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A B S T R A C T   

Unsupervised learning (UL) has a long and successful history in untangling the complexity of cities. As the 
counterpart of supervised learning, it discovers patterns from intrinsic data structures without crafted labels, 
which is believed to be the key to real AI-generated decisions. This paper provides a systematic review of the use 
of UL in urban studies based on 140 publications. Firstly, the topic, technique, application, data type, and 
evaluation method of each paper are recorded, deriving statistical insights into the evolution and trends. Clus-
tering is the most prominent method, followed by topic modeling. With the strong momentum of deep learning, a 
growing application field of UL methods is representing the complex real-world urban systems at multiple scales 
through multi-source data integration. Subsequently, a detailed review discusses how UL is applied in a broad 
range of urban topics, which are concluded by four dominant themes: urbanization and regional studies, built 
environment, urban sustainability, and urban dynamics. Finally, the review addresses common limitations 
regarding data quality, subjective interpretation, and validation difficulty of the results, which increasingly 
require interdisciplinary knowledge. Research opportunities are found in the rapidly evolving technological 
landscape of UL and in certain domains where supervised learning dominates.   

1. Introduction 

Cities, the most sophisticated creation of people, are believed to have 
hidden patterns in their physical forms and day-to-day functioning 
(Batty, 2008; Bettencourt & West, 2010). The growing availability of 
urban data and machine learning techniques that enable automatic 
pattern recognition from massive datasets have gained momentum in 
serving researchers to untangle the complexity of cities, thereby 
informing urban interventions and giving rise to data-driven planning 
(Athey, 2017). For example, they have been used routinely to monitor 
urban change (Schneider, 2012), evaluate socio-economic well-being 
(Jean et al., 2016), and assess our physical surroundings (Doersch et al., 
2012; Ito & Biljecki, 2021). 

Machine learning has been integral to urban studies for myriads of 
purposes, and the permutations of techniques and datasets that have 
permeated the field are seemingly endless. As evident by the reviews of 
Grekousis (2019) and Ullah et al. (2020), most applications of machine 
learning in urban studies rely on supervised techniques. In such ap-
proaches, workflows rely on a sample of input (training) data that is 
labeled with known values or categories. These are used to develop 

predictive models to estimate unknown values and explain relationships 
among phenomena. While supervised methods have proven to be useful 
for a wide range of applications and datasets, they do not purport to 
answer all research questions, and various challenges remain, e.g. 
obtaining training data as the real-world urban data is largely unlabeled 
(Zheng et al., 2014). 

Another broad category of machine learning, unsupervised learning 
(UL) infers patterns from unlabeled data, unleashing further potential of 
making sense of dynamic and massive datasets in urban studies. In 
contrast to supervised learning (SL), these techniques pay no attention to 
structured semantic relationships, and therefore, are suitable to be 
applied to heterogeneous data such as text, imagery, audio, and video 
(Jain, 2010). Unlike supervised learning, which manually presets a goal 
to predict outcomes, unsupervised learning determines what is relevant 
based on data features (El Bouchefry & de Souza, 2020), providing new 
perspectives for urban studies beyond human's a priori knowledge. In 
this regard, unsupervised machine learning is believed to be the 
pathway to real artificial intelligence (Bengio et al., 2013), which 
fundamentally understands the world around us and is the key to AI- 
generated design and policies. Under the prevailing trend of 
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interdisciplinary GeoAI research (Janowicz et al., 2020; Liu & Biljecki, 
2022), UL is instrumental in learning spatial representations and se-
mantic enrichment of spatial data infrastructure (Huang et al., 2022; 
Jenkins et al., 2019). 

While they have been overshadowed by the popularity and uptake of 
supervised learning techniques, unsupervised counterparts also have a 
long and successful relationship with studying cities, as we will confirm 
in this paper. They have been instrumental in uncovering patterns from 
growing urban datasets and untangling their complexities: for many 
years, methods such as hierarchical clustering analysis (HCA) and 
principal component analysis (PCA) were recognized to be crucial in a 
diverse set of investigations include evaluating built environment 
quality (Bonaiuto et al., 2003) and suburban study (Mikelbank, 2004). 
Over the past two decades, UL methods have prospered across a wider 
spectrum of urban studies and related domains, and the volume of 
publications featuring them has expanded remarkably, as we will show 
in this review paper. Among others, UL techniques support studies in the 
domain of assessing urbanization processes (Cottineau et al., 2017), 
investigating travel patterns (Sun & Axhausen, 2016), understanding 
sustainability and ecology (Richards & Tuncer, 2018), semantic mean-
ing extraction of urban spaces (Gao et al., 2017), urban perception 
(Capela & Ramirez-Marquez, 2019), quality assessment of spatial data 
(Jacobs & Mitchell, 2020), and analyzing energy performance (Oh & 
Kim, 2019). Such diffusion of UL applications is associated with the 
proliferation of diversity and volume of urban data, and the rapid ad-
vancements of UL techniques and their ease of use (e.g. accessible 
implementations). The trend is expected to continue, as AI scientists 
posit that UL will become even more important in the future (LeCun 
et al., 2015). However, despite their demonstrated importance, signifi-
cance, and growing uptake in urban studies, no comprehensive review 
was conducted to summarize UL applications in the urban context and 
understand trends, a gap which we seek to bridge in this paper. This void 
is in contrast with other fields, such as biomedical research and building 
performance analysis, in which the role of unsupervised learning has 
been subject of reviews (Miller et al., 2018; Xu & Wunsch, 2010). 

