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A B S T R A C T   

3D building models are an established instance of geospatial information in the built environment, but their 
acquisition remains complex and topical. Approaches to reconstruct 3D building models often require existing 
building information (e.g. their footprints) and data such as point clouds, which are scarce and laborious to 
acquire, limiting their expansion. In parallel, street view imagery (SVI) has been gaining currency, driven by the 
rapid expansion in coverage and advances in computer vision (CV), but it has not been used much for generating 
3D city models. Traditional approaches that can use SVI for reconstruction require multiple images, while in 
practice, often only few street-level images provide an unobstructed view of a building. We develop the 
reconstruction of 3D building models from a single street view image using image-to-mesh reconstruction 
techniques modified from the CV domain. We regard three scenarios: (1) standalone single-view reconstruction; 
(2) reconstruction aided by a top view delineating the footprint; and (3) refinement of existing 3D models, i.e. we 
examine the use of SVI to enhance the level of detail of block (LoD1) models, which are common. The results 
suggest that trained models supporting (2) and (3) are able to reconstruct the overall geometry of a building, 
while the first scenario may derive the approximate mass of the building, useful to infer the urban form of cities. 
We evaluate the results by demonstrating their usefulness for volume estimation, with mean errors of less than 
10% for the last two scenarios. As SVI is now available in most countries worldwide, including many regions that 
do not have existing footprint and/or 3D building data, our method can derive rapidly and cost-effectively the 3D 
urban form from SVI without requiring any existing building information. Obtaining 3D building models in 
regions that hitherto did not have any, may enable a number of 3D geospatial analyses locally for the first time.   

1. Introduction 

3D building models continue to prove themselves useful for a wide 
range of applications, across real estate, urban planning, and disaster 
management (Elfouly and Labetski, 2020; Stoter et al., 2020; Beran 
et al., 2021; Jang et al., 2021; Turan et al., 2021). Their applications can 
be classified into either visual or non-visual instances. In the former, 
attention is placed on the visual fidelity and aesthetic appeal and not 
necessarily much on accuracy and quality, e.g. visualisation of apart
ments for real estate (Cohen et al., 2016). In the latter, the focus is on 
using data for quantitative operations (Florio et al., 2021; Gassar and 
Cha, 2021; Bizjak et al., 2021; Chen et al., 2020a; Palliwal et al., 2021). 
In particular, 3D building models are convenient for estimating the 
volume and envelope area of buildings, operations previously not 

possible with traditional building information such as footprints, which 
are without a volumetric representation (Sindram et al., 2016; Doan 
et al., 2021; Rosser et al., 2019; Eicker et al., 2014; Braun et al., 2021). 
Therefore, they earned an important role in various use cases. For 
example, at the urban scale, the volume and surface area of buildings are 
useful for estimating energy consumption (Bahu et al., 2014; Kaden and 
Kolbe, 2014), population estimation (Sridharan and Qiu, 2013; Szarka 
and Biljecki, 2022), urban planning (Ahmed and Sekar, 2015), estima
tion of urban heat island intensity (Li et al., 2020), and assessing solar 
energy resources in cities (Eicker et al., 2014). 

In the recent years, great strides have been made in the 3D acquisi
tion domain with the advancement of the reconstruction of building 
models using lidar, photogrammetry, and novel approaches such as 
regression and analysing satellite signal obstructions, and the 
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development of tools (Dehbi et al., 2020; Milojevic-Dupont et al., 2020; 
Nys et al., 2020; Biljecki, 2020; Cao and Huang, 2021; Lines and Basiri, 
2021; Ledoux et al., 2021; Gui and Qin, 2021). Despite the advance
ments, there are two constraints, which we believe will largely continue 
to persist for some time. First, geographical coverage is still limited — 
3D building models remain available in a minority of regions, primarily 
due to lack of essential data such as airborne point clouds to generate 
them. Second, their level of detail (LoD) remains basic — most of the 
models are in LoD1 (block models) according to the definition of Cit
yGML (Gröger and Plümer, 2012; Kutzner et al., 2020). While they have 
demonstrated their value for many use cases, there is an increasing 
demand for data in higher level of detail (Wysocki et al., 2021; Biljecki 
et al., 2021; Virtanen et al., 2021; Yamani et al., 2021; Peters et al., 
2022). Generating higher-LoD data remains constrained, and there is 
little research on enhancing the level of detail of existing, low-LoD 3D 
models such as block models. Third, efforts to characterise the 3D urban 
form at the large-scale do not regard individual buildings, i.e. they 
provide aggregate values at a coarse grid from satellite observations 
(Geis et al., 2019; Chen et al., 2020b; Li et al., 2020; Frantz et al., 2021; 
Esch et al., 2022; Zhu et al., 2022). 

Simultaneously, the geospatial landscape has been witnessing a 
surge in another instance of spatial data — street view imagery (SVI) 
(Biljecki and Ito, 2021; He and Li, 2021). Commercial services such as 
Google Street View (GSV)1 and their crowdsourced counterparts, e.g. 
Mapillary2 and KartaView3, now supply an enormous amount of geo- 
referenced images around the world, often at a dense geographical 
resolution (Ma et al., 2019; Zhang et al., 2020; Ding et al., 2021). This 
source of data has been thoroughly exploited for a range of urban 
studies, some of which involve extracting information of buildings 
(Kruse et al., 2021; Ito and Biljecki, 2021; Rosenfelder et al., 2021; 
Yohannes et al., 2021; Kang et al., 2021; Helbich et al., 2021; Szcześniak 
et al., 2021; Cinnamon and Gaffney, 2021; Zhang et al., 2021a; Zhang 
et al., 2021b; Yin et al., 2021). 

Much of the imagery covers urban areas that have not been subject of 
3D city modelling, including cities that do not have even building 
footprints to begin with. As such, SVI has been employed for 3D building 
reconstruction using traditional techniques (Cavallo, 2015; Torii et al., 
2009; Micusik and Kosecka, 2009). However, these approaches utilising 
SVI often require multiple images to form a dense correspondence, 
which is often not suitable for SVI as buildings are often partially or fully 
occluded by vegetation, vehicles, and other objects (Zhang et al., 2021c) 
(Fig. 1), and therefore are not available in more than one or two un
obstructed images. Furthermore, because imagery is taken from roads, 
usually not all sides of a building are captured, presenting a considerably 

limited view of buildings unlike in counterparts derived from aerial or 
satellite platforms. 

