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Abstract

Generative Adversarial Network (GAN) is widely used in many generative prob-
lems, including in spatial information sciences and urban systems. The data
generated by GANs can achieve high quality to augment downstream training
or to complete missing entries in a dataset. GANs can also be used to learn the
relationship between two datasets and translate one into another, e.g. road net-
work data into building footprint data. However, such approach has not been
developed in the geospatial and urban data science context, its usability remains
unknown, and the methods are not fully developed. We develop a new Geograph-
ical Data Translation algorithm based on GAN to generate high-resolution vector
building data solely from street networks, which may be used to predict the ur-
ban morphology in absence of building data, also enabling studies in unmapped
or undermapped urban geographies, among other advantages. Experiments on
16 cities around the world demonstrate that the generated datasets are largely
successful in resembling ground truth morphologies. Thus, the approach may be
used in lieu of traditional data for tasks that are often hampered by lack of data,
e.g. urban form studies, simulation of urban morphologies in new contexts, and
spatial data quality assessment. Our work proposes a novel rapid approach to
generate building footprints in replacement of procedural methods and it intro-
duces a new intrinsic method for large-scale spatial data quality control, which
we test on OpenStreetMap by predicting missing buildings and suggesting the
completeness of data without the usually required authoritative counterparts. The
code, sample model, and dataset are available openly.
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Information, GIScience, GeoAI

1. Introduction

The rapid growth of geospatial data in the past decades have accelerated our
understanding of the world. Insights and products derived from geospatial data
are solving a myriad of complex problems down the gamut from increasing fuel
efficiency, monitoring logistic networks, to sustainability-driven urban designs
(Lee and Kang, 2015; Lipson et al., 2022; Wagner et al., 2022; Arribas-Bel and
Fleischmann, 2022; Wang et al., 2022; Li et al., 2022b). The datasets that en-
abled these advancements are mostly collected using a variety of methods such
as surveying, remote sensing, mobile mapping, and crowdsourcing (Li et al.,
2016; Huang and Wang, 2020; Jin et al., 2022; Heikinheimo et al., 2020; Luo
et al., 2022; Yan and Huang, 2022).

Today, such datasets are more abundant than ever, but their quality and cov-
erage can still vary dramatically. This phenomenon is described as Geospatial
Data Asymmetry in which some geospatial data are mapped more extensively
than another correlated data (Wu and Biljecki, 2022). This problem is more
acute in open access and volunteered platforms such as OpenStreetMap (OSM).
For example, more than 80% of roads has been mapped in OSM (Barrington-
Leigh and Millard-Ball, 2017). However, building data, which is usually strongly
associated with street networks, is estimated to be disproportionately less com-
plete (Biljecki, 2020; Yeboah et al., 2021; Leonard et al., 2022), hampering their
applications in many areas around the world.

Such asymmetry exists due to the fact that it is more complex and time-
consuming to map certain features such as building footprints than tracing street
networks. Automated approached used in research and industry also face similar
limitations despite recent advances (Sun et al., 2020).

One novel take on the issue of data asymmetry is the introduction of Ge-
ographic Data Translation (GDT). Instead of simply collecting data from the
real world, GDTs use the problem of data asymmetry to their advantage, gen-
erating a less abundant geospatial dataset by learning associations from another
more available dataset. For example, Wu and Biljecki (2022) have developed
GANmapper, an approach that uses Generative Adversarial Networks (GAN) to
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transform one spatial dataset to another without the need of any other external
data sources or on-site surveys. The model ingests the street network data in the
form of XYZ tiles, a popular format used for raster maps, and generates building
footprints in the same (image) format. The predicted building footprints from the
deep neural network are visually similar to actual (ground truth) building foot-
prints and achieve a high visual similarity score measured by Frechet-Inception
Distance (FID), a common visual similarity metric applied to measure the per-
formance of generative algorithms such as GANs.

While the results of GANmapper are visually compelling, we have identified
two major drawbacks, which limit its applicability, and require methodological
and other advancements to advance the idea and state of GDT. First, the out-
put resolution is constrained, impeding applications that require a truthful and
detailed representation of the built environment. In situations where building
footprints are small and closely packed, it is common to observe irregular shapes
and multiple buildings blended together, reducing the accuracy and detail, and
limiting the use of data. Methodological advancements are necessary to solve
these shortcomings. Second, its applications are limited and not developed, e.g.
the model only creates data as raster tiles and struggles with converting them into
geo-referenced vector data. While the tile/raster format is expedient for online
viewing, quantitative (e.g. cartographic) metrics such as site cover, area differ-
ence, and perimeter difference, which are used for a plethora of spatial analyses,
cannot be directly calculated from this raster format. This shortcoming severely
hinders the statistical understanding and actual application of such results, and
overcoming it requires further advancement and expansions of the methodology.

In this paper, we introduce InstantCITY, a new GDT method that can gener-
ate up substantially higher (4×) resolution results and accurate vector representa-
tions that are directly applicable in multiple use cases, which we also investigate
in the work for the first time.

In the experiments, the model exhibits high accuracy (e.g. a mean site cover
difference of -2.5% compared to the ground truth), providing reliable results to
real-world uses. Further, it demonstrates high flexibility and adaptability when
applied to different urban typologies around the world. Namely, the models
trained with datasets from one city behave well when transferred to cities having
similar morphologies. In addition, between pairs of cities with distinct mor-
phologies, the models double as style transfer algorithms, transferring the style
in which it was trained into the target city.

We are also able to demonstrate that the model, which we release openly, is
able to generate outputs that are sufficiently accurate that they can even be used
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as reference data for spatial data quality control. For example, we demonstrate
that the method excels at classifying the completeness of built up areas (e.g.
identifying those that are undermapped), achieving a mean accuracy score 92.4%
by comparing the synthetic data with OpenStreetMap data of two well-mapped
cities, in which we have simulated various levels of degraded completeness to
test the reliability of the approach.

2. Background

2.1. Introduction to Generative Adversarial Networks
Generative Adversarial Networks (GANs) is a type of generative algorithm

that pits two neural networks in contest with each other in a zero-sum game to
generate synthetic data that is close to the data distribution of the original dataset
(Goodfellow et al., 2014).