In this paper, we systematically review the use of unsupervised 
learning in urban studies, with a highlight on the state of the art of the 
main techniques and their applicability in a broad range of topics. We 
hope to provide informative resources to researchers seeking to leverage 
UL for research related to cities, but also have this review to double as a 
reference for researchers who are yet to become acquainted with such 
techniques. We define the scope of urban studies as: urbanization and 
regional studies, built environment, urban sustainability, and urban 
dynamics (Fig. 1), four themes that have largely been the focus of urban 
research or initiatives over the past decades. 

In Section 2, we provide a high-level overview of unsupervised 
learning and its capabilities. Section 3 describes the methodology of this 
systematic review, while Section 4 offers statistical insights to the 
reviewed papers. The wide spectrum of UL applications is discussed in 
Section 5, where the contents are adherent to the four thematic urban 
study groups. Further, in Section 6, we reflect on the common patterns in 
this study area, limitations of unsupervised methods, implementation, 
and future opportunities. Finally, Section 7 concludes the paper. 

2. Unsupervised learning background 

It is beneficial to give an introduction to unsupervised learning, 
clarifying its aims and what tasks it is suited for, together with an 
overview of methods. The major difference between the UL and SL is 
whether the model uses known values as supervisory signals. That is, 
supervised learning uses labeled data to infer patterns and train a model 
to label unseen data, while unsupervised learning uses only unlabeled 
data, and does so for the purpose of discovering patterns, e.g. grouping 
similar features. It is often employed in applications where labeling is 
expensive or where it is not relevant. 

Here we introduce three general categories: clustering, signal 

decomposition, and neural networks. To better demonstrate their ca-
pabilities from a practical perspective, we use an urban dataset which 
contains multiple representative urban data types as case study. The 
selected dataset is on listings on Airbnb in Singapore with their prop-
erties (e.g. type of listing, number of bedrooms, and price) and reviews 
(text and numerical scores). The data is courtesy of Inside Airbnb,1 a 
project that provides open data that quantifies the impact of short-term 
rentals on housing and residential communities, and it is frequently used 
in research (Gurran et al., 2018; Li & Biljecki, 2019). 

2.1. Clustering 

Clustering is the most established subcategory of UL, which identifies 
subgroups within a raw, unlabeled dataset by similarities and differ-
ences in features (Jain, 2010). There are multiple clustering techniques, 
with k-means (Hartigan & Wong, 1979) being the most prominent one. 
In this method, clustering is done by moving centroids and assigning 
points closest to a given centroid into the same group. In such a case, 
data points within a cluster share common properties whereas differ-
ences among clusters are clear. The number of clusters is specified by the 
user. 

Fig. 2 demonstrates a k-means clustering on the dataset, the data 
points are divided into four groups based on two dimensions of infor-
mation. The input dimensions of clustering algorithm can be more than 
two, in fact, one of the most common applications of UL in urban studies, 
as identified by our review, is clustering by multi-dimension features for 
discovering typologies (Section 5). Fig. 3 gives an example to this 
application — Airbnb data points are clustered by four features, deriving 
4 typologies distributed across the city. 

More clustering techniques covered in this review include hierar-
chical clustering analysis (HCA), which reveals the hierarchical struc-
ture of clusters, density-based spatial clustering of applications with 
noise (DBSCAN) (Ester et al., 1996), which is location-aware and suit-
able for spatial data, spectral clustering (Ng et al., 2001), affinity 
propagation (AP) (Frey & Dueck, 2007), and Gaussian mixture model 
(GMM) (Zivkovic, 2004). 

2.2. Decomposing signals 

This category summarizes techniques that extract feature compo-
nents from composite signals (e.g. image, text, numeric value), the result 
of which is high-dimensional data being mapped onto a low dimensional 
space while retaining internal structure (reduction of dimensionality) 
(Blei et al., 2003; Lever et al., 2017). One representative technique is 
principal component analysis (PCA) (Wold et al., 1987), which com-
presses datasets through linear transforming input variables into 
“principal components”, i.e. new data representations composed of 
input variables. 

Through PCA, we are able to visualize the four-dimensional features 
of Airbnb typologies in a two-dimensional space (Fig. 4). The four fea-
tures are “compressed” and represented by two principal components, 
the colored axes indicate their directions. In practice, PCA is generally 
performed before clustering for simplifying the interpretation of multi- 
dimensional data. It is also effective in identifying the most salient 
features. 

Another popular technique is latent Dirichlet allocation (LDA) (Blei 
et al., 2003), which generates explicit representations of collections of 
discrete data (e.g. text corpus) by topics, i.e. lists of weighted observa-
tions. It is often applied for topic modeling tasks, for example, discov-
ering latent topics discussed on social networks. It facilitates 
understanding people's perception of the environment from volunteered 
data such as neighborhood reviews (Hu et al., 2019). 

We present the topic modeling result on the reviews of rental listings 

1 http://insideairbnb.com/. 
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in Fig. 5 — ten major topics are discovered and each of them contains a 
series of weighted relevant terms. In the selected topic, the most char-
acteristic words include “place”, “mrt” (metro system), “convenient”, 
indicating the importance of particular topics to guests. To make the 
LDA result sensible to the non-experts, it generally requires human 
interpretation. 

