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Abstract— Understanding human mobility is linked to the 
dynamics of humans’ complex decision-making but is a critical 
component in modern applications, ranging from business 
strategies in supermarkets to the common good amid pandemic 
crises. Meanwhile, massive data brought by the increasing 
availability of trajectory recordings and emerging machine 
learning techniques have led to better trajectory modelling in 
recent studies. Many approaches have been then proposed to 
explain the modelling of complex human mobility. 
Nevertheless, the interaction between a suite of machine 
learning algorithms and feature impacts has not been 
completely explored in terms of the memory of past contexts by 
state-of-the-art works. Moreover, many existing studies have 
only discussed theories although their feasibility should be 
tested out in modern application environments and is also 
important from the view of open access to the proposed 
framework. This study attempts to fill this gap by proposing an 
analytical framework which fits modern (cloud-native) settings 
and elucidating the interplay between metrics and various 
parameters to help understand mobility in more detail. As a 
result, the proposed framework has illuminated marked 
differences among various machine learning algorithms, 
feature impacts, and metrics given the memory of past 
contextual information. This study catered for insights that 
customer mobility has been best predicted by backpropagating 
some recent nodes information in a supermarket case study 
and that feature impacts do not necessarily come along with 
the coherence to all machine learning algorithms. 
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I. INTRODUCTION 
Understanding human mobility is linked to the dynamics 

of humans’ complex decision-making but is a critical 
component in modern applications, ranging from public 
health [1], smart city concepts [2], energy efficiency [3], 
traffic jams [4], disaster displacement [5], and infection 
transmission [6]. Especially in a supermarket scenario, 
collecting customer shopping path data is directly connected 
to better capturing the detailed grasp of their purchase 
decision process than just with Point-Of-Sales (POS; 
customer transaction logs) data [7].  

In recent studies, massive data brought by the increasing 
availability of trajectory recordings such as GPS [8][9], 

cellular information [10][11], and Bluetooth [12], and 
emerging machine learning techniques have led to better 
human modelling. A variety of modelling methods have been 
recently developed for this purpose to capture human 
mobility [13][14][15][16].  

Nevertheless, the interaction between a suite of machine 
learning algorithms and feature impacts has not been 
methodically explored in terms of the memory of past 
contexts by state-of-the-art works. Moreover, many existing 
studies have only discussed theories although their feasibility 
should be tested out in modern application environments and 
is also important from the view of open access to the 
proposed framework. 

This study attempts to fill this gap by proposing an 
analytical framework which fits modern (cloud-native) 
settings and elucidating the interplay between metrics and 
various parameters to help understand mobility in more 
detail. 

II. RELATED WORK 

A. Customer Behaviour Modelling 
Many studies have been devoted to grasping customer 

needs and expectations. Making full use of a POS system can 
help supermarkets listen to their customers and optimise their 
back-office operations e.g. recommendations [17]. From an 
industry view, there are solution areas to support these 
demands: AI in Retail1, Azure for Retail2, and AWS Retail3. 
POS data are, however, simply records of purchase history 
and are not detailed enough to represent their decision-
making process. [7]. This aspect is also lethal to the 
optimisation of supermarket layouts. Another approach is to 
leverage customer movements. Shopping path data used to 
be gathered manually for this purpose [18], but recent 
developments in radio wave technologies established solid 
ways to automatically track customer movements in a store. 
The customer movements are then analysed to cater for 
mobility insights from the view of spatiotemporal aspects. 

 
1 AI in Retail: https://www.microsoft.com/en-us/ai/industry/ai-in-retail  
2 Azure for Retail: https://azure.microsoft.com/en-
us/solutions/industries/retailers/#overview  
3 AWS Retail: https://aws.amazon.com/retail/  



