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ABSTRACT:

Street view imagery (SVI) has gained prominence in the past decade, offering a new perspective to map and understand cities. It 
supports numerous studies in the built environment, by replacing or supplementing aerial and satellite imagery, where some studies 
have not yet been possible with traditional platforms and have now been enabled for the first time thanks to the increasing volume 
of SVI data. However, the two perspectives are often disconnected and there has not been an overarching paper to discuss the pros 
and cons of each. We provide an overview outlining and discussing the role of SVI in GIS and urban studies spanning six use cases. 
Our discourse is supported by a systematic literature review of more than 100 papers and our own experiments that reveal the added 
value and challenges of SVI in extracting information on buildings and other urban features, an increasingly important use case. 
We find that the key advantages of SVI over aerial imagery are that it represents more closely how streetscapes are perceived by 
people and that it enables extracting certain information that otherwise cannot be gathered from top-down perspectives. However, 
the spatial coverage of SVI tends to be limited to the vicinity of driveable roads, and its temporal coverage is comparatively sparse.

1. INTRODUCTION

Imagery obtained from aerial and satellite platforms has been a
key source of spatial data supporting a variety of research in the
built environment (Burke et al., 2021). In the past decade, their
ground-level counterpart — street view imagery (SVI) — has
been rapidly gaining attention (Biljecki and Ito, 2021), support-
ing mostly the same research disciplines that have relied on aer-
ial/satellite imagery with some advantages, but also introducing
new applications that have not been possible with satellite im-
agery (Verma et al., 2019; Zhang et al., 2018). Taking advant-
age of several benefits over aerial imagery such as having a dif-
ferent perspective (illustrated in Figure 1), SVI has been used in
assessing walkability and bikeability, mapping street furniture,
quantifying urban greenery, streetscape perception studies and
so on (Hu et al., 2020; Guan et al., 2022; Verma et al., 2020;
Ito and Biljecki, 2021; Hawes et al., 2022). In Figure 1, a –
aerial perspectives provide an overview from the top, giving
the means to numerous tasks, but it falls short in e.g. under-
standing the pedestrian perspective and extracting information
about buildings other than rooftops; b – oblique perspectives
show both the top and a half of buildings’ side profile (facade),
while its other half requires the opposite oblique perspective;
c – street-level imagery enables a complementary perspective
but it is limited by obstructions (e.g. vegetation), coverage and
reach (e.g. not all features such as buildings may be visible be-
cause not all the roads have been covered by SVI, or being ob-
scured by other buildings).

Both perspectives have positioned themselves in various fields,
and recent studies in the built environment largely use either of
the two, and sometimes their combination. While the advant-
ages and disadvantages of each are somewhat intuitive, there
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has been no overview and comparison of the perspectives in the
research literature nor has the topic been documented. Further,
in many cases, they appear to be disconnected and it is seldom
discussed whether it makes sense to combine them, as there is
little research on complementing one with the other.

The goal of our paper is to investigate the value and chal-
lenges of SVI in comparison with aerial and satellite perspect-
ives (from now on referred to only as aerial for brevity). The
research encompasses a variety of aspects, both technical and
non-technical. In the paper, we employ a two-fold method to
shed light on such comparison: a review and an experiment on
extracting information about the built environment. Our literat-
ure review is systematic, while the experiments we conducted
are focused on buildings since they are the predominant feature
of the built environment and a topic that is frequently the sub-
ject of both perspectives (Panagiotidou et al., 2021; Ogawa et
al., 2021; Wang et al., 2021; Zhang et al., 2021, 2022).

The paper is organised as follows. In Section 2, we present the
methodology of the two approaches. The results are elaborated
in Section 3 and discussed in Section 4, while Section 5 con-
cludes the paper with takeaways.