The applications of signal decomposition techniques are versatile 
compared to clustering, for example, it is widely adopted for anomaly 
detection, feature extraction, topic modeling, and change detection 
tasks. Other related techniques include latent semantic analysis (LSA) 
(Landauer et al., 1998) and t-distributed stochastic neighbor embedding 
(t-SNE) (van der Maaten & Hinton, 2008). 

2.3. Unsupervised neural networks 

Unsupervised neural networks are an active research field of UL 
techniques, which advanced rapidly thanks to the progress in deep 
learning. Artificial neural networks are comprised of three types of node 
layers — input layer, multiple hidden layers, and output layer. Through 

the flowing and interactions of signals across layers, it has the ability to 
model complex non-linear relationships that are common in real-world 
problems (Schmidhuber, 2015). 

Self-organizing map (SOM) (Kohonen, 1990) is a classical shallow 
neural network, which associates the neurons in input layer and output 
neurons that summarize many observations in a two-dimensional grid 
map (Fig. 6). The training process is similar to clustering, i.e. neurons 
compete with others to group around closest centroid neurons. 
Compared to k-means clustering, SOM does not require preset cluster 
number, the neurons will gravitate toward the natural clusters learned 
from the data structure. Therefore, it is suitable for learning and visu-
alizing patterns in datasets that have large variations. 

Deep neural network with more hidden layers has been gaining 
strong momentum recently. Representative models include autoencoder 
(AE) (Hinton & Salakhutdinov, 2006) and generative adversarial 
network (GAN) (Goodfellow et al., 2014). 

AE leverages neural networks to learn representations for input data 

Fig. 1. Urban study topics can be categorized into the four thematic groups. This review examines the applications of unsupervised learning techniques in providing 
insights spanning the landscape of urban studies. 

Fig. 2. k-means clustering on Singapore Airbnb price and review score, results 
in 4 groups. 

Fig. 3. k-means clustering on Singapore Airbnb features (capacity, number of 
bedrooms, price, and review scores), results in 4 typologies. Basemap: (c) 
OpenStreetMap contributors. 
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while ignoring insignificant noise (encoding), further reconstructing the 
data through the learned features (decoding) (Fig. 7). Through 
comparing the reconstructed data with the input data, the model per-
formance can be evaluated. During the encode-decode process, it can 
compress the data with minimal reconstruction error, detect the most 
salient features and anomalies, and generate new data that is similar to 
the input, i.e. make predictions. 

GAN uses a discriminator to produce self-supervision signals for fine- 
tuning results from a randomized generator, therefore is able to produce 
new data output as realistic as the original input (Fig. 8). It catalyzes the 
development of applications such as image-to-image translation, video 
prediction, 3D object generation, and so forth (Wu & Biljecki, 2022). 
Restricted Boltzmann machine (RBM) (Hinton et al., 2006) is also 
included in this review. 

3. Methodology 

3.1. Overview 

To identify papers employing UL in urban studies, we follow the 
PRISMA protocol of systematic review (Moher et al., 2009) following the 
practices of recent reviews in the field (Biljecki & Ito, 2021; Zhao et al., 
2021). First, we conducted a systematic search using reproducible syn-
tax in a bibliographic database, fetching an initial literature pool of 668 
papers. The relevancy of the papers were further examined based on 
several criteria through manual screening, 140 papers are included for 
this review. The details of the two steps are described in the following 
subsections. 

3.2. Searching methods 

We performed a search for relevant papers in the Web of Science 
(WOS) database. The search syntax consists of two groups of keywords. 
The first set zeroes in on papers that pertain to cities and the urban 
context, while the second one aims to delineate publications that engage Fig. 4. PCA applied on the short-term rental dataset. The 4-dimensional fea-

tures are reduced to two. 

Fig. 5. Discovering 10 Airbnb review topics through LDA. The red color highlights the selected topic and its corresponding terms frequencies. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Architecture of self-organizing map (SOM).  
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unsupervised learning. Their intersection signifies the focus of our 
review. 

For the first group, we set the expression “urban* OR city”. The 
asterisk expands the search to include variations of the key search terms, 
covering words such as urbanization and urbanism. Since these terms 
appear frequently in articles from other fields that are not in the focus of 
this review (e.g. computer science and medicine), it was an imperative 
to narrow the search scope. Deriving a more focused result was 
accomplished by limiting the search to the following subject categories 
in WOS: Environmental Studies, Geography Physical, Green Sustainable 
Science Technology, Geography, Engineering Civil, Urban Studies, and 
Regional Urban Planning. 

The second set of keywords aims to identify articles that use unsu-
pervised learning methods. At first, we followed the same approach as 
UL review in other field (Li, Shepperd, & Guo, 2020), using ‘unsuper-
vised OR unlabeled’, yet the results suggested that almost all papers 
belong to the field of remote sensing, with the exception of a small 
number of articles published in the last two years. This is an interesting 
phenomenon: the term “unsupervised” dominates the field of remote 
sensing, but it is often not found explicitly in other sub-areas of urban 
research. To ensure the diversity of the literature pool, we re-ran an 
exploratory search in Google Scholar and found that the relevant articles 
rather specified the techniques used in the abstract or keywords (e.g. 
PCA, k-means clustering), which belong to the large umbrella of unsu-
pervised methods. Therefore, we added the UL techniques listed in 
Section 2 to the search syntax in WOS. Note that because too many 
papers apply PCA for dimensionality reduction without producing in-
sights, this review will focus on its use for feature extraction. For a more 
thorough review on PCA and spatial data, the reader is referred to the 
paper of Demšar et al. (2013). 