Before GANs, generative models were unsupervised where the model would
seek to learn the regularities in the input data in such a way that it can be used
to generate new examples that closely represent the input data (Han et al., 2018;
Chen et al., 2018; Maaløe et al., 2016). This type of unsupervised generation
is often time-consuming and yielded unsatisfactory results. GANs, on the other
hand, added a supervised task to the generative process. During training, the gen-
erator component in the GAN must compete with the adversarial discriminator
to produce samples that could pass its scrutiny as real samples while the discrim-
inator network must actively learn to classify the synthetic samples from the real
samples. As the training process converges, the synthetic samples produced by
the generator would become so close to the real dataset that the discriminator
would only have a 50% accuracy, signalling that the generated dataset is now
indistinguishable from the real by the discriminator (Goodfellow et al., 2014,
2016).

This type of generative algorithm has achieved many state-of-the-art results
in generative problems, especially in image generation. By introducing Convo-
lutional Neural Networks (CNN) to the architecture (Radford et al., 2015), GAN
can generate high resolution synthetic photos of human faces, street view images
and satellite images that could pass as real ones to human perception (Brock
et al., 2018; Zakharov et al., 2019; Karras et al., 2021; Zhao et al., 2021; Toker
et al., 2021; Biljecki and Ito, 2021). Equipping GANs with sequential architec-
tures like Long Short Term Memory layers (LSTM), it can generate time-series
data such as stock market trends, electrocardiograms and electricity consump-
tion that replicates the original data without disclosing privacy information (Zhu
et al., 2019; Yoon et al., 2019) and music sequences from lyrics and single latent
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vector (Yu et al., 2021; Engel et al., 2019). Besides generating data, GANs are
also useful in data upsampling, data privacy protection, and data extrapolation
as they excel at learning and reproducing the ground truth. This trait has made
GANs applicable in various domains such medicine (Beaulieu-Jones et al., 2019;
Litjens et al., 2019; Bowles et al., 2018) and the built environment (Quintana
et al., 2020; Yan et al., 2020a; Rachele et al., 2021).

GANs can also take in external conditions to allow certain control of the
generated data. In this way, users would be able to influence the generative
process to obtain the desired results. For example, some GAN architectures al-
low granular semantic control of the generated dataset (Isola et al., 2017; Park
et al., 2019). During training, a mask-image pair is used as input in which cer-
tain image semantics are correlated to a specific semantic class. Therefore, the
model would be able to learn the weights to translate simple color-coded masks
to realistic-looking images, or translate photos into different stylistic expressions
(Zhu et al., 2017). Using a similar concept, GANs can be used in content-aware
image inpainting to fill up missing areas in an image (Li et al., 2017; Yeh et al.,
2017; Pathak et al., 2016).

2.2. Applications of Generative Adversarial Networks in GIS
With the power of GANs verified by the scientific community, GIScience re-

searchers have also begun investigating the applications of GANs in GIS and re-
lated domains (Wu et al., 2022; Quan, 2022). GANs have been used as a cartog-
raphy tool to generate synthetic satellite images of landscapes and cities (Abady
et al., 2020; Zhao et al., 2021), transfer between cartographic styles (Christophe
et al., 2022), translate satellite images into cartographic representations (Isola
et al., 2017; Li et al., 2020b), and generate cartographic representations from
geospatial vector data (Kang et al., 2019). They are also used to create semantic-
responsive land-cover maps with user-drawn colour masks (Park et al., 2019;
Baier et al., 2021). Andrade and Fernandes (2020) also explored translating his-
torical maps to satellite images to raise the awareness of shifting landscapes.

However, most applications of GANs in spatial information sciences stop
at the novelty of generating raster maps without tackling more pressing issues
in the field such data accessibility, data accuracy, and data asymmetry. There
are currently only a few ventures in using GANs for data augmentation. Zhang
et al. (2021b) revealed that GANs can be used to restore deformed satellite im-
ages caused by jitters in geopositioning. GANs have also set the state-of-the-art
performance in satellite image sharpening and superresolution (Ma et al., 2020;
Jiang et al., 2019). In addition, GANs can also be used to remove cloud contam-
ination in remote sensing images (Li et al., 2020c), while Zhang et al. (2021a)
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have developed a method that could automatically remove unwanted objects in
street view imagery.

More recently, GANmapper (Wu and Biljecki, 2022) introduced the idea of
Geographic Data Translation (GDT) and demonstrated that GANs can ingest
street network data and generate (inpaint) building footprints in raster format
that visually look realistic. This technique is especially useful in addressing the
problem of data asymmetry (i.e. the difference in data quality between spatially
correlated datasets), which has always been a pain point in Volunteered Geo-
graphic Information (VGI), e.g. OpenStreetMap (OSM) (Li et al., 2020a).

Besides road-building data pair, other asymmetries in OSM data also exist.
For example, there remain places with undermapped road networks and primary
roads can be used to infer secondary and tertiary roads. Furthermore, areas with
building height information can be learned by the model to generate approxi-
mations of building height data in another with similar morphology (Milojevic-
Dupont et al., 2020).

By translating a more readily available geospatial dataset into a less avail-
able dataset, the method can greatly scale up the mapping of complex datasets.
However, as indicated in the introduction, there are still major limitations to this
method, namely, the low output resolution and the limitation of a raster output.
Therefore, additional effort needs to be done before GDT models can find prac-
tical use in GIS, urban form studies, cartography, and related domains, inviting
a new array of applications beyond merely visual output.

2.3. Procedural Urban Modelling
As hinted at in the introduction, the method introduced in this paper is able

generate building data that is both visually realistic and sufficiently accurate.
The results closely resemble the urban form of the real-world situation in the ab-
sence of conventional building data. Therefore, it can serve as an more scalable
alternative technique to procedural modelling, which warrants a brief overview.

