a bane for
measuring the urban form metrics — its advantage is that it can be used
to calculate a holistic (or ‘all-inclusive’) SVF, and at the same time its
disadvantage is that it does not differentiate between the contributions
of various types of features in the built environment (e.g. the SVF taking
only buildings into account). Thus, it may be used in conjunction with
other spatial data for a more insightful understanding in the SVF (e.g. a
3D building model may help to remove the contribution of buildings to
isolate the SVF provided solely by vegetation) (Li et al., 2018). Further,
imagery is often available only on roads (Chen and Biljecki, 2023), thus,
the estimation of the indexes is possible only within their confines.

Following the practices of uncertainty propagation studies in GI-
Science, we have relied on simulating perspective views from panora-
mas to establish a controlled environment, which enabled us to set a
variety of parameters and isolate the uncertainty induced by a specific
aspect such as the limited field of view. In this work, it might have
been possible to compare panoramas from a service such as Google
Street View with crowdsourced perspective images from Mapillary or
KartaView in the same locations. However, that may not be a viable
direction as in practice, images from different platforms will mismatch
in many aspects, such as exact location of the panorama, time of
acquisition, and quality of imagery. All these external factors will
impact the results of the estimations, and the differences between two
data sources will be a composite of all kinds of aspects and errors, e.g.
different camera heights (Yan and Huang, 2022; Aikoh et al., 2023),
heterogeneous completeness (Hou and Biljecki, 2022; Quinn and León,
2019; Seto and Nishimura, 2022), seasonality (Chiang et al., 2023;
Han et al., 2023), and further inconsistencies such as varying light
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Fig. 15. Due to the different scope of view (A), the traffic rules may have an influence on the results (B) (demonstration on the Statistic C). The bottom row (C) shows an example
from Mapillary in Singapore with two perspective images taken with the same equipment pointing in the same direction but different sides of roads. Precise conclusions are not
possible without further analysis, and they depend on many factors such as road characteristics and the local urban form.
conditions and attribute errors (Zheng and Amemiya, 2023), making
it difficult to isolate the influence of particular aspects such as field of
view and direction, which we largely focused on this paper. Thus, both
a strength and limitation of this work is that we use simulated data and
focus on the aspect of camera properties and acquisition practices, and
their influence in inferring the urban form. Future research will account
for other aspects such as completeness and positional resolution of
imagery, but likewise, this might be possible only with processed and
controlled data.

As in all studies employing SVI, the segmentation that we used is
not perfect (see Fig. 1 for examples of small typical misclassifications
in the images), thus, the results are influenced to some degree by such
uncertainty, which cannot be quantified due to cultural, architectural,
and geographical differences (Inoue et al., 2022a). While we employ
the same model everywhere, which may help minimise the influence
of model errors, it remains unknown how much these imperfections
affect the results. Further, we noticed that in some instances, certain
houses are blurred for privacy reasons. Some of these are blurred with
a soft filter (see an example in the upper sample for San Francisco in
Fig. 5, at the right), resembling the sky and morphing the building into
it, thus, the model has misclassified that part of the image, an error
that propagates to the computation of the indexes. However, this is in
line with all studies in the field, which have a degree of uncertainty
in the segmentation process, and such errors should not have a major
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influence on our findings, especially when dealing with millions of
images.

When designing the method, we explored a crowdsourced platform
to find the most common practices of capturing street-level imagery
around the world (e.g. field of view, direction). The parameters we have
established (Section 3) account for the vast majority of data, and they
are expected to remain the same in the foreseeable future. However, it
is not possible to capture all camera parameters and settings that are
used in practice.

In our experiments, we did not take into account errors such as
significant vertical tilt of a camera. For example, a dashcam may
not always be pointing at the horizon. For future work, it would be
beneficial to investigate whether a dashcam pointing upwards may give
better results by encompassing the vertical extent of urban canyons.

Our work focuses on data from GSV, which is overwhelmingly
collected with cars on driveable roads, which is also in line with
the content of crowdsourced services such as Mapillary. However, an
increasingly evident strength of crowdsourced services are off-road im-
ages and other transportation modes, e.g. those collected by pedestrians
on sidewalks and in pedestrian zones, and cyclists on dedicated bike
lanes, with its importance heralded by recent studies (Chen and Bil-
jecki, 2023). It might be beneficial to take into account such modes, and
perform a comparative study between imagery collected on different
instances on the same street (e.g. sidewalk vs roadway).
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Finally, in our work, we have focused on probably the most common
use of SVI — inferring the urban form and greenery with image
segmentation. However, the results may differ for other use cases, such
as mapping street furniture and infrastructure (Zhong et al., 2021; Zhou
et al., 2022b) and extracting building information (Ning et al., 2022b;
Yan and Huang, 2022; Sun et al., 2022). For example, the latter may
be significantly more sensitive to the lack of panoramic images because
not all buildings are clearly visible from single-frame imagery pointing
in the direction of driving (Biljecki et al., 2023).