In the same way as the previously published reviews in the field 
(Ibrahim et al., 2020; Ma et al., 2019), we included only peer-reviewed 
papers written in English and published in academic journals, finally 
collecting 668 papers that range from 1996 to 2021 (until 19 October 
2021, when the final search was executed). The full search syntax is 
attached in Appendix A. 

3.3. Inclusion criteria 

After deriving the initial literature pool, we proceeded to manually 
select those that are relevant for our review: we screened the titles, 
abstracts, and keywords of papers to assess their relevance to our 
context. We established the following criteria that a paper should meet 
to be considered relevant for this review.  

1. The study is conducted in an urban or peri-urban area.  
2. It is predominantly an urban studies paper, which represents or 

predicts the patterns in an urban system. To clarify the fuzzy 
meaning and ameliorate the blurry boundaries of our area of focus, 
we summarized four fundamental and trending thematic groups in 
urban analytics and practices. The included papers should belong to 
one of the following themes:  
(a) Urbanization and regional study: the divergence and change of 

cities that are shaped by economic, social and political powers at 
the macro level (Brenner, 2013). It can either be a physical 
process (e.g. land use change) or reflected in socio-economic 
well-being.  

(b) Built environment: the human-made physical space in which 
people live, work and recreate on a daily basis (Roof & Oleru, 
2008). Typical examples are building blocks, streets, and public 
spaces. 

(c) Urban sustainability: collection of study topics such as biodi-
versity, ecosystem service, air pollution, and heat island effect 
(Verma & Raghubanshi, 2018). Such insights help cities to 
develop in a sustainable and resilient manner.  

(d) Urban dynamics: monitoring and predicting the patterns of 
people's activity, traffic flow and utilities demand (Gao, 2015), 
leading to smarter urban management or business decisions. 

Our review (Section 5) gives specific examples of how UL is 
employed in each of these themes.  

3. The paper is using one or more unsupervised methods. This step was 
crucial, as we have encountered a number of papers that happen to 
contain the same acronym as an UL technique but carrying a 
different meaning.  

4. Unsupervised learning is the primary analysis method. This criterion 
is necessary to keep only papers in which UL techniques predomi-
nate. For example, papers that use UL only for minor or peripheral 

Fig. 7. Architecture of Autoencoder (AE).  

Fig. 8. Architecture of generative adversarial network (GAN).  
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tasks such as data pre-processing or comparative study are not 
considered to meet this criterion and are thus excluded from 
consideration.  

5. The methods proposed in the study are tested on real-world datasets 
instead of being purely theoretical, generating substantial insights 
for researchers or implications for practitioners. 

Following the screening of the papers in the initial pool, we took 
forward 140 papers that satisfy the criteria above. 

4. Results and overview 

The papers selected for this review turned out to focus on a variety of 
urban challenges and feature a diverse set of approaches, datasets and 
tools, affirming the permeation of unsupervised learning through urban 
studies (Fig. 9). This section describes the general trends and insights of 
the reviewed papers, based on a set of information extracted during 
review (Table 1). Fig. 10 indicates the temporal evolution of unsuper-
vised learning permeating through urban studies, and the change in 
share of each research category. Recently, there is a clear upsurge in the 
number of publications, which has increased fivefold from 2016 to 
2021. With relevant papers proliferating rapidly, it is necessary and 
timely to summarize previous works and follow up with recent 
advances. 

Regarding the share of categories, there are notable differences 
among them — the number of papers related to Urban Dynamics is twice 
of those pertaining to Urban Sustainability. It is also worth noting that 
although the application in Urban Dynamics started later than in other 
areas, it has gained considerable attention in recent five years. Aside 
from that, Built Environment has always been a field of interest, e.g. 
Owen et al. (2006) use a clustering algorithm in an early investigation of 
automatic land cover classification. 

In Fig. 11, we break down the annual publications by their applica-
tion types. The categorization of the applications is determined through 
summarizing common types from multiple related studies (Jing & Tian, 
2019; Miller et al., 2018; Usama et al., 2019), while fine-tuning ac-
cording to the contents in the literature pool. Note that due to the nu-
ances in underlying techniques, the eight types are not mutually 

exclusive (e.g. topic modeling with clustering). However, we believe this 
level of detail in categorization is necessary for outlining the funda-
mental objectives of UL applications. The result suggests a steady growth 
of research relying on clustering, which is associated with the overall 
growth of paper volume. Topic modeling is an observable emerging 
topic with a considerable proportion of papers published in recent three 
years. This growth may be linked to the proliferation of readily available 
geo-tagged text data such as social media posts and Point of Interest 
(POI) data (Huang & Li, 2019; Wang & Taylor, 2019). It is also note-
worthy that there is a new subset of papers inspecting prediction ap-
plications, virtually all of which focusing on traffic prediction (Chen 
et al., 2021; Ranjan et al., 2021; Zhang et al., 2021), with just one 
exception that simulates urban growth and housing dispersal by 
Generative Adversarial Network (GAN) (Ibrahim et al., 2021). 

Deriving from the data structure, the analysis result of unsupervised 
learning has a close connection with the input data. The numerous 
permutations of data types and methods create a very diverse landscape 
of research in this topic. In Fig. 12 we extract three core features that 
characterize a study: category, application, and the data type been used, 

Fig. 9. Conceptual structure of the reviewed papers by correspondence analysis of keywords. Incidentally, unsupervised learning methods are useful in bibliometrics, 
e.g. clustering a large set of papers and establishing categories. The figure is created by an R package developed by Aria and Cuccurullo (2017). 