Procedural modelling is a type of generative modelling using a set of rules
coded by designers which can replace the cumbersome process of manual mod-
elling. It is widely used in creating architecture and cityscapes in films and
games (Smelik et al., 2014; Tobiáš and Cajthaml, 2020). In the built industry,
architects and planners can also use procedural models for rapid prototyping of
architectural facades or city layouts, evaluating different design options with-
out having to manually reconfigure the digital models (Fink and Koenig, 2019;
Groenewegen et al., 2009; Kim et al., 2018; Birch et al., 2001). However, like
all other heuristic algorithms, the procedural models need to coded by experi-
enced designers and has certain degree of repetition in the generated cityscape
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as the randomness of the results are based on the complexity of the programme.
Furthermore, when procedural modelling is used to simulate an existing setting,
the results are not necessarily accurate and they may not reflect the real-world
reliably. Other the other hand, GDT models based on GANs can learn the in-
tricacies of the spatial relationship from a large sample size and do not require
designers to program the rules behind a specific morphology and is more stable
and smarter in adapting to cities with different road typologies.

We show in this paper that models trained with datasets from one city behave
well when transferred to cities having similar morphologies. Between cities with
distinct morphologies, the models act as style transfer algorithms, transferring
the style in which it was trained into the target city.

2.4. Spatial Quality Assessment
Spatial data quality is pivotal across numerous fields, and in GIScience is

a research line on its own with a mountain of published research papers (Li
et al., 2022a; Senaratne et al., 2016; Hou and Biljecki, 2022). In this paper,
we take advantage of the generated data to study the quality of another dataset,
introducing a new method for spatial data quality assessment. We focus on one
of the most important quality indicators — the completeness of the dataset —
the proportion of the features that are mapped with respect to the real world, i.e.
understanding whether an area has been mapped entirely.

There are various approaches for spatial data quality assessment developed
so far. As the quality of urban data is becoming increasingly important (Basiri
et al., 2019; Songchon et al., 2021; Grinberger et al., 2021), various methods
to assess the completeness of features have been developed, with many of them
focused on buildings (Senaratne et al., 2016). There are intrinsic methods, i.e.
predicting the completeness of features based on the history of contributors or
the arrangement of existing features (Zhou, 2017; Jacobs and Mitchell, 2020;
Majic et al., 2021; Sundaram et al., 2021), and those that are extrinsic, requiring
checking against another, usually authoritative, dataset representing the same
features or proxies (Brovelli et al., 2016; Balducci, 2019; Li et al., 2020a).

In the experiments, we investigate whether our method can also be used as
a key component in spatial data quality assessment. Using the synthetic dataset
trained on high quality data as reference, we research whether our method can be
used as a new approach in the spatial data quality assessment research to sense
completeness of buildings without having to rely on often unavailable authorita-
tive (external) data.
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3. Methodology

3.1. Overview
We propose a new model architecture to enable training and inference of ur-

ban data at high-resolution per tile using street networks input as images. Thanks
to the high resolution output, the raster result can be vectorised into individual
building polygons to enable downstream geospatial applications and validation
of the method using geospatial metrics on top of the ones used in computer vision
(Figure 1).

Figure 1: InstantCITY visual summary.

To investigate the performance and flexibility of our model, we used OSM
data of 8 cities across the world, representing a range of urban morphologies.
These cities are major cities in the world that generally have a high degree of
building data completeness to provide adequate training data and ground truths
for evaluation.

In the experiments, we will examine the performance of the model at different
zoom levels and in different cities using both visual and GIS metrics and explore
two potential applications of the methodology in urban design and data quality
control. Furthermore, we also investigate how the method generalises from one
city to another, enabling the development of the method in a well-mapped area
and applying it in an urban environment with data of deficient quality.

3.2. Model Architecture
The InstantCITY model architecture is a type of Image-to-Image Conditional

GAN (Mirza and Osindero, 2014; Isola et al., 2017) that translates input image
data such as street networks to a target image populated with generated building
footprints.
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Figure 2: InstantCITY GAN Architecture.

The ability of InstantCITY to generate high-res images at 1024x1024 pixels
is achieved using a Coarse-to-fine generator (Wang et al., 2018) that generates
target images at different scales (Figure 2). To achieve this performance, two
residual networks G1 and G2 are constructed. The model is trained on the resid-
ual network (He et al., 2016) G1 on lower resolutions first and the G2 is appended
to G1 to be trained jointly on high resolution images. The overall structure of the
generator is an encoder-decoder pair (Hinton and Salakhutdinov, 2006) where
the first half of the model encodes inputs into latent vectors and the latter part
decodes the vectors into visual representations.

In each forward pass, the generator will try to generate outputs that could
‘fool’ the discriminator into classifying the generated image as ‘real’, while the
discriminator will learn to classify the generated images as ‘fake’ and ground-
truth targets as ‘real’.

There are three discriminators at different resolutions to determine the quality
of the output image at different resolutions. In each discriminator, Convolutional
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Kernels are applied to extract and compare the features from both the generated
images and the ground truths. The final classification is the average value across
3 discriminators that indicate whether the generated image is real or fake.

At the end of each forward pass, the loss for both the generator and discrim-
inator is calculated and their weights updated. As each epoch passes, both the
generator and discriminator get better in their roles until the generator’s output
would pass the scrutiny of the discriminator as real images 50% of the time,
hinting that both the generator and the discriminator have converged to the best
possible performance with no one winning against the other.

3.3. Pre- and post-processing
As with other deep learning models, the resolution of the input and output is

limited by the memory of the hardware, and the resources needed scale propor-
tionally to the size of the input images. Thus, it would be too resource-intensive
to fit a large area (e.g. an entire city or a neighbourhood) within a single high-
definition image. Instead, we use a pre-processing pipeline to convert the tar-
geted areas into 1024x1024 raster tiles into a WMTS (XYZ tiles) directory simi-
lar to previous works in Geospatial Deep Learning (Ng and Hofmann, 2018; Wu
and Biljecki, 2021). The output tiles are generated according to the same direc-
tory structure as the input tiles and can be restored into a larger whole. The raster
outputs are then stitched to into a large area and the raster tiles are converted into
vector data for geospatial analyses against the ground truth data.

According to Wu and Biljecki (2022) and Chen et al. (2021), 3-channel RGB
images enhance the performance of residual networks in both generative and
classification problems. In our case, the colour and the width of the lines are also
used to identify the type of streets. For example, highways are red with a thicker
line width and secondary roads are blue with a thinner line width. The output im-
ages also contain the street networks to stabilise the training and help the model
to converge quicker. The different colour coding of street networks and building
footprint also makes extraction of footprints and subsequent vectorisation easier.