7. Conclusion

Many research groups worldwide practising various urban disci-
plines rely on street view imagery, an emerging but widely available
source of geospatial data and valuable means for urban sensing. Much
of them use numerous images of streetscapes to infer the urban form
and greenery at a high spatial resolution and accuracy. Examining the
methodologies employed, we encounter disparate approaches among
different research domains computing similar indicators, an aspect
that may cause inconsistencies and one that warrants investigations.
Further, street-level imagery became an important component of the
landscape of crowdsourced geospatial data, as billions of images have
been collected and shared by volunteers around the world, potentially
competing with commercial sources, which have been used extensively.
As the urban data research ecosystem is shifting towards openness in
terms of software and data (Yap et al., 2022b; Fleischmann, 2019; Boe-
ing, 2017; Rey, 2019; Liu et al., 2015; Benitez-Paez et al., 2018), it is
important to intensify investigating their reliability and give them con-
sideration for environmental and urban studies. Our work represents
a significant initial stride towards achieving this goal by suggesting
that the limited views of single-frame cameras and the use of consumer
equipment may not represent a hindrance, but it recommends further
investigations by incorporating other quality aspects that typically
burden crowdsourced geographic information, such as heterogeneous
completeness.

We think that this research is especially relevant given the increas-
ing restrictions of commercial sources of SVI — urban data researchers
may soon be impelled to divorce from their long dependency on
Google Street View and Baidu Maps, in favour of crowdsourced imagery
released at a free licence and involving citizens. However, that will
come at the expense of forgoing data that is acquired in a standardised
manner and one that gives an immersive view into streetscapes and the
built environment thanks to panoramic imagery with a great regard
to high quality, consistent weather conditions, and metadata. Thus,
this research is timely to provide an understanding of the usability of
limited imagery and set the scene for further research in understand-
ing the usability of crowdsourced street-level imagery obtained from
volunteers with consumer devices.

For the first time, this study gives a comprehensive set of insights
into the influence of the parameters and practices for computing several
urban form indicators such as the Sky View Factor, Green View Index,
and Building View Index. There are many takeaways from our study,
most importantly across three matters:

• Panoramic imagery. While bringing clarity to the metrics and
investigating their interaction, a literature review suggests that
not all researchers follow the same approaches, which is also
aggravated by terminological inconsistencies. We establish that
there is a difference in the results based on how the same dataset
is used, but in most cases it is minor. However, researchers should
be careful when exercising specific use cases, as some of them
have associated limitations (e.g. using the fisheye image pointing
upwards appears to be the way to capture the open sky in urban
canyons, but such perspective may not be suitable for estimating
the total amount of greenery as it tends to overlook grasslands).
Further, the results suggest that studies may be using more images
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than necessary, and our findings may help simplify such studies.
• Single imagery. We quantify the performance of using single (lim-
ited) images in comparison with traditionally used panoramic
imagery, and demonstrate that they can present a reasonable
replacement for them, and may satisfy many use cases. In this
aspect, we conclude that narrow views are able to give broad
perspectives. We hope that this finding will simplify workflows
by reducing the volume of imagery used, and even spur the
community to consider the hitherto overlooked user-generated
images in crowdsourced platforms, and take advantage of their
free availability and flexibility, and the fact that they are available
in various places where commercial counterparts are not present
or have outdated photos. The results indicate that all the investi-
gated camera characteristics play a role but with varying degrees
— the direction of the image is more important than the field of
view and aspect ratio of the camera. Further, when the data is
spatially aggregated (e.g. at district scale), the uncertainty tends
to be very low.

• External factors. The computation of indicators is somewhat af-
fected by the urban form, city, perspective, and even traffic rules,
but the results can be considered to apply globally. Understanding
such relationships is complex and it is a viable direction for future
work.

As autonomous vehicles, which rely on a variety of sensors such
as cameras, become more common, it is possible that we may be able
to use the collected data as a source of street-level imagery, and thus,
contribute to the growing volume of the data shared openly and their
quality.

The broader perspective of our work is the contribution to un-
covering the potential of crowdsourced street-level imagery — the
visual frontier of volunteered geographic information, and lead to
further investigations, such as regarding the heterogeneous quality and
completeness of data in crowdsourced data, and the development of
benchmarks to identify the most optimal parameters of street view
imagery while minimising computational complexity.
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