In recent years, 3D object reconstruction from single or few images 
has been gaining traction in computer vision (CV) (Han et al., 2019; Fu 
et al., 2021). Even with single 2D images, nascent methods have ach
ieved remarkable results in inferring the 3D geometry of an object (Fu 
et al., 2021). However, these 3D object reconstruction methods were 
trained largely on simple symmetric household objects from indoor 
scenes such as chairs, and large irregular objects in outdoor scenes such 
as buildings have not been in their focus. 

Connecting the dots described above, this research aims to bridge the 
notable gap of 3D building reconstruction from single SVI using recent 
developments in CV such as image-to-mesh reconstruction techniques. 
As additional data such as satellite imagery and 2D building footprints 
are becoming increasingly available around the world (Xie et al., 2019; 
Huang and Wang, 2020; Li et al., 2020; Jochem and Tatem, 2021; 
Fleischmann et al., 2021; Sirko et al., 2021; Leonard et al., 2022), we 
investigate whether they can be used to aid the reconstruction. 
Furthermore, as block (LoD1) 3D models are already available in some 
cities, we also endeavour on understanding the benefit of SVI and CV in 
enhancing the LoD of existing coarse 3D building models. Considering a 
broader context, the research aims to understand whether recent CV 
techniques designed for indoor scenes can be adopted in the geospatial 
(i.e. outdoor and urban scale) domain, enabling cross-fertilisation 
among the two fields, providing also input to the CV community 
whether the developed approaches are applicable on other objects such 
as buildings and in the geospatial realm. 

Hence, this multi-pronged work focuses on using a single street-level 
image of the building and investigates whether (1) it can be used to 
directly reconstruct 3D building models with no other data; (2) the 
availability of a top view outlining the building footprint improves the 
performance of the 3D reconstruction; and (3) a single SVI can be used to 
enhance coarse 3D building models potentially resulting in their 
improved usability and increased visual appeal. Once the 3D models are 
generated, on top of evaluating the geometric accuracy, the subsequent 
objective is to assess their usability in spatial analyses — estimating the 
envelope area and volume of buildings, providing an evaluation of the 
performance that may be easier to interpret in the geospatial context. 

2. Related work 

2.1. Approaches in 3D building reconstruction 

Existing approaches to generate 3D building models are primarily 
photogrammetry, laser scanning, and procedural modelling (Suveg and 
Vosselman, 2004; Vosselman and Dijkman, 2001; Demir and Baltsavias, 
2012; Jovanović et al., 2020; Goetz, 2013; Martinovic, 2015; Bshouty 
et al., 2020). Each method is characterised by the level of detail it can 
achieve, which has an impact on its usability. The process of generation 

Fig. 1. Despite their dense geographical coverage and volume of imagery, SVI can be challenging for inferring information on buildings, as images often contain 
incomplete views on them due to occlusion by vegetation and other objects (examples (a) and (b)). Therefore, often only one image of a clear view of a particular 
building is available (example (c)). These images have been sourced from Mapillary, a volunteered SVI platform. 

1 https://www.google.com/maps  
2 https://www.mapillary.com  
3 https://kartaview.org 
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is also subject to the availability of existing data, equipment, and budget. 
Photogrammetric and airborne survey methods are usually able to 

generate photorealistic 3D building models. However, acquisition of 
aerial images and lidar point clouds often utilises equipment that is 
expensive and not widely accessible, and it requires further processing 
using specialised software to obtain building models (Fan et al., 2021; 
Jovanović et al., 2020). 

3D building models could also be generated via extrusion from 2D 
footprints (Dukai et al., 2020; Stoter et al., 2020). Nonetheless, such a 
method can only generate low-LoD models and relies on the availability 
and accuracy of building footprint and height information. Therefore, 
the barrier to achieve higher-LoD 3D models remains even in such lo
cations. Further, while footprint data might be attainable from Open
StreetMap in many locations around the world (Fan et al., 2014; Li et al., 
2022; Wang et al., 2021; Komadina and Mihajlovic, 2022) and height 
data can be approximated from other building attributes such as the 
number of storeys, data from non-authoritative sources might contain 
errors that propagate to geometrically inaccurate 3D models, potentially 
leading to unreliable results when used for spatial analyses. If height 
and/or footprint data are unavailable, which is often the case, procuring 
such information might be complex, motivating the development of a 
standalone method that does not require such information. 

2.2. Approaches in 3D building reconstruction and extracting building 
information using SVI 

Generating 3D building models from SVI has been of continuous 
interest (Zhang et al., 2021a), dating back to the work by Torii et al. 
(2009). Structure from Motion (SfM) techniques have been employed to 
reconstruct buildings by stitching a series of GSV images with known 
GPS location and camera internal parameters (Lee, 2009; Torii et al., 
2009). For example, Bruno and Roncella (2019) investigated recon
struction using GSV photogrammetric strip but reported hit-or-miss re
sults. SfM methods could only reconstruct the visible portions of the 
building, are computationally inefficient, and strongly rely on multiple 
images (the more the better) from different angles (Fan et al., 2021). 

SVI has also been used to infer building characteristics such as 
number of storeys and elevation of the ground floor (Kim and Han, 2018; 
Taubenböck et al., 2018; Kraff et al., 2020; Rosenfelder et al., 2021; 
Pelizari et al., 2021; Ning et al., 2021), which may be indirectly used to 
reconstruct 3D building models via extrusion when their footprints are 
available. For example, Chu et al. (2016) used street-level imagery to 
approximate the floor height and location of building features such as 
windows and doors, and use that information to reconstruct buildings 
procedurally. For a recent related work, see the publication of Fan et al. 

(2021). However, these approaches still rely on having a building 
footprint, inhibiting the replicability of the method in most parts of the 
world. 

2.3. 3D building reconstruction using deep learning methods 

Convolutional Neural Networks (CNNs) have been used in the 
computer vision domain to tackle problems such as image classification 
(Chen et al., 2018), segmentation (Badrinarayanan et al., 2017; Wang 
et al., 2017), object detection (Song et al., 2017), and image super- 
resolution (Johnson et al., 2016; Kim et al., 2016). 