3.4. Metrics for evaluation
Frechet Inception Distance (FID) (Heusel et al., 2017) is the standard bench-

mark for measuring the performance of GANs. FID represents the distance be-
tween the feature vectors of real and generated images that are computed using
an Inception-v3 (Szegedy et al., 2016) image classification model.

A lower FID score indicates that the two groups of images are more similar
in terms of the extracted feature vectors. A perfect score of 0.0 indicates that the
two groups are identical. Visually, a lower FID score on the generated images
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tends to correlate well with realistic-looking images, indicating more morpho-
logical correct representations in terms of the general shape, size, and density
of the generated building footprints. Mathematically, FID can be expressed with
the following formula:

FID =
∥∥∥µr − µg

∥∥∥2
+ Tr(

∑
r +

∑
g − 2
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r
∑

g)

where Xr ∼ N(µr,
∑

r) and Xg ∼ N(µg,
∑

g) are the 2048-dimensional activations
of the Inception-v3 pool3 layer for real and generated samples respectively.

In addition to FID, the Mean Intersection over Union (mIoU) between the in-
puts and generated images is also calculated in some experiments to measure the
degree of overlap of the generated images to the ground truth. Mathematically,
mIoU measures the number of pixels common between the input and generated
images divided by the total number of pixels present across both datasets.

A high mIoU score indicates that the generated images overlaps with the
input more and thus replicates the input data better. However, due to the gener-
ative nature of GANs, the generated results should look realistic in terms of the
overall building morphology but not overlap exactly with the input image. If the
generated image has a high mIoU score (close to 1), we can conclude that the
generator is overfitted to the training data, which impedes the models’ ability to
generalise its learned patterns to new inputs.

3.5. Experiment Setup
Four experiments are set up to investigate the performance and potential ap-

plication of our model. Experiments 1 and 2 look into the performance of the
model in 8 cities at two scales (1000m per tile and 500m per tile). Both visual
and statistical metrics are used to assess the differences between the generated
data and the ground truths to understand the capabilities and the limitations of the
method. Experiment 3 investigates the ability of the model to apply its learned
parameters in a new city, and essentially its capability to serve as a means for
style-transfer. We selected 4 models and generated the building data of 8 target
cities (elaborated in the next section). Some of the cities have similar morpholo-
gies to the one where the models are trained, whereas some target cities have
have drastically different morphologies. This comprehensive investigation helps
to shed insight into how the trained models perform under different conditions,
and this experiment also doubles in understanding whether the method can be
used in urban planning research to transfer the morphology from one city to an-
other. Experiment 4 investigates how the model could be used as a tool for OSM
quality control, essentially introducing a novel approach in assessing the quality
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of spatial data, especially of Volunteered Geographic Information (VGI) (Yan
et al., 2020b), which are burdened with lack of authoritative data at the global
scale. The existing OSM datasets of multiple cities (attested to be complete)
are disturbed with random errors, reducing their completeness to create an arti-
ficially incomplete dataset. This degraded dataset is compared with the dataset
generated by our method and its performance in classifying under-mapped areas
in a large region can be tested.

3.6. Implementation
The model is implemented with PyTorch (Paszke et al., 2019), and QGIS and

Mapbox API is used in data processing. We release InstantCITY as open-source
software. Further, in the repository, we also include the pre-processing and post-
processing pipelines, which may aid other researchers to extend the work. These
are available at https://github.com/ualsg/InstantCITY.

4. Results and evaluation

4.1. Experiment 1 — Investigating model performance
To evaluate the accuracy and versatility of the model, we picked 8 cities with

different morphologies and trained different models for each of the cities. The
cities are Beirut, Frankfurt, Jakarta, London, New York City, Rotterdam, Seattle
and Singapore. The dataset of each city is obtained from OSM and the raster
tiles are generated at two zoom levels representing 500 and 1000 meters per tile,
which approximates to 0.5 meters per pixel and 1 meter per pixel, respectively.

Figure 3 illustrates the generated images from a subset of cities with the pair
of input images and real images. The colour coding of the street network helps
the model to learn its network hierarchy, and the grey patches represent water
body which helps to differentiate the boundary between land and water. The
images chosen in this figure represent different urban morphologies: Seattle has
large, rectangular blocks with standalone houses; Frankfurt has a courtyard ty-
pology with buildings facing the street and back-of-houses within each block;
Jakarta is populated with small, ad-hoc structures that could become extremely
dense; and Rotterdam has a similar courtyard typology as Frankfurt, albeit with
much more regular blocks. As shown in the figure, the model is able to generate
realistic representations of the real image in most scenarios with the exception
of Frankfurt. This might be due to the fact that the real image has many com-
plex building polygons within the courtyards that are not guided by any street
network, therefore the model is unable to infer some of the shapes within the
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Figure 3: Results from 4 different cities with different morphologies at 1000m/tile zoom level.

courtyards. However, in all cases, the model is able to generate images that rep-
resents the real building footprints accurately in terms of granularity and urban
texture.

Figure 4 shows additional results from the other four cities included in the
experiments. Models can be trained at two zoom levels for each city. At 1000m
zoom level, each tile covers the size of a neighbourhood and could capture a
variety of typologies in one tile. This result suggests that the model is robust
enough to infer the shifts in building typologies in different parts of a city. At the
500m level, each tile covers a few blocks and is generally homogeneous in terms
of building typologies. At this level, the model is able to generate images with
sharper corners that represent the real images in a higher degree.

The visual closeness between the ground truths and the generated imaged
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Figure 4: Additional results at two different tile zoom levels.

images can be measured by FID scores as explained in Section 3.4. A lower FID
score indicates that the generated images are closer to the real images and thus
the model’s performance is better and vice versa. For each model trained, the
FID scores are calculated against the ground truth in two scales. The results are
displayed in Table 1.

From the table, we observe that the performance of the model varies from
city to city. Different urban forms would have different impact on the final output
even though all models are trained with the same settings. Comparing the FID
scores with the sample images from Figure 3 and 4, we can see that the scores are
effective at representing the quality of the generated images. Singapore performs
well compared to other cities in FID scores (65.7 at 1000m and 55.8 at 500m),
and we can see from Figure 4 that the generated image is able to capture the
shape, size and the overall urban form of the ground truth closely at both scales.
On the contrary, while London scores well at the 1000m scale at 65.6, it slipped
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Table 1: FID scores by city.