Table 1 
Examples of information extraction.  

Relevant 
publication 

Extracted information 

Category Application 
type 

Data type Technique 

(Akande 
et al., 
2019) 

Urban 
sustainability 

Factor 
extraction 

Numeric Hierarchical 
clustering 

(Delmelle, 
2017) 

Urbanization 
and regional 
study 

Clustering Numeric Multiple 

(Gao et al., 
2017) 

Built 
environment 

Topic 
modeling 

Multi- 
source 

LDA 

(Samany, 
2019) 

Built 
environment 

Feature 
extraction 

Image RBM 

(Hu et al., 
2015) 

Urban dynamics Clustering Image DBSCAN 

(Chen et al., 
2021) 

Urban dynamics Prediction Spatio- 
temporal 

Autoencoder  
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revealing the share and relationships among the feature segments. The 
first key observation is that clustering is the most common practice for 
papers in all categories, especially is a substantial component in studies 
about urbanization and sustainability making up more than 80 % of the 
total. Second, for Urban Dynamics and Built Environment, the shares of 
other applications such as topic modeling, feature extraction, and pre-
diction are relatively higher. Because they are emerging applications, 
the corresponding research categories are expected to gain a stronger 
momentum of innovation. The third observation comes from the data 
type. Unsupervised learning can be successfully applied to a wide vari-
ety of urban data (Table 2), and there is no data type that is predomi-
nantly popular. A subset of studies relies on multi-source data. Thanks to 
the wide applicability, researchers use unsupervised method as a bridge 
to connect multiple datasets, which introduces more perspectives to the 
analysis process while mitigating the bias caused by reliance on a single 
data source (Cai et al., 2019; Devkota et al., 2019; Vizzari & Sigura, 
2015). 

The technical aspect is also important to cover. For each study, we 
have noted the specific techniques and programming languages, about 
one-third of the authors reveal such information. Fig. 13 illustrates the 
findings: the top 3 frequent techniques — k-means, Self-organizing 
maps, and DBSCAN — are essentially all for clustering data, with only 
a few exceptions that use SOM in extracting spatio-temporal features 
(Liu, Zhang, & Long, 2019; Oldoni et al., 2015; Sohn, 2013). The next 
most frequent technique is latent Dirichlet allocation, which is primarily 
used for topic modeling. In fact, most of the techniques only have a 
single type of application, except for autoencoder which serves versatile 

uses. 
On the technical side, unsupervised methods are supported by the 

mainstream programming languages, including R, Python, Java, Matlab, 
and so forth, which often enable such functionalities through well- 
documented and popular machine learning packages. They are mostly 
open-source, and there appears to be no dominant language in the field. 
Among others, we feature the most frequent one — R. The base R (using 
it ‘out of the box’ without packages) supports PCA and k-means clus-
tering, as used in the example in Section 3. Further techniques are 
implemented thanks to packages, e.g. the kohonen package supports 
SOM training and visualization. However, the functions of R packages 
supporting unsupervised learning appear to be limited as among them 
over two thirds deal with clustering-related issues on numeric values, 
while missing input data types such as image and spatio-temporal data. 
In contrast, Python is backed by a wide range of machine learning li-
braries and can be applied in myriad ways. For example, there is an 
integrated machine learning package for various supervised and unsu-
pervised algorithms — scikit-learn (Pedregosa et al., 2011), and 
gensim package, which support the review topic modeling example 
shown in Section 3. On top of that, thanks to the integration with a deep 
learning environment, Python is able to process high-level features of a 
large amount of data. For example, Singh and Mohan (2019) train a 
stacked autoencoder for generating the deep representation of road 
traffic videos, Comber et al. (2020) extract visual features (e.g. number 
of stores) from building frontage images, with the help of autoencoder 
capturing the most salient characteristics required to reconstruct the 
image. 

Fig. 10. The upsurge of relevant publications, and the share of each category. The papers were collected in October 2021.  

Fig. 11. The annual prevalence of publications by application type.  
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Finally, we provide a comprehensive list of the reviewed papers in 
Appendix B. The table in the appendix contains the extracted informa-
tion supporting the analysis, and the papers are organized by the tax-
onomy of data type. 

5. Review 

5.1. Urban sustainability 

Considering that the evaluation of urban sustainability largely relies 
on quantifying environmental or geographic indicators (Keirstead & 
Leach, 2008), a common use case of unsupervised learning in this 
domain is clustering geographical units (i.e. cells and administrative 
zones) according to features from those indicators. A recurring related 
area of study is ecosystem services (ESs), which means the benefits 
humans obtain either directly or indirectly from ecosystems (e.g. food 
production, nutrient retention) (Lyu et al., 2019). The results of studies 
in this domain are ES bundles — the joint spatial distribution of 
ecosystem services, based on multi-sourced datasets that consist of land 
use, climate, census, and geographical data, in where unsupervised 
learning identifies and clusters geographic units that have common 
high-dimensional features (Karimi et al., 2021; Lyu et al., 2019; Yang 
et al., 2019). The ES bundles act as ideal units of visualizing their spatial 
distribution, studying temporal changes (Yang et al., 2019), analyzing 
spatial trade-offs and synergies (Karimi et al., 2021), and identifying 
effective environmental protection strategies (Lyu et al., 2019). Other 
than identifying similar patterns in environmental metrics, Richards and 
Tuncer (2018) experiment with using unsupervised learning for assess-
ing cultural values of nature depend on social media photos. First, a step 
using computer vision (implemented in Google Cloud Vision) generates 
specific object labels from nature photographs, and second, hierarchical 
clustering summarizes the unstructured labels into 7 distinct groups. It is 
estimated that this unsupervised workflow can save 170 h of manual 
work on human-assigned subject classification. 