Image segmentation has been predominantly applied to derive 
building footprints from aerial and satellite images (Alidoost and Arefi, 
2015; Mahmud et al., 2020). Yu et al. (2021) combine 5 or more aerial 
images to reconstruct detailed (LoD2) 3D models by estimating roof 
planes. Both approaches require height information and are developed 
for top view (aerial or satellite) imagery. Bacharidis et al. (2020) 
reconstruct detailed 3D building surfaces from a single RGB image by 
estimating depth and incorporating façade segmentation based on 
generative adversarial networks. Yet, this method can only reconstruct 
the visible surface, resulting in an incomplete 3D building model. The 
increasing prominence of point cloud data has also given rise to deep 
learning applications such as classification of roof types and building 
elements using 3D point clouds (Wichmann et al., 2019). 

2.4. 3D reconstruction of objects using deep learning 

The success of deep learning approaches applied on 2D images, 
coupled with large amounts of openly available 3D data, spurred the 
progress in 3D reconstruction tasks (Fu et al., 2021). Trained models 
demonstrate strong reconstruction ability by being able to infer the 3D 
geometry given only a single back or side-view image. Similar to how 
humans can infer 3D shapes from images based on our own rich expe
rience accumulation, training a model to reconstruct 3D geometries 
from 2D images requires a sufficiently large dataset of 3D models (Han 
et al., 2019). Most of the work is focused on indoor scenes and objects 
such as furniture and cars. 

Nonetheless, trained models are often unable to generalise well to 
new unseen categories (Tatarchenko et al., 2019). This corrugates to our 
findings when we applied the same pre-trained model to building images 
in the exploratory phase of this research (Fig. 2). 

To the extent of our knowledge, there are no known studies that have 
applied image-to-mesh 3D object reconstruction techniques in the CV 
domain to outdoor buildings in the function of generating 3D building 
models. Reconstruction using in-the-wild images can be rather 

Fig. 2. The top row displays the inference results using DVR model by Niemeyer et al. (2020) trained on 13 categories (bench, cabinet, car, chair, monitor, lamp, 
speaker, firearm, couch, table, cellphone, plane, watercraft) of the ShapeNet dataset (Chang et al., 2015). The bottom row demonstrated the outputs of pretrained 
DVR model when inferred on building imagery, suggesting the need to adapt and advance the state of the art to suit 3D bui.lding modelling. 
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challenging, and we investigate the validity of applying and modifying 
models developed in the CV domain for real-world outdoor images on 
buildings that may suffer from various imperfections. While this method 
presents a potential to tap on readily available real-world SVI for 3D 
building reconstruction, the lack of quality training data is an obstacle. 
We have supplemented our training using synthetic models, and this 
presents a potential to use low-cost parametric models to aid the model 
in learning geometries that are out of distribution from the ShapeNet 
dataset. Domain generalisation (from synthetic to real world scenes) is 
also explored in the work. 

3. Method 

3.1. Scenarios 

Based on the context described in the previous two sections, we are 
particularly interested in the following scenarios (Table 1), which are an 
important consideration in devising the method:  

1. Reconstruction of a 3D building mesh only from a single street-level 
image of the building.  

2. Reconstruction of a building mesh from two images — a single street- 
level image of the building supplemented with its top view (e.g. 
available from segmented satellite imagery). Such an image is 
intended to represent an insight in the building footprints, and 
technically images of footprints derived with other techniques can be 
used (e.g. rendered footprint data).  

3. Enhancing a coarse LoD1 mesh model to a more detailed building 
mesh using a single street-level image. 

Each of these approaches is important in practice and has its appli
cation. First, many areas around the world do not have building foot
print and/or 3D building model coverage (nor data such as point clouds 
or high resolution satellite imagery required to generate them), but they 
are dotted with high-quality SVI. Therefore, this work may be relevant in 
increasing the global availability of 3D geoinformation. By extension, it 
may contribute to providing 3D building models in areas that previously 
did not have any 3D coverage, at least with meshes that approximately 
convey the mass of a building, and — on a large scale — the 3D urban 
form. Second, satellite imagery and building footprints are increasing in 
coverage in some areas. We include them to investigate their usability as 
an ingredient in our method, similarly to their role in extrusion. Third, 
while the goal of this research is generation of 3D building models, it 
cannot be discounted that they already exist for many cities around the 
world. However, their LoD is most often simple. We aim to investigate 
whether we can still use SVI and CV also in such cases to have their LoD 
upgraded. In this scenario, we do not use footprint information, as LoD1 
models in practice are often based on footprints. 

3.2. Workflow and study area 

The developed methodology consists of three steps: data collection 
and processing (Section 3.3), modelling (Section 3.4), and evaluation 
(Section 3.5) (Fig. 3). 

The selected study area of this project is Helsinki, the capital and 
most populous city of Finland, primarily owing to the rich availability of 
open data required for the different steps in the method and evaluation 

of the results. 

3.3. Data sources and data preparation 

The datasets required for training a deep learning model are 3D 
building models (meshes) and street view and top view images. The 
sources and the preparation of the datasets for training is one of the 
pillars of this work, and it is described in the continuation together with 
the tools used in the process. 

3.3.1. 3D building models 
The local government of Helsinki openly released building mesh 

models4, which we use in our work. They are highly detailed and 
geometrically accurate (Fig. 4). Further, the city provides also semantic 
3D building models in both LoD1 and LoD2, a rare instance in combi
nation with meshes, which we consider in the evaluation of recon
structed volumes and surface area (Section 3.5), since for that purpose 
they are more appropriate than mesh models. 

The entire region of Helsinki is split into tiles. These raw reality mesh 
tiles were generated from aerial images, collected from an aircraft with 
five cameras that provide 80% length coverage and 60% side coverage, 
resulting in approximately 7.5 cm ground sampling distance (GSD). 
Aerial triangulation, dense image matching, and mesh surface recon
struction were all performed to reconstruct meshes from these images. 
196 reality mesh tiles containing rough segmentation labels for 6 classes 
(Ground, Vegetation, Building, Water, Vehicle, and Boat) were provided 
in the work of Gao et al. (2021). 