Scale City Training size FID

1000m

Beirut 101 77.8
Frankfurt 131 97.1

Jakarta 171 63.4
London 180 65.6

NYC 238 84.1
Rotterdam 165 90.0

Seattle 91 66.2
Singapore 233 65.7

Average 76.2

500m

Beirut 364 63.8
Frankfurt 436 142.8

Jakarta 608 61.9
London 718 118.6

NYC 830 57.8
Rotterdam 609 87.7

Seattle 289 66.3
Singapore 781 55.8

Average 81.8

at the 500m scale at only 118.6. We can observe the difference hinted by the FID
score in the quality of generated image in Figure 4 as well. At 1000m per tile,
the generated image for London represents the ground truth very closely, while
the image at 500 per tile clearly misses out on many buildings and buildings that
are generated are different from the ground truths in terms of shape and size.

While the average FID scores of both scales are similar (76.2 at 1000m and
81.8 at 500m), the 500m model generated two outliers that do not produce sat-
isfactory results. Both London and Frankfurt at 500m have much higher FID
scores compared to the rest of the cities and many generated tiles do not resem-
ble the ground truth well. This is probably due to the fact that both cities have a
lot of buildings designed with an European courtyard typology which are more
likely to be clipped into multiple buildings at the scale of 500m. Since the model
only learns the relationship of pixels within each tile, the greater contextual in-
formation of the larger urban block is lost when zoomed in at the 500m scale.
When the contextual information is preserved at the 1000m scale, the scores
of both cities improved significantly with London having one of the best FID
scores.

In conclusion, from both the figures and the FID score, we have shown that
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the proposed model is able to generate high definition synthetic representations
of building footprints that represent the ground truth very closely with the excep-
tion of 2 cities at 500m. We have also shown that FID score is a useful metric in
comparing the performance of the model in different situations without manual
inspection of the images.

4.2. Experiment 2 — Applying geospatial metrics on generated data
While most of the models trained in Experiment 1 returned visually com-

pelling results, the exact shape and size of each generated footprint have not yet
been measured. Looking back at Figure 4, the model does not always generate
sharped cornered polygons that represent buildings, but a high probability region
that contain a building.

To explore the performance of the model at the building level, the raster
images can be vectorised into geospatial polygons to support GIS operations and
computation of quantitative urban morphology metrics, and may invite several
new applications of GAN-generated spatial data, some of which we investigate
in this section. This will allow us to calculate metrics at the polygon level which
will provide deeper insight into the performance of the model. To remove score
biases caused by difference in city areas, we randomly cropped a 8x8km region
from each city to calculate the statistics. Additionally, the selected region is also
divided into tiles at the same scale of the model used so that vector statistics can
be aggregated at the tile level as well.

To understand the potential of this method, we have used urban form met-
rics, e.g. site coverage ratio and average building footprint size, that are typically
used in urban form studies across multiple domains (Ahn and Sohn, 2019; Zhang
et al., 2019; Heris et al., 2020; Li et al., 2020d; Biljecki and Chow, 2022). Ta-
ble 2 compares the differences in metrics of the generated dataset with the ground
truth dataset. In most metrics, the median value is taken rather than mean value
since the effect of outliers might be higher on the relatively small area of test-
ing. ∆ Bldg. Area (Equation 1) and ∆ Bldg. PM (Equation 2) measures the
median percentage area and perimeter difference between the generated and the
ground truth of each individual polygon respectively while ∆ Site Cover (Equa-
tion 5) measures the median percentage difference in the built area of between
the sum of polygons of each tile. Thus, a generated dataset would be consid-
ered better in quality if it scores close to 0% in ∆ Bldg. Area, ∆ Bldg. PM,
and ∆ Site Cover, this indicates that the overall size of the prediction is similar
to the ground truth. % GN Count (Equation 3) measures the proportion of the
number of polygons in the generated set against the ground truth in percentage
and mIoU (Equation 6) measures the intersection over union score averaged at
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the tile level. Thus, a generated dataset that scores close to 100% or 1 in %
GN Count and mIoU respectively is also considered a good prediction as the
number of predicted buildings accurately portrays the number of buildings in the
ground truth and a high proportion of predicted area intersects with the ground
truth, indicating higher accuracy in terms of location and shape. Moreover, Exp
1 FID is the FID score computed in the previous section serving as a reference
to other vector metrics and a lower FID score indicates a higher visual similarity
of the generated dataset compared to the ground truth.

∆ Bldg. Area (%) = 100 × (Polygon AreaGN/Polygon AreaGT − 1) (1)
∆ Bldg. PM = 100 × (Polygon PerimeterGN/Polygon PerimeterGT − 1) (2)
% GN Count = 100 × (Polygons per TileGN/Polygons per TileGT) (3)
Site Cover = 100 × (Tile Building Area/Tile Area) (4)
∆ Site Cover = Site CoverGN − Site CoverGT (5)
mIoU = Area of IntersectionTile/Area of UnionTile (6)

Looking at the average values of the metrics for both zoom levels in Table 2,
we see that models at 1000m per tile performed better in all metrics. Figure 5
shows some examples of the stitched results using data from the two scales. The
visual results resonate with the tabular results as the results at the 1000m/per tile
level are denser and have better morphological contiguity. This difference in per-
formance is especially poignant in London. The 500m model failed completely
for most tiles as it is unable to infer the building shapes from the input tiles while
the model at 1000m is stable in the prediction and offers good quality results
comparable to the performance of other cities at the 1000m scale. As briefly
mentioned in the previous section, it is possible more contextual information is
available at the 1000m in each tile, allowing the model to train and infer with
better stability.

Looking at the differences in building area and perimeter from the table, the
generated polygons tend to have larger area that the ground truth with the only
exception of London having negative values. In other cities, the median polygon
sizes are larger, sometimes going to 40% larger than the ground truth in the case
of New York City and Rotterdam at 1000m while the number of individual poly-
gons in a tile indicated by %GN Count is generally smaller than the ground truth.
This indicates that a proportion of generated polygons are joined together as a
single polygon while those should have been individual polygons. This is due to
the fact that the model might struggle with edge separation of smaller buildings
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Table 2: Accuracy of metrics characterising the urban form by city.