2. METHODS

2.1 Literature Review

To identify studies related to SVI and aerial imagery for our
review, we searched for such terms in titles, keywords, and ab-
stracts of articles in Scopus. While there is a plethora of pub-
lications that mentions either of the two, the general idea of our
search was to include the articles that adopted both SVI and aer-
ial imagery, as they could be include a comparative aspect and
could be forthcoming in discussing the benefits and challenges
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Figure 1. Illustration of some advantages and challenges of the
perspective offered by SVI compared to traditionally used

platforms.

of each, and thus, help us understand the two perspectives and
draw conclusions.

We used ‘street view’ or ‘street level imagery’ or ‘street level
image’ as the first search field, ‘satellite imagery’ or ‘satellite
image’ or ‘aerial imagery’ or ‘aerial image’ or ‘aerial’ as the
second search field in Scopus. The relationship between the
two search fields is inter-sectional. That is, the literature we
selected should investigate both SVI and aerial imagery, and the
keywords that appear within each domain can be any of those
listed above. The search was conducted in December 2021 and
the time period searched was between then and the preceding
five years, i.e. papers published from 2017 to 2021, when SVI
gained most attention.

This initial search yielded 140 publications. Thereafter, liter-
ature screening was carried out to filter the papers that were
relevant for our study. Articles were required to include both
data sources to better understand the application of the two data
sources in the same context. Further, we only focused on the
applications in the urban context. For example, some articles
focused on the generation or quality assessment of street view
data, rather than the application (Majdik et al., 2017; Regmi and
Borji, 2018), which we excluded. Also, applications in rural
areas and articles focusing on image processing algorithm re-
search were excluded.

Out of the initial 140 articles, 103 applied SVI or aerial im-
agery in urban contexts, of which 63 adopted both data sources.
Next, we examined the 63 relevant articles to seek information
relevant to our research and categorised them according to their
application scenarios (Figure 2).

2.2 Experiments

To supplement our literature review and better understand the
value and shortcomings of SVI in the built environment, we de-
signed a comprehensive and global experiment that focused on
collecting information on buildings from the ground-level per-
spective. We have examined SVI around the world and analysed

how feasible is to extract information on buildings from it. By
relying only on SVI in our interpretation, we were able to ex-
pose potential limitations of SVI in practice. Extracting inform-
ation on buildings from SVI has been documented in literature
(Kang et al., 2018; Fan et al., 2021; Zhou and Chang, 2021), and
it is becoming a common use case of SVI. The implications of
this experiment may be applicable to other use cases in mapping
types of urban features other than buildings. However, studies
usually focus on a specific study area and do not provide a crit-
ical overview of the platform. Thus, with this paper, we also
contribute to the body of knowledge with a global mapping ex-
periment, focusing on the advantages and disadvantages of SVI
for this particular yet versatile use case.

In the experiment, we randomly selected a large number of
buildings from OpenStreetMap (OSM), distributed worldwide.
The buildings were first mapped to the aggregated WorldPop
2020 1 km raster (Lloyd et al., 2017). Then, we filtered out cells
that have at least four buildings and are mapped to at least admin
division level 2 based on the Database of Global Administrative
Areas (GADM1). This process was important for two reasons.
First, the administrative data is required to sample buildings in
such a way to cover all countries in the world. Second, to ac-
count for local variations, we examined groups of buildings that
are nearby (i.e. at the district scale). Balancing geographical
distribution and a reasonable number of buildings to examine
(a manual process, as explained in the continuation), we selec-
ted 6,578 buildings for the analysis, with all countries covered.

We used Google Street View (GSV) as the source of SVI, the
most common dataset used in this research domain. The process
to obtain the SVI that may cover each of the sampled buildings
was manual. We located the location of the building in Google
Maps, after which, Google Street View mode was activated.
From there, the properties of the building such as the number of
floors, function, roof shape, and material were collected visu-
ally. These attributes were commonly studied building attrib-
utes seen in our literature review and are also often mapped in
OSM (Biljecki, 2020; Palliwal et al., 2021). For each build-
ing, we also denoted how difficult is to extract such informa-
tion. The difficulties in extracting information from SVI of each
building was rated on an ordinal scale of 1 to 4 — with 1 being
the easiest and 4 being the most difficult or impossible because
there was no GSV available covering the building. Each score
was accompanied by a remark that provides more information
about the rating.