The next step includes cleaning the mesh tiles. Reality mesh tiles 
containing rough segmentation labels obtained from Gao et al. (2021), 
which may include incorrect labels and require manual cleaning and 
annotation using the Mesh Annotator Tool developed by the authors of 
the cited publication. 

Afterwards, geometries classified as buildings were segmented, and 
standalone buildings were saved individually using MeshLab (Cignoni 
et al., 2008). 

Because watertight meshes are required for volume estimation, the 
bottom of all meshes was cut planarly to obtain a flat surface, and all 
holes were filled. This process was conducted using Rhino (McNeel, 
2010), and it is illustrated in Fig. 5, which also doubles as an example of 
a segmented building mesh model. The final stage of data preparation of 
includes rescaling the meshes and generalise them to construct LoD1 
models for their role in the third scenario (described in Section 3.1). The 
watertight building mesh models were resized to unit cube to avoid scale 
ambiguity, and a new origin was assigned by aligning the bounding box 
centre to the origin coordinate using PyMeshLab, a Python API for 
MeshLab (Cignoni et al., 2008). The bounding boxes representing coarse 
meshes (in LoD1.0 and 1.1 according to the classification devised by 
Biljecki et al. (2016)), a common form of 3D building models, were also 
saved as the departure for mesh-refinement (third scenario). 

It may be observed that this data preparation process using real- 
world meshes is intricate and time-consuming to ensure that proper 
and correct data is used and to avoid errors that are common in real- 
world datasets (Zhao et al., 2018; Noardo et al., 2021). To limit 
manual work in data preparation and yet obtain a sufficiently large and 
diverse dataset, the reconstruction method is supplemented with syn
thetic building models, using an existing library which we extend, and 
we use the aforementioned models for testing. Following the synthetic 
route, 1018 building models were generated in a parametric approach 
using the pipeline developed by Fedorova et al. (2021). These buildings 
models contain relatively simple footprints and were all flat-roof type, 
which are not representative of the buildings in the study area. There
fore, we enhance the training dataset with more complex buildings from 

Table 1 
Investigated scenarios using a single street view image.  

Approach Input Output  
SVI Aiding data  

1 Single image – 3D building mesh 
2 Single image Top view/ footprint 3D building mesh 
3 Single image Block (LoD1) model Enhanced 3D building mesh  

4 https://hri.fi/data/en_GB/dataset/helsingin-3d-kaupunkimalli 
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another source: using Building Tools5, an open-source Blender package for manual building construction, which we modified to increase the 
diversity of the generated buildings. This allowed us to randomly 
generate 2770 textured building models with more elaborate footprints, 
height, and various roof types e.g. gable, hipped, flat, overhangs (Fig. 6) 

Fig. 3. Overview of the workflow of this study.  

5 https://github.com/ranjian0/building_tools 
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in an automatic manner. 
The subset of training data composed of synthetic instances does not 

require segmentation and refinement, motivating the use of the syn
thetic approach. 

3.3.2. Street view imagery and top views 
The geo-referenced real-world building meshes were located in 

Google Maps and Google Street View, and images of each building were 
manually sourced (street-level image from GSV and satellite image from 
Google Maps). After disregarding buildings that are not visible in GSV, 
158 building meshes were associated with their corresponding SVI. 
Finding the most representative SVI was done manually as it is difficult 
to automate the process with the API and other steps (Fig. 7). After
wards, collected SVI were segmented using DeepLabv3 (Chen et al., 
2018) (Fig. 8), an open-source segmentation model, prior to the infer
ence process described in the continuation. 

For synthetic building meshes, 24 side-views for single-view recon
struction and their associated top-down views (for the second scenario, 
i.e. single SVI  + top view reconstruction) were rendered using Blender. 

To simulate images captured from a bottom-up street-view perspective, 
a 25- and 35-mm field-of-view camera is preset at a − 10-to-5-degree 
angle elevation and 0.7 to 0.95 distance, consistent with ShapeNet 
renderings (Choy et al., 2016). With a synthetic dataset, we are able to 
generate building images from a variety of viewpoints that would be 
difficult to collect in real world SVI, providing another reason to opt for 
synthetic models in the training process. 

3.4. Modelling 

Several deep learning model architectures were experimented with 
in this phase of the work. For single-view reconstruction, we have 
adopted the state-of-the-art Differentiable Volumetric Renderer (DVR) 
architecture by Niemeyer et al. (2020). While DVR can learn both tex
tures and geometry, it is unable to be adapted for multiple inputs, which 
might help to improve the accuracy of the reconstruction mesh. Pix
el2Mesh, SphereInit and VoxMesh architectures adopted from Gkioxari 
et al. (2019) were modified to take in multiple inputs for the latter two 
scenarios. 

Fig. 4. 3D building models used in our work: (a) reality mesh models, used for training; and (b) semantic LoD2 models, which we use in the evaluation. Source of 
data: City of Helsinki. 

Fig. 5. Visualisation of a 3D building model during the data preparation phase after the segmentation stage to extract individual buildings and add planar ground 
planes to form a watertight model, enabling their use in certain applications to evaluate the usefulness of the reconstructed 3D buildings in spatial use cases. 
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For single-view reconstruction, transfer learning was employed to 
fine-tune a pre-trained model (a saved network previously trained on a 
large dataset) to our specific task of building reconstruction. DVR was 
trained on 13 categories of 30 k ShapeNet meshes (Niemeyer et al., 
2020). Since we have relatively fewer meshes for training, transfer 
learning would allow us to build upon the 3D reconstruction capabilities 

of the pre-trained model without having to start from scratch. 
In DVR, occupancy network (Mescheder et al., 2019) and texture 

fields (Oechsle et al., 2019) were implemented in a single network. DVR 
takes as input an image x and Np randomly sampled points. The Np point 
coordinates (p1,p2,p3) were encoded using a fully connected (FC) layer, 
five ResNet50 (He et al., 2016) blocks, followed by two FC layers. The 

Fig. 6. Examples of building models generated from our pipeline that relies on modified open-source software, together with their side and top views used for 
training and testing. 