B. Human Mobility Modelling 
The current approach to predicting human mobility 

assumes that an individual tends to follow the inclination of 
crowd movements [19], for instance, in a mall [20]. Studies 
considering this prediction strategy using machine learning 
algorithms such as the Bayes theorem [21], tree-based model 
[22], the Markov theorem [20][23][24], and neural networks 
[25] have been extensively investigated while segmenting 
zones as nodes [26]. Although state-of-the-art works 
demonstrated the accuracy of around 50% as huge multi-
class classification problems, there has not been a 
comprehensive study on various machine learning 
algorithms, feature impacts, and variations by the memory 
(referred to as look-back, hereafter) of past contextual 
information. In this way, a baseline in this study refers to a 
performance when the look-back is set to one. Also, this 
study mainly focuses on the variation by the lookback in 
vanilla machine learning architectures but the accuracy itself 
compared to the exiting studies. In addition, conventional 
studies proposed theories but rarely validated the feasibility 
in modern application environments i.e. effective use of the 
scalable computation power. It is also considered important 
to provide an open access to the proposed framework. 

III. METHODS 
This study proposes the combination of an analytical 

framework which consists of step-by-step data processing 
and a cloud architecture where the framework is incorporated. 

A. Analytical Framework 
Fig. 1 describes the overall analytical framework. 

 

Fig. 1. Analytical framework. 

 The analytical framework is comprised of two major 
parts: pre-processing and auto-modelling. The former part is 
for cleansing and filtering noisy trajectories which possibly 
can affect models’ quality whereas the latter part is for auto-
modelling human mobility – predicting the next location of 
human movements by a suite of machine learning algorithms 
based on various features and the look-back of past 
contextual information, that is, the length of the look-back 
period. 

B. Pre-Processing 
 As depicted in Fig. 1, raw trajectories are resampled to 
certain intervals as shown in Fig. 2 since the frequency is not 
consistent in most datasets.  

Fig. 2. Resampling procedure. 

 For interpolations within the resampling procedure, linear 
interpolation is employed because Runge’s phenomenon is 
less observed in spatial scenarios compared to other 
interpolation methods as shown in Fig. 3. Resampled 
trajectories are then transformed into segments, which are 
inputs to auto-modelling. 

C. Auto-Modelling 
Auto-modelling consists of various machine learning 

algorithms ranging from conventional to recent ones, but 
each algorithm is based on vanilla architecture to prove the 
generality of the proposed framework. Auto-modelling 
contains the following algorithms: Logistic Regression 
(LR), Gaussian Naive Bayes (GNB), Bernoulli Naive Bayes 
(BNB), Multinominal Naive Bayes (MNB), Random Forest 
(RF), XGBoost (XGB), LightGBM (LGBM), Recurrent 
Neural Network (RNN), Long Short-Term Memory 
(LSTM), and Gated Recurrent Unit (GRU). 

Methods based on neural networks shown in Fig. 4 uses 
the following vanilla architecture: RNN/LSTM/GRU layer 
(112 dimensions), two ReLU activation layer with L2 
regularisation, SoftMax activation layer to output the 
probability for each node i.e. zone information at the end, 
and a dropout layer is set every layer in between. Note that 
the final dimension is identical to the number of unique 
nodes. The networks are trained with Adam optimiser with 
accuracy as its metric, and the validation loss is monitored 
to reduce the learning rate (by 0.5) by the patience of five 
steps and stop training by the patience of 10. 20% of the 
whole dataset is used for testing purpose, and the remaining 
dataset is split into training (80%) and validation (20%). 

Fig 4. Schematic architecture of neural network algorithms where ct, xt, ht, 
ot, ft, it, zt, and rt denote cell state (context vector), input vector, hidden 

layer vector, output vector, forget gate vector, input gate vector, update gate 
vector, and reset vector, respectively. 

Fig 3. Results of linear interpolation on certain trajectory compared to 
various interpolations. 



D. Cloud-Native Application Architecture 
 The framework is doe in Python 3 (ver. Anaconda3-
5.3.1) with Keras (ver. 2.8.0) and Scikit-Learn (ver. 0.19.2) 
libraries. It is then deployed in cloud-native application 
architecture for securing scalable computation power and 
open access to the proposed framework as shown in Fig. 5. 

 
Fig. 5. Analytical framework in cloud-native application architecture. 