3. RESULTS

3.1 State of the art

In our literature review, we endeavoured to understand the com-
parative value and challenges of aerial and street view perspect-
ives. We focused on the applications in the built environment,
and have grouped the use cases into six main applications. They
are: (1) Buildings; (2) Property Prices; (3) Accessibility; (4)
Land Use; (5) Greenery; and (6) Perception. Each of these ap-
plications is discussed in terms of the use of aerial imagery,
SVI, or both where aerial and SVI complement one another.

3.1.1 Extracting building information According to the
literature review, for extracting building information, overall,
aerial imagery provides context of building usage, with higher

1 https://gadm.org/index.html
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Figure 2. The result of our literature review yielded 63 papers
that are of relevance to this paper and they can be categorised

into six applications.

resolution aerial imagery achieved better model performance.
SVI provides more details on building usage compared with
aerial imagery (Hoffmann et al., 2019).

For industrial buildings, the same paper suggests that lower
zoom levels (zoomed out) of aerial images achieved higher pre-
cision than higher zoom levels (zoomed in), most likely because
some industrial buildings are very large and better represented
at a lower zoom level. Hoffmann et al. (2019) also noted that
it is easier to distinguish the structures of commercial and pub-
lic buildings from SVI compared to aerial imagery. However,
in the cited research, the model using aerial imagery classified
higher proportion of commercial buildings than the one relying
on SVI, and a higher proportion of public buildings are cor-
rectly classified by SVI compared to aerial images. By combin-
ing both types of imagery, Hoffmann et al. (2019) found that
fusion models that contain the street view perspective performs
better than any of the aerial models. This use case is closely
related to our experiment, which is elaborated in Section 3.2.

In estimating energy consumption, aerial imagery captures
parcel-level elements such as overall building geometry (e.g.
footprint, perimeter and compactness), size of electricity-
consuming constructions, and the coverage of landscape ele-
ments (e.g. green or tree coverage) (Rosenfelder et al., 2021).
In comparison, SVI depicts the texture of the building walls and
facades, providing information such as the number of storeys
and size of the building, the year of construction and whether
the building has been renovated (Rosenfelder et al., 2021).

3.1.2 Estimating property price SVI has been used for es-
timating the value of real estate and other socio-economic para-
meters (Suel et al., 2021; Qiu et al., 2022). For property prices,
Law et al. (2019) elaborate that the models with visual features
derived from street view or aerial imagery perform more ac-
curately than those without visual variables. In discerning the
two, the model using aerial imagery performs better than with
SVI, which may reflect the fact that buyers are more concerned
about the environment of the whole neighbourhood rather than
the streets (Law et al., 2019).

3.1.3 Assessing accessibility For accessibility, specifically
roads and sidewalks, Ning et al. (2022b) demonstrated that aer-
ial imagery has a relatively small volume of data to cover the
entire study area and can therefore be used as a primary data
source. SVI as a supplementary data source provides reliable
and ground-level obscured or missing pavements details in aer-
ial imagery (Ning et al., 2022b). For further reading about ex-

tracting information of sidewalks with SVI, readers are referred
to the studies by Kang et al. (2021) and Hosseini et al. (2022).

3.1.4 Mapping land use For mapping land use, overall,
aerial and SVI reflect different details of land use. For ex-
ample, aerial imagery captures parcel-scale features; while SVI
captures more ground-level details that aerial images lack and
help improve the results, especially in ambiguous situations
near roads (Srivastava et al., 2019; Cao et al., 2018; Ning et
al., 2022a).

For the accuracy of land use classification models, Cao et al.
(2018) suggested that pixel-based classification accuracy of the
land use types using only aerial imagery is higher than using
only SVI. The classification accuracy of land use in educational
and transport categories is reported highest by Huang et al.
(2020). Otherwise, the classification of commercial and civil
land use is less accurate than average. The study reported that
the model combining SVI, satellite (aerial) imagery, and aux-
iliary GIS data achieve highest accuracy. Whereas Cao et al.
(2018) suggested classification results are not much improved
when integrating SVI with aerial imagery. The exception is that
SVI increases prediction accuracy when the aerial image resol-
ution is low.