Fig. 7. Retrieval of the most appropriate SVI representing a building. Many buildings are covered by multiple images from different angles, however, often only one 
or few images show an unobstructed and complete view of a building (affirming the motivation for this research). The imagery is obtained from Google Street View. 

Fig. 8. Segmentation of a building from its street view image using DeepLabv3. The original image is obtained from Google Street View.  
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final output contains Np one-dimensional occupancy probabilities and 
three-dimensional RGB colour values, from mesh models were extracted 
using marching cubes algorithm. 

For transfer learning, we unfroze the last few encoder layers and all 
decoder layers of the pretrained model to learn higher order feature 
representations specifically for building reconstruction. 

Moving on to the two-view reconstruction, architectures by Gkioxari 
et al. (2019) could only take a single image as input and requires 
modification for two-view reconstruction. Graph convolution networks 
(GCN) are commonly used for processing 3D meshes. Given feature 
vectors for each vertex in a mesh, graph convolutions compute new 
features by propagating information along mesh edges. The original 
Pixel2Mesh (implemented in TensorFlow by Wang et al. (2018)) learns 
to predict meshes by deforming and subdividing an initial sphere tem
plate using graph convolutions. 

To gain more information about the building geometry, top-down 
images which are readily available from satellite imagery could be 
incorporated. To take two images as input, both the side and top-view 
images were encoded via a ResNet50 (He et al., 2016) backbone 
(initialized with ImageNet (Deng et al., 2009) weights) and image fea
tures were concatenated (Fig. 9). A sequence of 3 GCN layers each with 
512 dimensions were stacked to aggregate information over local mesh 
regions. 

Finally, we describe the approach to tackle the third scenario — 
mesh refinement. Instead of using an initialised sphere mesh for 
refinement, a coarse LoD1.0 model represented by the mesh’s bounding 
box was taken as input (Fig. 10), with the aim of enhancing its level of 
detail. 

3.5. Model evaluation 

During training, Chamfer Distance (CD) (Fan et al., 2016) is the main 
loss metric to measure geometric accuracy, as it is typical in related 

work employed in computer vision. For each point x in pointcloud S 1 
and y in pointcloud S 2, the algorithm of CD finds the nearest neighbor 
in the other set and sums the squared distances up. As such, the CD 
between pointclouds S 1 and S 2 is computed as follows: 

dCD(S1, S2) =
∑

x∈S1

min
y∈S2

|x − y|22 +
∑

y∈S2

min
x∈S1

|x − y|22 (1)  

For fine-tuning DVR for single-view reconstruction, a combination of 
CD, occupancy, and RGB loss was used. For training of two-view and 
mesh-refinement models, CD, normal, and edge loss were applied (more 
details in A). 

To compute CD, 5000 points were sampled uniformly on the surface 
of the predicted and ground-truth meshes. For each point in the pre
dicted point set, CD finds the nearest neighbor point in the ground-truth 
pointset to calculate the squared distance (Mescheder et al., 2019; 
Gkioxari et al., 2019) (Eq. 1). The sum of the squared distances is used to 
quantify the discrepancy in geometries between the predicted and 
ground-truth meshes. 

However, a reader accustomed to the GIS domain, may notice that 
the metrics above might not give much insight into how do the gener
ated models perform in spatial analyses. Therefore, on top of CD, the 
predicted mesh models were evaluated for volume and surface area 
estimation to investigate if they are suitable for particular spatial ana
lyses. Overall, the three metrics should be read together as a whole. A 
reconstructed model with high accuracy in surface area and volume 
estimation might not necessary be geometrically accurate, which is 
something that could be conveyed by CD for a complete picture. 

Surface area and volumetric measures were computed using Mesh
Lab. As error would scale with mesh sizes, mean percentage error was 
used to quantify the discrepancy between predicted and ground-truth 
mesh volume and surface area. These metrics are not common in com
puter vision, but we introduced them to gauge the performance of the 
reconstructed 3D models in spatial analyses, as many geospatial use 

Fig. 9. Modified Pixel2Mesh architecture to take in two images.  

Fig. 10. Modified Pixel2Mesh model architecture to take in a single side-view and an initialised block mesh for refinement.  
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cases require them. Also, as the models may not always be visually 
appealing, we investigate whether we can nevertheless use them for 
spatial analyses that may not be affected by the appearance of the 
reconstructed model (as hinted at in the first paragraph in Section 1). 

4. Results 

During training, all models were trained and validated on 2645 and 
567 synthetic building meshes, respectively (Table 2). During test time, 
they were evaluated on 566 synthetic meshes and 158 real-world 
meshes. 

Tables 3 and 4 summarise the CD, mean and standard deviation of 
the % errors in volume and surface area estimation for the best model of 
different scenarios. For all metrics, the lower the better. 

4.1. Single-view reconstruction 

Single-view reconstruction has the highest CD of 0.34911 and is least 
accurate in terms of geometry reconstruction. That is not surprising, 
given that this scenario is the one with least and limited input data. 

The fine-tuned model achieved a lower CD (0.34911) compared to 
the untuned DVR model (1.5364) (Table 5), indicating that the model is 
more suited to the task of building reconstruction after fine-tuning. CD 
of models trained on ShapeNet dataset (Choy et al., 2016) range from 
0.191 (Niemeyer et al., 2020) to 1.445 (Choy et al., 2016). Although CD 
is not directly comparable due to the use of different datasets, a CD of 
0.34911 lies within the acceptable range of geometry reconstruction. 

During test time, a single input image of the building’s side-view was 
used to generate the predicted meshes. Reconstructed meshes were 
assessed qualitatively from both the side and top-view for synthetic 
(Figs. 11, 12) and real-world dataset (Fig. 13). A common observation 
among the reconstructed meshes is that they resemble the actual mesh 
from the input camera view, but not from other angles, foreseeable 
considering the limited view and irregular nature of buildings. In certain 
cases, the model can estimate the overall shape of the building, 
including even parts that are not visible from the input street view 
(Fig. 11). But in most cases, it is not able to do so, which is not surprising 
given the complex and unpredictable shapes building can have beyond 

the view we have from a single SVI (Fig. 12, 13), unlike symmetrical and 
simple objects such as furniture which are the primary subject of 
reconstruction in CV. This unpredictably may lead to substantial dis
crepancies in volume and surface area approximation. 