Moreover, the clusters with distinct environmental features may 
serve as foundation for exploratory multivariate analysis that studies the 
relationship between human activities and environmental outcomes 
(Ferrara et al., 2017; Schmiedel et al., 2015). For example, after classi-
fying Italian municipalities into homogeneous partitions by forest cover 
indicators, Ferrara et al. (2017) summarize social indicators by the 

Fig. 12. The share and relationship among publication segments. In this review, data type “spatial” represents static geographic objects such as building footprints, 
while “spatial-temporal” indicates data that record human or traffic movements such as GPS trajectory. For detailed implications of each data type, please refer 
to Table 2. 

Table 2 
Urban data sources identified in our review together with example studies.  

Data type Data source Example paper 

Numeric Census (Serra et al., 2014) 
Survey (social, economic, 
environmental…) 

(Tu & Lin, 2008) 

Numeric attributes (Li, Han, et al., 2019) 
Meteorological data (Xu et al., 2020) 
Sensor data (Honjo et al., 2015) 

Text Social media post (Steiger et al., 2016) 
Online review (Olson et al., 2021) 
News and advertisement (Capela & Ramirez- 

Marquez, 2019) 
Image Satellite imagery (Feng & Liu, 2013) 

Street view imagery (SVI) (Wijnands et al., 2019) 
Geotagged photos (Hu et al., 2015) 

Spatial Point of Interest (POI) (Pavlis et al., 2018) 
Building footprints (Jochem et al., 2021) 
Land use/land cover (LULC) (Owen et al., 2006) 
Nighttime Lights (Devkota et al., 2019) 
LiDAR point cloud (Aljumaily et al., 2017) 

Spatio- 
temporal 

GPS trajectory (Wang et al., 2018) 
Traffic flow (Chen et al., 2021) 
Smart card (Sun & Axhausen, 2016) 
Call records (Sagl et al., 2014) 
Cellular data (Kim, 2020b) 

Sound and 
video 

Sound record (Oldoni et al., 2015) 
Traffic video (Singh & Mohan, 2019) 

Multi-source – (Cai et al., 2019) 
– (Gao et al., 2017)  
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clusters, and through discriminant analysis, the authors point to agri-
culture, income, education, and the labor market as key predictors of 
forest cover. Although the limitation of this method is evident, i.e. the 
degree of human impact on the environment has not been quantified, 
the results can simplify indicators selection in future statistical learning 
tasks. 

As urban sustainability is a common objective for cities around the 
world, many of the studies have been focusing on assessing and 
comparing sustainable development across cities. The conventional se-
lection and weighting processes for sustainability evaluation can be 
subjective to human bias (Paulvannan Kanmani et al., 2020), therefore, 
researchers use unsupervised learning for automating the extraction of 
key factors that indicate sustainability (Akande et al., 2019; Martins 
et al., 2021). In addition, unsupervised learning is practical in 
comparing the environmental performance among cities or countries 
(Amaral et al., 2021; Lu et al., 2015; Paulvannan Kanmani et al., 2020). 
For example, Paulvannan Kanmani et al. (2020) apply SOM, a technique 
that maps and visualizes the high-dimensional data onto two- 
dimensional output space while preserving their relative distance, on 
10 environmental indicators of 180 countries, results in a map of nodes 
that inform the countries' relative locations of sustainable development. 

Further, on the temporal aspect, unsupervised learning is proven 
valuable in capturing the environmental dynamics and natural hazards 
due to its simplicity and capability of enhancing the information on 
changes. One particular use case is monitoring urban forest and vege-
tation conditions, which can be carried out by unsupervised classifica-
tion of vegetation indices derived from multi-temporal satellite data 
(Krtalic et al., 2021). Another research area is related to disasters such as 
flooding. Peng et al. (2021) propose a framework of large-scale unsu-
pervised urban flood mapping, in which auto-encoder learns the 
multidimensional features of both pre- and post-flood patches for com-
parison, while Xu et al. (2018) generate the urban flood map of 5 risk 
levels through clustering flood related features. Thanks to being able to 
save time from human-annotated training data, results from such 
methods may be used in real-time to inform emergency humanitarian 
assistance and disaster relief (Peng et al., 2021). For further studies on 
environmental change see (Tessler et al., 2016) and (Kropp, 1998). 

Lastly, there are numbers of papers zero in on urban thermal envi-
ronment (Kwon et al., 2021; Xu et al., 2020; Zawadzka et al., 2021), the 
application type of which also falls into clustering multi-sourced data 
such as temperature, humidity, building density, and ground surface. 
Among them, we feature the work of Kwon et al. (2021), which dis-
covers the unfavourable and favourable thermal areas cities based on 
sensible heat flux data through k-means clustering, the resulting zoning 
map may inform associated sustainable energy policies. 