When it comes to the data coverage, aerial imagery provides a
wider coverage than SVI (Cao et al., 2018), as not all buildings
may be available in SVI (see Figure 1). The street view per-
spective may suffer from bias when classifying small scale par-
cels, and this is because SVI is captured sparsely and unevenly,
which may lead to inaccurate results on machine learning (Feng
et al., 2018; Cao et al., 2018; Qiao and Yuan, 2021). In SVI,
only scenes near streets can be captured due to the limited cov-
erage. Features obscured by large and tall roadside structures
are hidden (Cao et al., 2018). Further, the available SVI is often
biased towards prosperous areas of the city (Qiao and Yuan,
2021). Qiao and Yuan (2021) also caution that imaging the
streets involves the collection and sharing of proximate sens-
ing data that can lead to privacy and trust of anonyms.

3.1.5 Quantifying urban greenery Mapping urban veget-
ation has been carried out extensively using a variety of data
sources, including aerial and street view imagery, and it is the
largest use case we have identified in our review.

To quantify greenery in urban contexts, in terms of spatial res-
olution, satellite imagery such as the Landsat constellation has
relatively low spatial resolution for precise mapping of greenery
in urban areas (Helbich et al., 2021; Baučić et al., 2020). How-
ever, SVI has comparatively high resolution images (Helbich
et al., 2021; Tong et al., 2020; Wang et al., 2019; Kumakoshi
et al., 2020). For example, compared to any existing global
mapping products derived from aerial imagery, SVI provides a
higher image resolution for calculating vegetation indices such
as the Leaf Area Index (LAI) (Richards and Wang, 2020). For
temporal resolution, imagery from satellites such as Sentinel 2,
have a high temporal resolution (5 days at the equator) that al-
lows monitoring changes at short time intervals (Baučić et al.,
2020).

Meanwhile, the biggest limitation of SVI is its low frequency of
updates (Barbierato et al., 2020). And not all the sample images
are captured at the same time. There are instances where SVI in
a neighbourhood are captured on different dates, which results
in variations in foliage amounts and colours based on seasons
(Richards and Wang, 2020).
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Regarding data coverage, the data reach of SVI is limited to
the immediate surrounds of the street space and public areas
that are accessible by vehicles (Helbich et al., 2021; Tong et al.,
2020; Wang et al., 2019; Kumakoshi et al., 2020; Barbierato et
al., 2020). Whereas aircrafts and satellites are able to capture
images of vegetation in areas that are off-road, which cannot be
captured by SVI (Tong et al., 2020).

Aerial imagery provides a top-down perspective that can detect
green roofs and shading of courtyards that are away from roads
or are in private enclosures (Barbierato et al., 2020; Wu and
Biljecki, 2021). Its shortcoming is that vegetation on building
walls cannot be easily identified since aerial images are cap-
tured at near-nadir. In comparison, SVI is better in showcas-
ing the shading of the ground and building facades provided by
roadside trees (Barbierato et al., 2020). However, the limitation
is when looking skywards at zenith with panoramic street view
images, the canopies formed by tall trees can only be partially
seen (Kumakoshi et al., 2020).

One key benefit of SVI is that it saves time from going down to
a site as one can view a place virtually from a pedestrian’s per-
spective. Thus, it is more easily interpreted compared to aerial
imagery since SVI are closer to humans’ perception (Aklibas-
inda, 2019; Kumakoshi et al., 2020).

Comparing the two, street level greenness was weakly to mod-
erately positively correlated with greenness identified by satel-
lite imagery (Helbich et al., 2021; Tong et al., 2020; Ye et al.,
2019). Tong et al. (2020) demonstrated that the Green View
Index (GVI) derived from SVI is moderately correlated to the
Normalised Difference Vegetation Index (NDVI) derived from
aerial imagery, which suggests that vegetation viewed from dif-
ferent angles produces different results of greenness. Ye et al.
(2019) suggested that there was a positive and significant correl-
ation between NDVI and visible street greenery. The Pearson’s
correlation coefficient gradually decreases with the increase of
the distance away from the road where the SVIs were taken (Ye
et al., 2019).