Scale City ∆ Bldg. ∆ Bldg. % GN ∆ Site mIoU↑ Exp 1
Area (%) PM (%) Count Cover (%) FID ↓

1000m

Beirut 14.6 4.3 59.6 -6.6 0.27 77.8
Frankfurt 8.6 -1.0 83.0 -2.6 0.39 97.1
Jakarta 22.8 9.1 64.6 -5.7 0.38 63.4
London -20.7 -15.8 101.5 -1.8 0.45 65.6
NYC 40.6 15.7 77.2 0.0 0.53 84.1
Rotterdam 40.5 27.6 66.7 -1.4 0.47 90.0
Singapore 30.8 18.0 67.7 -1.6 0.43 66.2
Seattle 17.7 11.3 74.2 -0.6 0.40 65.7

Average 19.4 8.7 74.3 -2.5 0.41 76.2

500m

Beirut 12.2 4.2 40.1 -17.3 0.14 63.8
Frankfurt 58.7 15.6 46.4 -7.7 0.22 142.8
Jakarta 80.1 40.1 37.3 -10.1 0.28 61.9
London -79.2 -58.7 34.4 -38.9 0.04 118.6
NYC 32.3 6.1 71.4 -0.1 0.55 57.8
Rotterdam 43.3 22.4 53.7 -2.5 0.31 87.7
Singapore 50.0 13.9 48.3 -6.0 0.30 66.3
Seattle 44.4 17.5 66.5 -0.3 0.34 55.8

Average 30.2 7.6 49.7 -10.4 0.27 81.8

and the vectorization process has converted those footprints into a single, larger
polygon. At the same time, in areas where the mapped polygons do not have a
clear relationship with the street network, the model will not be able to generate
useful information and thus ∆ Site Cover is generally negative, indicating that
the total building area in the generated dataset is lesser than the ground truth.
Figure 6 gives another insight in the performance of the model. The errors are
categorised by different classes of density and by cities. The distribution of er-
rors affirms that the performance is driven by both the density and type of the
urban form, e.g. the areas in which the density of buildings is low exhibits a high
dispersion of errors, but a low median error.

The Mean Intersection over Union (mIoU) reveals the degree of overlapping
area between the generated and the ground truth. There is no clear relationship
of mIoU with the rest of the metrics. For example, while Frankfurt (mIoU 0.39)
at the 1000m scale scored well in other vector metrics, it’s mIoU is lower than
Rotterdam (mIoU 0.47) which does not perform well in other vector metrics.
The mIoU score also does not always correlate strongly with FID scores. For
example, while New York City at 500m had the highest mIoU score of 0.55 and
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Figure 5: Selected results pairs comparing the performance of models trained at 500m/tile and
1000m/tile. The results generated by the 1000m/tile models are superior in terms of density,
texture and contiguity.

came in at the second best FID score of 57.8, Seattle at 500m only scored 0.34
in mIoU score despite having the best FID score at 55.8.

This inconsistency of mIoU scores for GANs is widely discussed in related
papers. Since GANs are not supervised, the generator in the model does not
actually see the actually ground truth images during training. Instead, it only
receives the result of the discriminator (whether the generated image is consid-
ered True according to the discriminator) during back-propagation. Thus, even
though the generated data might look like the ground truth in terms of building
size, density, and distribution, the specific location of the individual polygons
in the generated dataset is not the objective of the learning process, resulting in
inconsistent mIoU scores.

With the understanding of the tabular metrics and sample images, we can
see that our model, especially trained at the 1000m scale, can generate building
footprints that represent the ground truth in terms of size, density and distribution
to a reasonable degree of realism. The average error in Site Cover Percentage
is only -2.5% with NYC at both scales achieving 0% and -0.1% error and the
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Figure 6: Error distribution in predicting one of the prominent metrics in urban morphology
(proportion of an area covered by buildings), broken down by the density of the urban form
(left), and different mix of urban forms i.e. cities (right).

median building area can be as low as 8.6%. However, it is important to note
that the vectorised metrics do not necessarily correlate to visual likeliness as it
is an averaged score across the test region. Both FID scores and vector metrics
need to be considered when evaluating the models.

4.3. Experiment 3 — Adaptability of the model in new areas
In Experiment 2, we have shown that our model is able to generate approx-

imations of building footprints that is visually realistic and have acceptable sta-
tistical error in terms of vectorized dataset. In this experiment, we explore the
performance of transferring the morphology learned in one city to another city,
which is the true test of our approach as it may enable developing the model
in a well-mapped urban area and applying it in an unmapped counterpart. We
hypothesise that models trained in one city could also be used in other cities as
long as the target city’s morphology is similar to the city in which the models
are trained. For example, the model trained with the data extracted from Seattle
could potentially be transferred to Chicago as both cities have orthogonal streets
and similar block typologies.

In this experiment, we will test the above hypothesis and also experiment
with cities having disparate morphologies to evaluate the extent of the efficacy
of this approach. Table 3 outlines the results of cities using the proposed metrics
in the previous section and Figure 7 shows a few examples of the generated cities.

From the table, we see that the performance of the key urban form metrics
could vary vastly between cities. Correlating the tabular data with the selected
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Table 3: Metrics on transfer learning for similar and disparate cities.

Model Applied City ∆ Bldg. ∆ Bldg. % GN ∆ Site Exp 1
Area (%) PM (%) Count Cover (%) FID ↓

NYC Detroit 105.9 62.9 64.1 5.3 55.9
Jersey 59.5 27.0 56.7 -1.7 109.0

Seattle Chicago 97.4 42.6 49.7 -2.8 113.4
San Francisco 2.4 -8.6 93.4 -11.9 110.5

London Manchester -16.5 -0.6 122.7 1.0 153.6
Paris -76.8 -50.2 179.4 -38.6 112.4

Jakarta Manila -20.4 -17.3 80.5 -19.1 87.1
Surabaya 155.7 54.9 37.4 -6.4 110.5

visual results in Figure 7, we see that the some pairs have realistically looking
urban patterns and a good score.