5.2. Urbanization and regional study 

The process of urbanization can be directly reflected by land use 

change (e.g. farmland shift into built-up area). Since there are hardly 
any cities that have detailed land use registries over a long temporal 
range, researchers in this domain mostly develop their own land use and 
land cover classifications based on satellite imagery (Naikoo et al., 2020; 
Owen et al., 2006; Xu et al., 2012; Ye & Chen, 2015). Though this issue is 
widely explored by supervised classifiers, unsupervised learning pre-
sents a complementary avenue, which is especially useful in a common 
situation where suitable reference data (e.g. current land use map) is not 
available (Ye & Chen, 2015). Moreover, without manually setting digital 
references that generally requires prior knowledge, the economic and 
professional barriers of unsupervised method are lower (Johnson & Xie, 
2011). In performing such tasks, researchers engage unsupervised 
learning to extract the most representative spectral information from 
satellite images (Xu et al., 2012), cluster pixels or grids by internal ho-
mogeneity and external heterogeneity of spectral values (Naikoo et al., 
2020; Qi et al., 2019). Because this field of study is closely related to 
remote sensing, technical explorations on improving model perfor-
mance are active, including utilization of luminance and saturation in-
formation (Ye & Chen, 2015), and applying LDA to enhance the 
semantic correlation of the multitemporal image scenes (Du et al., 
2018). 

The demographic and socioeconomic transitions have been subject 
of the urbanization discourse as well, in which machine learning plays 
an important role. Many studies concentrate on neighborhood change, 
essentially relying on census and survey data collected in past decades 
and using clustering methods to summarize the vectors of change (e.g. 
gentrification, depopulation etc.) (Delmelle, 2017; Dias & Silver, 2021; 
Li & Xie, 2018; Liu, Deng, et al., 2019; Serra et al., 2014; Yuan et al., 
2021). For example, in a nation-wide study of 50 American metropolitan 
areas, Delmelle (2017) introduces SOM to summarize neighborhoods by 
their similarity onto a two-dimensional output space, simplifying the 
large and high-dimensional census datasets into the distinct groups of 
the neighborhood change trajectories. Compared with the threshold- 
based method that is commonly used in social studies, Liu, Deng, et al. 
(2019) argue that unsupervised learning avoids arbitrariness, yet is less 
intuitive to interpret the result as there are no preset rules that follow 
theoretical guidelines. 

Another topic in this domain is regional typology studies, which is 
aimed to demonstrate the divergent states of development across cities 
and suburbs. Thanks to the versatile applicability of unsupervised 
learning to a variety of data structures, the regional typologies have 
been investigated from multiple perspectives include social-economic 
powers (Arribas-Bel et al., 2013; Baum et al., 2006), development con-
ditions (Cabrera-Barona et al., 2020; Rahman et al., 2019), urban form 
(Lemoine-Rodriguez et al., 2020), and hybrid features (Mikelbank, 
2004; Fiaschetti et al., 2021). We emphasize the work of Arribas-Bel 
et al. (2013), which visualizes the relative socio-economic locations and 
movements of 35 global cities on a hex grid coordinates plane, and 
suggest using this unsupervised mapping technique as a supporting 

Fig. 13. The breakdowns of unsupervised learning technique and used programming language.  
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toolbox of informed decisions. 
Considering the fuzzy spatial boundaries between urban centres, 

urban, and natural or rural areas, researchers have also resorted to un-
supervised learning for automating the segmentation of different ur-
banized areas, eventually generating urban spatial maps that show 
planners and policymakers the potential areas for future development. A 
common pathway is clustering urban-rural diagnostic features such as 
nighttime light intensity and fluctuation (Feng et al., 2020), land use 
(Vizzari & Sigura, 2015), travel pattern (Ozus et al., 2012), and multi-
variate statistics (Arribas-Bel & Schmidt, 2013). For comparison among 
cluster methods, one can refer to the work by Fusco and Perez (2019). 
There is also a special case that is not relying on clustering: Kit et al. 
(2012) outline urban slums only through detecting lacunarity in satellite 
images by PCA and line detection algorithm. 

Finally, although the number of related studies is small, we would 
like to highlight that advances in urban growth prediction have been 
brought by unsupervised learning (Feng & Liu, 2013; Ibrahim et al., 
2021). In an experiment in Qatar, Ibrahim et al. (2021) use GAN to 
simulate urban growth and housing dispersal, the result exhibits a high 
similarity with historical maps. According to Albert et al. (2018), GAN 
can accurately predict future urban growth with a relatively small 
training data set composed of satellite images only. This means with the 
help of unsupervised learning, realistic simulation of the urban land use 
displacement is available to the developing countries without under-
going the costly compilation of spatial variables in other simulation 
methods. 

5.3. Built environment 

Thanks to the ability of unsupervised learning to identify and 
disentangle the discriminative information hidden in the milieu of large 
data collection methods, study on social sensing of the real usage of 
urban spaces from a bottom-up perspective (as the counterpart to top- 
down land use plan) (Papadakis et al., 2019) is made possible by 
learning patterns from user-generated data (Gao et al., 2017). This type 
of application can be summarized as urban function study. Some studies 
adopt the approach of first finding spatial aggregation of activities by 
travel trajectories and call records (Rios & Munoz, 2017; Tao et al., 
2019; Wang et al., 2021), and then inferring the urban function ac-
cording to prior knowledge on behavior patterns, e.g. high and regular 
activity during weekdays refer office areas (Rios & Munoz, 2017). 
However, researchers point out that this method does not capture the 
true semantics of urban space (Tao et al., 2019). 