However, there will be a mismatch between top-down view
versus on the ground view of SVI because the former views
vegetation’s canopy while the latter views not just the canopy
but the sub-canopy structure of vegetation like roots, stem, and
branches (Ye et al., 2019). The measured values of aerial im-
agery metrics (e.g. NDVI) is higher than the SVI metrics (e.g.
GVI, sGVI) where vegetation is denser, whereas the opposite
trend was observed in urban areas where more buildings are
present (Tong et al., 2020; Kumakoshi et al., 2020). This may
indicate buildings make it difficult for vegetation to be captured
from a top-down perspective, and SVI captures urban veget-
ation in more details than aerial imagery (Kumakoshi et al.,
2020). Hence, it is recommended that multiple indicators in-
corporating both SVI and aerial imagery be complemented (in-
stead of substituted) to evaluate roadside greenery (Tong et al.,
2020).

In terms cost of collection, SVI is acquired by vehicles and may
be cheaper compared to aerial imagery from satellites or air-
borne sensors (Barbierato et al., 2020).

3.1.6 Predicting perceptions For perception studies, vari-
ables from SVI measure and explain more variation than aerial
imagery (Larkin et al., 2021). Aerial imagery from satellites
used to quantify built environment features and environmental
exposures do not capture these perception differences (Larkin

et al., 2021), and this is a use case where the value of SVI
is convincing in comparison with aerial perspective, a finding
consistent with the human-level perspective of SVI.

3.2 Experiments on extracting building information

The experiment revealed that for most buildings, it was not pos-
sible to extract building information from SVI, with significant
differences by geography (Figure 3). On the other hand, where
it was possible, SVI provided unparalleled benefits. Figure 4
provides visual examples of different buildings, and how the
cases were scored.

Figure 3. A summary of the difficulties in interpreting SVI by
continents. Street view imagery from Europe are the easiest to
interpret while those from Africa are the most difficult or they

do not provide sufficient coverage.

In the process of collecting building information, a common
limitation exhibited for both SVI and aerial imagery was the ob-
struction of buildings by greenery, including trees and shrubs,
as well as neighbouring buildings (Table 1). Dissecting the
two platforms, SVI was particularly affected: other structures
that obstruct the buildings in SVI are fences, walls, advertise-
ment boards, bus stops and moving objects (i.e. most commonly
— vehicles on the road). Despite the seemingly advantageous
vantage points offered by SVI, the building of interest might
nonetheless be obstructed from all possible angles, with addi-
tional coverage lacking, a finding that resonates among related
work (Pang and Biljecki, 2022). Thus, information such as the
number of storeys and often the function of the building can-
not be extracted. While we have focused on understanding the
performance of SVI for extracting multiple key characteristics
of buildings (see Section 2.2), most often the findings were the
same, e.g. none of the characteristics could be acquired as the
building was simply entirely obstructed by its neighbour.

While aerial imagery is available in most places, the quality
of imagery is also not uniform and varies across areas, which
is not the case with SVI sources such as GSV that tend to be
consistent in quality.

Similarly, the coverage of SVI is not uniform. In places lacking
extensive coverage, SVI is usually available only for main roads
and highways. Thus, buildings located further from them can-
not be seen. SVI can also be patchy, with breaks along a single
road, leaving buildings in between inaccessible. Moreover, the
terrain plays an important role in interpreting SVI data. When
the building of interest is below the street level, the number of
storeys of the building cannot be measured. In narrow streets
and some other situations, it is also challenging to acquire in-
formation such as the number of storeys of the building if it
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Figure 4. Examples of SVI studied and their interpretation difficulty levels. The OSM building footprints highlighted in orange (first
column) are some of those that we randomly selected around the world. The orange point in the Google Maps’ aerial imagery

represents the street view point with its corresponding image to the right. Images are courtesy of © OpenStreetMap contributors,
Google Maps, and Google Street View.

is tall, for example, more than 15 storeys, due to the angle of
viewing.