For city pairs that have similar morphologies, the model is generally able to
reproduce building patterns that represent the density and texture of the ground
truth realistically, indicating that it is possible to develop a model for a series of
morphologically interchangeable cities, from which those that in practice suffer
from poor data availability may benefit by having InstantCITY generate truthful
data that is usable for a series of spatial analyses. In the example of Seattle
to Chicago, the generated result of San Francisco shows the same variation in
building density from the city center to the suburbs. For city pairs that have
drastically different morphologies such as in the case of London and Paris, it is
expected that the results will not replicate the morphology of the ground truth,
rather, the model would apply it’s learned parameters onto the target city. In this
example, the courtyard typology of London is transferred onto the Parisian grid
and the prediction remains stable.

The behaviour of the models uncovered in this experiment could lead to ap-
plications in the urban practice as well. The trained models could be useful
to help designers and planners in cross-referencing one urban morphology with
another. They no longer need to ‘hardcode’ procedural functions to generate ur-
ban patterns for rapid prototyping. Rather, they could simply apply the models
trained on a particular morphology to a region to quickly evaluate design options.

4.4. Experiment 4 — Applying model for OSM quality control
In the previous experiments, we have evaluated the performance of the model

at both the polygon level and the tile level. Due to the nature of GAN, although
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Figure 7: Selected results pairs comparing the generated cities with their ground truths.

the exact location of the generated footprints might not represent the ground
truth, it can realistically represent the actual morphology in terms of average
size, density and typology of buildings at the neighbourhood or city scale.

Globally, many cities suffer from the lack of building data (especially in
OpenStreetMap, the leading global crowdsourced mapping dataset), and are thus
excluded from a variety of studies where building and urban form data is an es-
sential ingredient. In contrast, the same cities usually have full completeness
of road network data available from OSM or other sources. Based on the trait
of accurate generation of footprints with InstantCITY models, we posit that it
is possible that a model trained in an area with 100% complete ground truth
data can be used to check the data completeness of another area with similar
typology based on solely street networks in the tested area. This is especially
useful in cases where there is a drastic decrease in building data quality in differ-
ent neighbourhoods or administrative regions in a metro area (i.e. heterogeneous
data quality, which is typical for VGI sources). For example, in Jakarta, there
are many cases where adjacent neighbourhoods can have considerably different
levels of quality of data as shown in Figure 8. Similar phenomena also occur in
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other locations such as Seattle, which is also shown in the same figure. In both
cases, we observe that the urban pattern covers most of the tiles as seen in the
satellite images, while a large number of buildings are missing in OSM.

Figure 8: Drastic variation in building data quality (completeness) in the same city, which some-
times occurs at boundaries between metro areas and areas of activities of contributors. In both
cases, we observe that the urban pattern covers most of the tile as seen in the satellite images
while a large number of buildings are missing in the OSM representation. Our method is able
to automatically assess the completeness at the neighbourhood level and identify undermapped
areas, essentially unveiling a new approach for spatial data quality assessment. Source: (c) Open-
StreetMap contributors and Google Maps.

With the state of the art of spatial data quality assessment methods, it is
difficult to expose under-mapped areas without searching for them manually or
comparing them to an authoritative dataset, a staple method in spatial data qual-
ity assessment. Thus, only a limited number of areas around the world can be
assessed. Our model might be used to detect anomalies in the dataset by com-
paring the generated dataset to a region of interest, and it can be conducted at
a large-scale regardless of jurisdictions and their authoritative data availability.
Tiles within the region that are vastly different in terms of typology and density
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can be flagged as incomplete for further manual action from the volunteers.
To validate the method, tiles from the ground truth of Seattle and Jakarta

(For which we attested to as fully complete) are randomly selected and polygons
within the tiles are randomly removed according to certain percentages, i.e. we
are simulating intentional errors, a common approach in uncertainty propagation
studies in GIS (Burnicki et al., 2007). This process creates an artificially under-
sampled dataset where tiles that underwent random reduction can be labelled to
verify the performance of the generative model.

Figure 9: Random reduction tile polygons in a city to simulate tiles that are undermapped. Predic-
tion using generated dataset against the reduced dataset offers satisfactory accuracy (F1 Weighted
Score: 0.924).

Figure 9 shows an example of the operation, removing certain percentages of
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Table 4: Metric differences between the classes after random reduction (i.e. simulated varying
degrees of completeness).

Class PM ratio Count ratio Site Cover ratio mIoU

Mapped 0.83 0.70 1.06 0.46
Partially Mapped 1.46 1.28 1.62 0.33
Unmapped 5.89 5.46 6.66 0.08

buildings from tiles, mirroring real-world scenarios of partial completeness. The
process generates three classes:

1. Mapped – at least 80% mapped buildings.
2. Partially Mapped – at least 25% mapped buildings.
3. Unmapped – less than 25% mapped buildings.

Since the generated datasets represent the ground truth both in terms of site
coverage and density, a tile that underwent a substantial reduction in polygons
would have a large difference compared to the generated tile. Applying the com-
parison to the region of study, we can see from Table 4 that the mean metrics
of tiles under difference classes differ significantly. The insight provided by the
table may then be used to create thresholds to classify the quality of completion
of the reduced dataset.

A simple heuristic threshold is applied to the Site Cover Ratio to classify
tiles. Site Cover Ratio is calculated by dividing the site cover of the generated
tile by the site cover of the target tile. A tile can be considered as ‘Mapped’
if the ratio is close or smaller than 1.2, indicating that the generated tile has
similar coverage to the target tile. Similarly, a tile can be considered ‘Partially
Unmapped’ if the ratio is larger than 1.2, indicating that the generated tile has
at least 1.2 times the area than the target tile. Finally, a tile can be considered
as ‘Unmapped’ if the ratio is larger than 4, indicating that the generated tile has
at least 4 times the area compared to the target tile, potentially flagging severely
undermapped areas and automatically tagging them as unreliable and requiring
further attention.

Applying the above thresholds to both artificially reduced datasets of Seat-
tle and Jakarta, the method achieved an F1 Weighted Score of 0.924 and the
confusion matrix is shown in Figure 10. This is significant as the same thresh-
old is applied to two cities with different morphologies, hinting at the potential
universality of the model in other areas.
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Figure 10: Confusion Matrix for the performance of automatically assessing the completeness
of building data in Jakarta and Seattle using the novel approach we propose.