 There are two types of inputs: inputs to the application 
(pre-processing) and inputs to auto-modelling. The former 
refers to a layout file in a JSON format and a trajectory 
dataset where each record contains a user ID, x, y, and 
timestamp. The latter refers to segments with features being 
engineered contain user ID, node information, stay time, 
travel distance, mean heading, max velocity, mean velocity, 
median velocity, variance velocity, max acceleration, mean 
acceleration, median acceleration, and variance acceleration. 

IV. RESULTS 
 This section introduces the dataset used for the validation 
of the proposed framework along with its architecture and 
description. A particular focus is given to the comparative 
evaluation of results among different machine learning 
methods and the baseline.  

A. Data 
As a part of case studies, the proposed framework is 

applied to a trajectory dataset gathered from a supermarket at 
Tsinghua University in Beijing, China. The dataset is 
collected using an ultra-wideband indoor positioning system, 
and it contains sparse and noisy records. A floor of the 
supermarket is categorised into 28 different zones as shown 
in Fig. 6. 

 

 

 
Fig. 6. Layout of supermarket. 

 Trajectory records are stored in a CSV format each for 
394 customers and resampled to 40ms in pre-processing. The 
following is a sample record: user ID, x, y, and timestamp as 
106, -5.14, 3.32, and 2021-01-01T00:00:00.120000… 

B. Results 
Fig. 7 shows the inclination of customer visitation in the 

supermarket after noise removal. 

 
Fig. 7. Inclination of customer visitation in supermarket. 

 Note that most of the users started browsing from an 
entrance (zone 27), but some from a checkout counter (zone 
28). From the figure, the travel distance resonates with the 
area size of zones in general, meanwhile, the stay time is not 
necessarily in proportion to the zone size. 

 9,230 iterations (is equivalent to the number of parameter 
sets in total) have been attempted in auto-modelling. Fig. 8 
shows the mean accuracy of top K performance 
(ACC@TopK) varying on the look-back (LB) period. 

Fig. 8. Accuracy of top K performance. 



With K=1, 3, and 10, almost all the algorithms commonly 
have a distinct peak at LB=3, and the accuracy is on an 
uptrend after LB=6. Note that there are users who do not 
have a total length of segments of more than six, and the 
modelling would have been hence done on such a limited 
dataset. This study thereby regards the results when LB=1~6 
as effective results. To recap, GRU showcases the most 
remarkable performance when LB=3 compared to LB=1 
(baseline). 

 Fig. 9 depicts various metrics when LB=1~3. The 
performances are generally relative to LB. Of all algorithms, 
neural networks demonstrate better performance though they 
require large computation cost. On the other hand, tree-based 
ensemble learning algorithms stand comparison with a 
performance taking less computing time. 

 Fig. 10 explains feature impacts when K=1 and LB=1~3. 
Clearly, with all features, all the methods achieve the best 
performance except for the Naïve Bayes approach. It is 
considered that the Naïve Bayes family suffers from the 
curse of dimensions when with all features. 

 
Fig. 10. Feature impacts by various algorithms (ACC@Top1, LB@1~3). 

V. CONCLUSION AND DISCUSSION 
The proposed framework has elucidated marked 

differences among various machine learning algorithms, 
feature impacts, and metrics given the memory of past 
contexts. This study catered for insights that customer 

mobility has been best predicted by backpropagating some 
nodes information in a supermarket case study and that 
feature impacts do not necessarily come along with the 
coherence to all machine learning algorithms.  

Yet, the performance of human mobility modelling can 
get highly affected by layout information, it is hence 
worthwhile to applicationise an analytical framework just 
like this study in view of open testing with arbitrary, sparse, 
and noisy datasets. Last but not least, the prediction would 
have attained a better performance if the framework took in a 
lot more trajectory datasets, customised vanilla algorithms, 
or even utilised point-of-sales information together. These 
points ought to be placed in future work since this study only 
had limited access to store details at the time. 

For wider applications in the future, this study seeks to 
apply the framework to different test beds and also integrate 
with other service platforms such as a map to embody digital 
twin concepts where both indoor and outdoor mobility 
scenarios are seamlessly covered. 
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