Volume and surface area were more severely underestimated when 
evaluated on real-world dataset, with errors of − 36.16% and − 44.54% 
respectively. From Fig. 13, single-view reconstruction was often unable 
to approximate building footprint, especially when reconstructed from 
images where the building is front facing (Fig. 13 ID 6,7). 

Due to the high errors in volume and surface area estimation in both 
synthetic and real-world datasets, the single-view reconstruction models 
would be unsuitable for such use cases. However, given that the overall 
mass of the building is inferred, these models could still be useful to 
indicate the rough 3D urban form at the urban scale. 

There are two explanations for the limited effectiveness of single- 
view reconstruction. First, buildings are a lot more complex than most 
symmetric objects used in the CV community, i.e. furniture, cars, and 
airplanes, where the back view given a front- or side-view is predictable. 
Next, SVI are usually more challenging to deal with than clean and 
flawless imagery typically used in typical CV research. In addition, 
building footprint and roof shapes might be inferrable from an aerial 
image but would be completely inaccessible from a street-view 
perspective. Hence, images captured from a street-view perspective 
usually have greater information loss. We believe that such issues are 
fundamental to singular SVI, and that it may not be possible to 
ameliorate them in the near future. 

4.2. Single SVI  + top view reconstruction 

The reconstruction augmented with the top view has a far better CD 
of 0.03571, suggesting the considerable role that the insight in the 
outline of the building provides. Various models with different param
eters were trained (Table 6). In general, training for more epochs, slower 
learning rate, and larger graph convolution dimensions improve the 
model’s reconstruction ability, as indicated by a lower CD (Table 6). 
Notably, addition of training samples with more complex footprints and 
a greater variety of roof shapes is beneficial for training, as seen from the 
large drop in CD from 0.0872 (E7) to 0.0357 (E8). A qualitative 
assessment of the best model (E8) with the lowest CD is provided in 
Figs. 14 and 15. 

Our experiments demonstrated that the addition of the top-down 
view is effective in helping the model learn to predict an accurate 
building footprint, especially if the back-view is complicated to infer 
given only the front, limited view (Fig. 14). 

A typical method to generate building models is from extrusion of 
building footprint. Such a method results in uniformly tall models 
(LoD1.1 or 1.2), and acquisition of external data sources such as height 
or number of storeys is necessary. Noticeably, having a street view 

Table 2 
Distribution of building models in the train, validation, and test sets for synthetic 
and real-world models.   

Synthetic Real-world 

Train (70%) 2645 - 
Validation (15%) 567 - 
Test (15%) 566 158 
Total 3778 158  

Table 3 
Chamfer Distance (CD) of the best model for various reconstruction 
methods on synthetic dataset.  

Scenario CD (5 s.f.) 

1. Single-view reconstruction 0.34911 
2. Two-view reconstruction 0.03571 
3. Mesh-refinement 0.03449  

Table 4 
Mean and standard deviation (SD) of errors for volume and surface area estimation for various reconstruction methods on synthetic and real-world dataset.  

Attribute Volume Estimation Error (%) Surface Area Estimation Error (%) 
Dataset Synthetic Real-world Synthetic Real-world 
Metric Mean SD Mean SD Mean SD Mean SD 

Single-view reconstruction − 30.329 24.155 − 36.167 14.241 − 41.368 35.062 − 44.541 22.416 
Two-view reconstruction − 6.332 7.396 − 10.466 8.713 − 16.189 15.067 − 32.579 16.881 
Mesh-refinement − 6.142 6.129 − 9.198 7.401 − 14.512 13.774 − 26.822 16.523  

Table 5 
Chamfer Distance (CD) for untuned and fine-tuned 
model.  

Epoch CD (5s.f.) 

1018 (Untuned) 1.5364 
1404 (Fine-tuned) 0.34911  
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Fig. 12. Cases in Scenario 1 in which the method was not able to entirely infer the shape of the building.  

Fig. 11. Cases in Scenario 1 in which the method managed to infer the correct shape of the building.  
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Fig. 13. Inference in Scenario 1 of fine-tuned model on a single SVI.  
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Table 6 
Trained models and parameters for two-view reconstruction.  

Experiments Architecture Samples Epochs Learning Rate Graph Convolution dimensions CD Inference speed [seconds] 

E1 Pix2mesh 712 20 0.0001 64 0.809234 0.36 
E2 Pix2mesh 712 40 0.0001 128 0.599279 0.85 
E3 Pix2mesh 712 45 0.00007 128 0.150874 0.85 
E4 Pix2mesh 712 80 0.00005 128 0.246400 0.85 
E5 SphereInit 712 80 0.00005 256 0.114465 0.69 
E6 Voxmesh 712 40 0.00005 128 0.095553 0.96 
E7 Voxmesh 712 80 0.00005 128 0.087227 0.96 
E8 Voxmesh 2645 80 0.00005 128 0.035709 0.96  

Fig. 14. Side and top-view of synthetic and predicted meshes (Scenario 2).  
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image provides useful information to reconstruct meshes with non- 
uniform height, similar to that of a LoD1.3 model (Fig. 15). The 
trained model is also able to learn roof overhangs in some of the meshes 
(Fig. 15), which could avoid the problem of overestimating the volume 
by simply extruding based on the top-down view. Lastly, the trained 
model is able to predict different types of roof shapes i.e. hipped, gabled, 
providing models at the grade of LoD2, surpassing the LoD of most 
widely available models. In all cases, volume estimation from these 
meshes is more accurate than those extruded from building footprints 
with a uniform height. 

When applied to volume estimation, the reconstructed mesh has a 
relative error of − 6.332% and − 10.47% on synthetic and real-world 
dataset, respectively. These errors may be acceptable for a number of 
spatial analyses, and it demonstrates that while visually the models may 
not be always very polished and visually appealing, this is not an issue 

for certain spatial analyses. In general, predicted models tend to un
derestimate the volume. Notably, the standard deviation is rather large, 
and it could be attributed to the model’s inability to reconstruct complex 
objects such as those in Fig. 16, which may account for occasional large 
errors skewing the error metrics. 