4. DISCUSSION

Our research has revealed that there is a large overlap between
aerial and SVI perspectives in practice. Many use cases are
possible with either of the two. On the other hand, they often
tend to be used in conjunction, taking the best of both worlds,
but also allowing us to expose the pros and cons of each.

In this section, based on the results of the literature review and
the experiments, we provide a comparative summary of the ad-
vantages and disadvantages of street view and aerial imagery
that pertain to the built environment. The discussion is sum-
marised in Table 2.

In general, based on both the literature review and experiment,
SVI has an advantage that it provides a significantly higher res-
olution of details of objects in urban areas (Cao et al., 2018;
Srivastava et al., 2019; Richards and Wang, 2020). The im-
agery represents closely the environment that people perceive
and experience on the ground, usually following a route that
can be traversed on foot or by vehicle (Kumakoshi et al., 2020).
Hence, SVI can provide details seen on the ground that are not

visible from aerial imagery (Hoffmann et al., 2019; Ning et al.,
2022b; Cao et al., 2018; Rosenfelder et al., 2021; Barbierato
et al., 2020). SVI is relatively cheaper to capture than aer-
ial imagery thanks to free tiers of commercial companies and
the emergence of crowdsourced SVI services such as Mapil-
lary and KartaView (Barbierato et al., 2020; Inoue et al., 2022).
What this means is that, even when mainstream services have
no coverage of a particular area, SVI can be collected simply
by mounting sensors on a backpack or a vehicle and moving
around. Aerial imagery, in comparison, is more expensive to
collect as sensors need to be mounted on aircrafts or space-
crafts that are very expensive to launch and operate. Startup
capital aside, once spaceborne sensors are operational, they can
continuously collect data for decades and be released openly
for research and other uses. There are some websites where
users can publish openly photogrammetric aerial images of the
earth’s surface captured by drones but coverage is minimal be-
cause of the need for expertise in photogrammetry, drone ac-
cess, and large data storage requirements.

Disadvantages of SVI are just as well documented. Primarily,
coverage is limited as only areas near routes that can be tra-
versed by foot or vehicles can be imaged (Tong et al., 2020;
Barbierato et al., 2020; Wang et al., 2019; Kumakoshi et al.,
2020), potentially leaving some portions of urban areas out of
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Difficulty Most common reason Second most common reason
1 Building not visible in satellite view but visible in GSV Obstructed in GSV
2 Ambiguity in describing building that is visible Obstructed in GSV
3 Ambiguity in describing building that is visible Building under construction in GSV
4 No GSV available Building not visible in GSV

Table 1. The predominant reasons by the four difficulty levels in interpreting SVI for extracting information on buildings.

Advantages Disadvantages
SVI - High resolution and detail - Coverage is limited, only area near streets are imaged

- Represent more closely how environments are per-
ceived and experienced by people

- Imbalanced data coverage (both spatial and tem-
poral)

- Street view images can provide ground-level details
that aerial images lack

- Limited temporal coverage and revisit periods (i.e.
sometimes once in a decade)

- Relatively low cost (i.e. freely available data thanks
to both commercial and crowdsourced services)

- Difficulty in expanding research scale due to extens-
ive processing time

- Some objects in area with a dense SVI coverage may
be observed more than once

- Complicated processing workflow, advanced com-
puter vision techniques are required to process the data
- Tall objects (buildings, trees, etc.) may be only par-
tially observed from SVI
- The position and light condition of taking SVI may
vary in the same point

Aerial - Wider spatial coverage - Certain mismatch between satellite’s top-down view-
point and human-scale viewpoint

- Fine time granularity - Cannot capture some details in building facade
- Can be used to observe broad trends - Difficult for human’s with limited experience to in-

terpret
- Capture the overall information in a large scale - Openly available satellite imagery generally has too

coarse spatial resolution
- Data volume is relatively small

Table 2. Comparison of the general advantages and disadvantages of SVI and aerial imagery in studies of the built environment.

reach. Moreover, sometimes only major roads are imaged. As
a consequence of this bias in the data collection, use cases may
suffer. For example, measuring greenery on district scale (Sec-
tion 3.1.5) may not be representative if only major and certain
streets are considered, unlike it would be the case with aerial
imagery, which has homogeneous coverage.