5. Discussions and limitations

From the experiments, we have shown that the InstantCITY model can gener-
ate high-quality synthetic data that captures the statistical structure of the original
data. Translating into spatial sciences, the statistical structure of urban datasets
are described and measured with urban morphology, such as urban texture, urban
grain, and urban typologies.

The idea of Geographical Data Translation (GDT) could become an alterna-
tive way to model the growth of a city, check the quality of existing data, and
transferring styles between different cities as postulated in Experiments 3 and
4. For example, InstantCITY models trained on different typologies can be used
to quickly generate design options without building rules specifically for the de-
sired morphology. This can be useful in the planning of new districts where
planners could rapidly prototype a design by importing models trained on the
desired urban forms to conduct a variety of simulations on the vector dataset.
The same concept can also be applied to simulate future urban growth, assuming
new regions of the city would continue from the existing urban patterns.

On the other hand, the high accuracy in data quality assessment explored in
Experiment 4 can be adopted as a superior approach than rule-based algorithms
in identifying areas with lower OSM data quality. The fast inference speed of
GANs also makes the method scalable to large areas.

While certain limitations such as morphological inconsistencies between tiles
and non-rectangular footprints exist in some cases as shown in the experiments,
the presented concept is a pertinent area to focus in the future given the many
asymmetries in different geospatial datasets. This concept is not limited to build-
ing footprints and road networks, but applicable to other geospatial data pairs
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as long as there is a spatial similarity between the two datasets. For example, it
might be possible to generate topologically correct secondary and tertiary street
networks from primary road networks or to generate buildings and roads from
geological features such as topography, water bodies, and forest boundaries.

Generally, GANs require a large amount of data during training and a com-
mon belief is that the more the data, the better the quality. However, as we have
shown in the experiments, although the dataset at 500m/per tile has significantly
more training samples that that at 1000m/per tile, the results are inferior. We
have hypothesised that the cause of this phenomenon is due to a lack of con-
textual information at the 500m scale since the tiles might only capture a few
buildings at this resolution. This meant that although the number of tiles have
increased, the information contained in each tile became more fragmented. For
example, larger buildings would be cut off and smaller buildings would lost their
contextual relationships with adjacent roads and buildings. This phenomenon
creates a dilemma in which one needs to find a balance between dataset size and
the density of information in each tile. Although we found that models trained
at 1000m/per tile are generally better, the exact optimised dataset scale for each
city might vary as each would have different urban density. For example, fine-
grained urban areas like Jakarta and Manilla with small and dense building foot-
prints could use a higher zoom level (500m/tile), whereas coarse-grained areas
such as Manhattan or Las Vegas needs a lower zoom level (1000m/tile or more)
for the best prediction result.

Another challenge faced during training is the quality of the ground truth
dataset. As shown in Experiment 4, ground truth building footprints may be en-
tirely missing or have partial completeness in some areas. We have conducted a
manual search for incomplete areas and tried our best in filtering out tiles with
missing information. However, there is still a potential contamination of par-
tially complete tiles in the training dataset. When applying the method to new
cities, care needs to be taken to make sure the training data is comprised mostly
of complete tiles. Otherwise, the model would learn the pattern of the incom-
plete dataset, resulting in lower output quality. Perhaps a way to circumvent this
issue is to design a recursive elimination method using the completeness filter in
Experiment 4. A few rounds of training and filtering by the model can be ran to
filter out tiles that are undermapped.

6. Conclusion

Creating human faces, imagining street views, generating cities — GANs
are opening up an exciting new era where AIs can now carry out tasks that were
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previously only possible for humans.
Previous research has shown that GANs can translate, or ‘create’ realistic

geospatial datasets by taking hints in a closely related dataset. This kind of
visual inference was only possible for experienced urban planners, extracting
the essences in a urban morphology and applying the nuances onto a new region
without looking at the ground truth.

This paper pushes a new state-of-the-art for Geographical Data Translation.
Our major contributions are methodological and the validation of the feasibil-
ity of GANs in generating geospatial data that can actually be used for spatial
analyses rather than just giving a visual impression of synthetic content.

Compared to the previous state-of-the-art on raster data generation, the raster
output from our model is 4 times higher in resolution. In the metrics for the
vector output, the average error in Site Cover Percentage achieved -2.5% and
a median building area as low as 8.6%. Applying the model for urban data
quality control, the model achieved an F1 Weighted Score of 0.924 in a case
study conducted on two cities with distinct morphologies.

While generating realistic synthetic datasets has been popular in other do-
mains (Roth et al., 2020), in the domain of studying the urban form, it has not
been so common, thus, we contribute with a new direction. Our work also intro-
duces a new approach to automatically detect built-up areas missing from spatial
datasets, especially volunteered instances such as OpenStreetMap. While sim-
ulating errors to understand uncertainty propagation has been common, to the
extent of our knowledge, simulating varying completeness of spatial data has not
been investigated before and is another contribution of ours.

We focused on buildings as they remain severely undermapped in many urban
areas around the world. Our model could be utilised to generate urban forms
in places where real labels are unavailable. These synthetic datasets could be
sufficiently accurate for a variety of studies requiring data on the urban form.

We also hope that our paper could be one of the first steps in exploring how
AIs can help designers and planners to make data driven decisions. The model’s
ability in translating learned morphologies onto other road networks could poten-
tially remove the need for complex procedural modelling during design prototyp-
ing. This also leads to the discussion on how much AIs can take over designers’
tasks in the future and how they would help designers to work more effectively.

In the future work, we plan to research the feasibility of the work to generate
2.5 or 3D building data. An increasing number of studies is taking advantage
of the information of the height of buildings, which we did not cover in this
work. Thanks to efforts measuring the heights of buildings at large-scale (Gui
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and Qin, 2021; Recla and Schmitt, 2022; Pang and Biljecki, 2022), an increasing
number of cities around the world has buildings mapped in 3D. We plan to take
advantage of such data to investigate whether the method could be extended to
generate basic 3D models that may add further value to use cases.
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