While the coarse predicted meshes are suitable for volume estima
tion, they are less ideal for envelope area estimation, having a relatively 
larger error of − 16.19% for synthetic and − 32.579% for real-world 
datasets (Table 4). The predicted meshes often lack finer detailed fea
tures such as the railed balconies in Fig. 17, which leads to an under
estimation of surface area. Nevertheless, errors of this magnitude are not 
uncommon in datasets derived using traditional techniques and models 
generated using this approach are not necessarily inferior to many real- 
world datasets. 

While the volume estimation is still within an acceptable range, we 

Fig. 15. Trained model was able to predict buildings (a) of non-uniform height (b) containing overhangs and (c) of non-flat roof types (Scenario 2).  

Fig. 16. Inferior results in reconstruction (occluded back-view and complicated footprint) (Scenario 2).  

Fig. 17. The approach may not be able to derive detailed features (e.g. railings are not captured), leading to propagation of errors to spatial analyses, such as the 
underestimation of the envelope area. 
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would not always recommend using the predicted models for surface 
area estimation, depending on the sensitivity of a particular use case to 
the magnitude of input errors. The higher errors when evaluated on real- 

world dataset could be due to the complexity of real-world building 
models. For instance, finer details such as balconies (Fig. 18 ID 4,6) and 
dormers on the roofs (Fig. 18 ID 2–3) were obviously not possible to 

Fig. 18. Side and top-view of real-world and predicted meshes (Scenario 2).  

Table 7 
Trained models and parameters for mesh-refinement.  

Architecture Epochs # Samples Lr Graph Conv dimensions CD Inference speed [s] 

Pixel2Mesh 30 712 0.00005 128 0.0949973 0.96 s 
Pixel2Mesh 80 2645 0.00005 128 0.0344915 0.96 s  
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predict, which leads to a considerable underestimation of building en
velope area (-32.579%). 

4.3. Mesh-refinement 

The two scenarios described so far reconstruct a 3D building model 
from scratch. The final scenario focuses on using the approach to 
enhance the LoD of existing coarse 3D datasets. Similar to two-view 
experiments, training for longer epochs and more samples helped to 
improve reconstruction accuracy, as indicated by the lower CD 
(Table 7). 

The mesh-refinement model also provides a slightly more accurate 
estimation of volume and surface estimation of − 6.14% and − 14.51%, 
as compared to − 6.33% and − 16.19% from two-view reconstruction 
(Table 4). 

Errors for volume and surface area estimation are − 9.198% and 
− 26.822% when evaluated on real-world datasets, which are higher 
than synthetic dataset, but lower than that of two-view reconstruction. 

The mesh-refinement method is more accurate as it takes a LoD1.0 
model as input, which means that the height estimation is accurate and 
it does not need to be inferred from the image (Fig. 19). The implication 
of these results is that SVI can be used to refine the LoD of a coarse 
(block) 3D model, enhancing its quality and usability (Fig. 20). This 
approach may be scaled widely, as SVI is now available in most cities 
around the world, especially in those that are covered by low-LoD 3D 
city models. 

4.4. Evaluation 

Reconstruction with only a single side-view image as input proved to 
be a difficult task for buildings, but not impossible and the results may 
still be relevant for certain use cases. While the predicted models are 
unable to capture the finer details of the building geometry and un
derestimate the building surface area, meshes generated from two-view 
reconstruction or enhanced using mesh-refinement method could be 
used as a coarse approximation of the building form, akin to LoD1 
models that are standard and perfectly usable in the research community 
and industry for a variety of use cases. 

The most suitable method ultimately depends on the data avail
ability. Although mesh-refinement fared slightly better than two-view 
reconstruction in terms of geometry, volume, and surface area estima
tion, it requires an LoD1.0 model as input. While building footprints are 
available widely (e.g. OpenStreetMap contains more than half billion 
buildings at the time of the submission of this paper), their heights are 
not. These buildings are concentrated in Europe and North America 
(Bshouty et al., 2020). Where LoD1.0 models are common, or there is 
data for their extrusion, we hope that our method can be used to increase 
their level of detail, contributing to their further application. 

Considering the similar performance between both methods and data 
availability considerations, reconstruction aided by the delineated 
footprint seems to be the most promising scenario and most scalable 
approach for real-world applications. 

In conclusion, while the results suggest that reconstructing 3D 
building models from single street view images will not be the most 
accurate method to do so, it will often be the only possible method (and 
providing entry-level 3D geoinformation) and the results are not unex
pected given the sparsity of the input data. Nevertheless, the results may 
reveal the approximate urban form, which is relevant for applications 
such as population estimation, urban morphology, and noise propaga
tion, in which only the coarse building mass is valuable and sufficient. 

In the evaluation, for future work, we will consider involving 
airborne lidar data, which may provide further insights in the 
performance. 

4.5. Limitations 

The process of preparing real-world data exposes several issues, thus, 
together with the flexibility of procedural models and their unlimited 
rendering capabilities, it affirms our motivation to follow the synthetic 
route for much of the method. However, these benefits come at a price: 
since this study is mainly trained on synthetic buildings, the trained 
model might not generalise to some complex buildings that contain 
features it has not been trained on e.g. patio, dormers, windows. Addi
tional studies could focus on generating more complex textured building 
models in an automatic manner or find an efficient method to collect 
real-world building meshes. Further, while we generate buildings as 

Fig. 19. Output meshes refined from LOD1.0 block model and input image.  
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close to those in real-world using a rule-based approach, as it is the case 
with other work that uses synthetic data, there may be some cases of 
unrealistic instances that may not be found in the real-world. 

In addition, the collection of representative building SVI is currently 
done manually. Future efforts could investigate if it would be possible to 
automatically determine usable SVI for reconstruction, e.g. by auto
matically detecting whether an image contains an obstructed view of a 
building. 