Other than the limited spatial coverage, the temporal coverage
is neither extensive nor regular. Hence, the temporal resolution
of images in between imagery periods is much coarser than aer-
ial imagery (Baučić et al., 2020). Use cases are also burdened
with long and complex processing workflows needed for ad-
vanced computer vision techniques and the large volume of data
(often tens of thousands of images) (Ning et al., 2022b).

Some objects in areas with high densities of SVI such as dense
road networks may have objects imaged more than once in a
transect, which complicates data analysis (Kumakoshi et al.,
2020). Tall objects such as buildings and trees may be only
partly viewed in SVI, especially if the imagery is not panoramic
(Kumakoshi et al., 2020). The position and lighting conditions
when SVI is taken may vary in the same point (Wang et al.,
2019; Richards and Wang, 2020). Thus, SVI in the day is much
more common than those captured at night.

For the advantages of aerial imagery over SVI, they provide a
wider, even global, coverage of urban areas and the earth (Cao
et al., 2018; Ning et al., 2022b; Baučić et al., 2020). Specifically
for aerial imagery captured by satellites, their temporal resolu-
tion is very high with revisit times of up to everyday (Baučić et
al., 2020). This advantage is useful in monitoring changes to the
urban landscape through time at a broad scale. The data volume
in terms of spatial extents can be small (Ning et al., 2022b), but
this increases greatly with the high temporal resolution.

For the advantage of aerial imagery, objects perceived in it are

not as intuitive as SVI as humans are more familiar with view-
ing objects at ground level instead of from the sky (top-down)
(Kumakoshi et al., 2020; Larkin et al., 2021). Most aerial im-
agery are captured with the camera pointing at nadir that makes
imaging details of a building’s facade difficult (Hoffmann et al.,
2019; Rosenfelder et al., 2021). There are aerial imagery at very
high resolutions from satellites and airborne missions but these
are very expensive to operate, capture, and acquire. The al-
ternative are to use open-sourced aerial imagery from satellites
like Landsat from NASA and Sentinel from ESA (Barbierato et
al., 2020). However, these imagery are too coarse to make out
details of buildings. Rather, they are better suited for monitor-
ing urban growth and areal information (Helbich et al., 2021;
Baučić et al., 2020).

5. CONCLUSION

We examined literature that uses both SVI and aerial imagery
in their research of the built environment and provided an eval-
uation across several use cases. We supplemented our review
with empirical data of an examination of several thousands of
SVI globally and evaluated their benefits and challenges in a
use case. Given that each platform has advantages and disad-
vantages and that data availability is increasing, there should
be more effort on how to integrate them, which we consider
to be one of the key future directions. While for method-
ological reasons our research has examined papers that use
both sources/perspectives, it should be noted that most studies
nowadays use either of the two.

In this research, we have not taken into account unmanned aer-
ial systems (UAS) and the perspectives they offer, which is as
well gaining popularity in the built environment (Nex et al.,
2022). While SVI offers some advantages over UAS such as
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not requiring a permit to fly in restricted urban spaces (Wang
et al., 2021), the latter offers multiple perspectives (e.g. top and
oblique view; cf. Figure 1(b)). For future work it may be be-
neficial to conduct a critical overview to include UAS that is an
intermediary between SVI and aerial imagery.

There are also other comparisons that have not been thoroughly
investigated in the scientific literature. Two gaps that were ap-
parent to us were comparisons between data accessibility and
quantifiable costs, and the issues that affect both perspectives,
e.g. shadows in images that are problematic for both aerial and
SVI but more so in SVI as Figure 1(c) depicts where part of the
road is overcast by adjacent trees and buildings.
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