Remaining key limitations pertain to SVI data, which often provides 
an incomplete view. This limitation is precisely why we embarked to 
conduct this research developing an approach to work with single im
ages, but sometimes it was not possible to gather even that single usable 
and sufficiently clear image of a building. The scalability and coverage 
of the method is limited by the availability of SVI — there are still many 
cities without SVI, and in those cities where SVI is available, the 
coverage is often partial (e.g. collected from main roads, so buildings 

Fig. 20. Side and top-view of real-world and predicted meshes (Scenario 3).  
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along tertiary roads are not imaged). Thus, in practice, not all buildings 
in a city may be reconstructed, unlike in the case with data derived from 
airborne platforms. 

5. Conclusion 

Billions of street view images covering most of the world contain 
much information about buildings, which has not been fully exploited 
for generating 3D building models using deep learning. As of our 
knowledge, this work is the first application of image-to-mesh recon
struction techniques to outdoor scenes and buildings. We believe that 
focusing on single street view images is an important contribution 
because of vegetation and other obstacles in imagery in practice, as in 
many cases only one clear image of a particular building is available, 
inhibiting standard photogrammetric and other approaches that require 
multiple images. Further, this work is relevant as we believe that SVI as a 
data source for generating 3D city models will grow in importance, not 
only due to increasing coverage and quality but also because it offers 
some advantages over other sources, e.g. the ground-level perspective of 
SVI may provide more detailed insight into buildings and other features 
when they are obstructed to aerial and satellite platforms such as due to 
thick canopies. 

The method that we have developed outputs a 3D mesh model from a 
single image without additional information such as building footprint 
or height, which are often not available, and it presents as a new method 
for acquiring 3D geospatial data. For cities with coarse 3D models, mesh 
refinement could be applied to enhance existing 3D building datasets. In 
addition, by coupling 3D and SVI data, we also present a contribution in 
the integration of these two sources. 

We find that single-view building reconstruction using street-level 
imagery may provide models that indicate their approximate size and 
shape, but accuracy remains constrained primarily because of the 
inherent nature of SVI — gathering information on buildings is limited 
from a single or sparse horizontal view, and the parts of the building not 
visible in the image remain difficult to predict. This limitation is in 
contrast with the convenience of indoor scenes and symmetric objects 
such as furniture, which have been the main focus of such methods. 
However, augmenting the method with footprints, which are available 
in many places around the world, may provide sufficient information for 
3D reconstruction, with results comparable to the mesh-refinement 
method. 

We have demonstrated that a single SVI of the building side-view 
might provide vital information such as roof shape and overhangs, or 
if the building is of non-uniform height (improving the detail of LoD1 
models, which do not regard the roof shape). This allows the trained 
model to reconstruct buildings that are more geometrically accurate as 
compared to simply extruding a basic volumetric shape from building 
footprints. Although the reconstructed models lack fine-grained details 
and are not necessarily usable for all visualisation purposes, the pre
dicted data may be useful for spatial analyses such as volume 

computation, which are important to use cases in energy simulations, 
population estimation, and more (Mathews et al., 2019; Fibæk et al., 
2021). Further, it may also support studies in urban morphology, noise 
propagation, and change detection (Rastiveis et al., 2013; Xu et al., 
2017; Vitalis et al., 2019; Stoter et al., 2020; Meouche et al., 2021; Chen 
et al., 2021; Lu et al., 2021), for which such data may be of sufficient 
detail and quality. 

As SVI is now available in most countries worldwide, the results 
indicate that our method can contribute towards deriving rapidly and 
cost-effectively the 3D urban form, paving the way to low-cost large- 
scale 3D reconstruction, which may serve well locations where 3D 
models are not available, which is — unlike SVI — the majority of the 
world. Obtaining 3D building models in regions that do not have any, 
may enable a number of 3D geospatial analyses locally for the first time 
and may even result in new applications catering to local challenges in 
regions that are seeing their first instances of 3D models. For example, 
the novel application of 3D building models to estimate the potential for 
urban farming was introduced by Palliwal et al. (2021) shortly after the 
first open 3D dataset of the study area became available, contributing to 
the topical local challenge of investigating the potential of buildings as a 
venue for food production (Song et al., 2021). 

An idea for future work would be to generate building models with 
textures and finer details, as textured models are useful for visual-based 
applications such as augmented reality and positioning aiding. The 
current approach utilises supervised training which requires 3D mesh 
models that are time-consuming and laborious to collect. Additional 
research could investigate unsupervised approaches. 

Further, as satellite methods to measure the height of urban blocks 
have been developing (Geis et al., 2019; Chen et al., 2020b; Li et al., 
2020; Frantz et al., 2021; Esch et al., 2022; Zhu et al., 2022), we plan to 
investigate whether our work can aid such efforts, e.g. to delineate the 
form of individual buildings. 
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Appendix A 

A.1. Additional losses for single-view reconstruction experiment – Occupancy loss and RGB Loss 

For training the differentiable volumetric renderer model for single-view reconstruction, binary cross-entropy (BCE) loss will be used, and it is 
defined following the paper of Mescheder et al. (2019) as: 

LBCE = −
1
N

∑N

n=1
[pnlogqn + (1 − pn)log(1 − qn) ]

Here, N represents the total number of points in the 3D occupancy grid, pn is the ground truth probability (1 or 0) of the filled occupancy, and qn is the 
prediction probability. 
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A.2. Additional losses for multi-view reconstruction and mesh refinement experiments – Normal and edge loss 

For training the mesh deformation model for multi-view reconstruction and mesh refinement using a single image, a weighted sum of the CD, 
normal distance, and edge loss was used to calculate the mess loss. 

The absolute normal distance is given by: 

dNorm(S1, S2) = −
∑

x∈S1

min
y∈S2

⃒
⃒Ux − Uy

⃒
⃒ −

∑

y∈S2

min
w∈S1

⃒
⃒Ux − Uy

⃒
⃒

To measure the reconstruction goodness, CD and normal distances penalize mismatched positions and normals between two point clouds but 
minimizing these distances results in degenerate meshes (Gkioxari et al., 2019). High-quality mesh predictions require additional shape regularisers. 
Following Gkioxari et al. (2019), an edge loss is used, 

Ledge(V,E) = −
1
|E|

∑

(v,v′ )∈E

⃒
⃒Ux − Uy

⃒
⃒2

2  

where E contains the set of edges of the predicted mesh. During training, the objective is to minimise the mean of the mesh loss, which is a composite of 
CD, normal distance, and edge loss. 
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