A more popular method is utilizing POI data that both reflects the 
concentration of activities and has embedded semantic information 
(Gao et al., 2017; Hu et al., 2020; Jing et al., 2021; Miao et al., 2021; 
Papadakis et al., 2019; Pavlis et al., 2018; Yu et al., 2020; Yuan et al., 
2020; Zhang et al., 2018). In the list, we feature the work of Gao et al. 
(2017), which develops a statistical framework to help discover 
semantically meaningful topics and functional regions based on the co- 
occurrence patterns of POI types. The functional regions are grouped 
together by similarity in semantic meaning, resulting in a convex 
polygon map with distinct thematic characteristics. The featured tech-
nique in this study is LDA, which maps the semantic information onto a 
vector space, therefore the numeric distance between words can be 
calculated and compared, i.e. measuring the semantic similarity of 
places. It is one of the most powerful techniques in identifying urban 
functions and has been replicated and adapted in other geographical 
spaces, for related studies see (Hu et al., 2020; Papadakis et al., 2019; 
Zhong et al., 2018). 

Urban function is entangled with another area of research — urban 
structure (Cui et al., 2019; Kim, 2020a; Sun et al., 2016; Zhong et al., 
2018), which can be viewed as a further step of spatial summarization of 
urban function that reveals concentration pattern, e.g. after generating 
function zones of London from aggregated tweets, Zhong et al. (2018) 
profile the spatial structure by hierarchical clustering, results in 

multilevel structural maps that may support strategic planning of eco-
nomic clusters. 

Unsupervised learning is also useful in helping researchers to un-
derstand our physical surroundings, by automatically extracting or 
reconstructing the most salient visual features encoded in the images (e. 
g. street view imagery (SVI)). The purposes of studies under this topic 
are quite diverse, including investigating visual characteristics that 
affect the quality of a space (Comber et al., 2020; Wu et al., 2020), 
constructing urban appearance libraries (Nguyen et al., 2020; Tae-
charungroj & Mathayomchan, 2020), and generating design interven-
tion based on learnt features (Wijnands et al., 2019). Traditionally, such 
tasks are arduous, largely relying on field surveys and manually dis-
tinguishing the variety of visual cues. Supervised learning is able to 
annotate properties of large image collections. There are papers using 
supervised image labeling services such as Google Cloud Vision (Tae-
charungroj & Mathayomchan, 2020) and SegNet (Wu et al., 2020) in 
combination with unsupervised methods that reduce the dimensionality 
of the photo labels and find image groups with common characteristics 
(topics). However, in studies that require information more specific than 
general labels, supervised learning is found hard to balance between 
speed and accuracy (Comber et al., 2020). With the advancement of 
deep unsupervised models, it is possible to capture visual representa-
tions from images directly without laborious manual labeling. Here we 
emphasize two enabling algorithms: autoencoder that learns the most 
useful pixel groups traits (e.g. signage, design style, and color) of 
reconstructing the input building frontage images (Comber et al., 2020), 
and GAN that captures key characteristics (e.g. ground texture, tree 
density) of SVI from one urban area and translate the style to another 
one (Wijnands et al., 2019). 

Apart from urban features, we observe a set of papers focusing on 
detecting specific urban objects. One core idea of this practice is to find 
iterated objects, for instance, landmarks that appear frequently in geo-
tagged photos (Samany, 2019) and landscape amenities that be 
repeatedly mentioned in housing advertisements (Su et al., 2021). The 
other approach builds upon LiDAR point cloud data, which exploits the 
intrinsic characteristics of the raw 3D points (e.g. proximity, connec-
tivity, symmetry) and converts the points into sets of clusters by similar 
characteristics (Aljumaily et al., 2017; Xue et al., 2020). Each cluster 
represents certain urban objects such as cars, buildings, and ground 
surfaces, and the performances of classification are tested to be highly 
accurate. In short, unsupervised learning presents scalable and efficient 
frameworks for mapping real-world objects that can be used in building 
digital twins of cities (Aljumaily et al., 2017; Xue et al., 2020). 

Another domain worth highlighting is urban morphology study. 
Generally, urban morphology can be represented by a series of numeric 
metrics generated from the shapes of buildings, plots, and streets (Bil-
jecki & Chow, 2022). Because the morphological datasets are high- 
dimensional in nature (e.g. the morphological metrics derived from 
building footprint include density, size, shape and so forth (Jochem 
et al., 2021)), unsupervised learning is more capable of discovering 
underlying common geometric patterns and producing urban form ty-
pologies than any other method (Abarca-Alvarez et al., 2019; Bobkova 
et al., 2021; Jochem et al., 2021; Oh & Kim, 2019). Specifically, in a 
study across five European cities, Bobkova et al. (2021) identify seven 
plot types by clustering plot configurational attributes, enabling scaling- 
up morphological studies and substantial comparison within and across 
regions. The results of such studies are also effective in simplifying 
downstream urban analytic tasks. For example, Oh and Kim (2019) 
develop 13 building block typologies for energy performance simula-
tion, providing a building geometric features reference set to urban 
energy planning and design. Note that in representing the types by 
morphological metrics, researchers often choose the closest values to the 
cluster centroids (Bobkova et al., 2021; Oh & Kim, 2019). 

Besides the aforementioned use cases, the remaining built environ-
ment studies relying on unsupervised learning are quite diverse, 
including extracting indicators for environmental quality or livability 
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assessment (Bo et al., 2019; Bonaiuto et al., 2003; Tu & Lin, 2008), 
establishing typologies of Transit-Oriented-Development stations by 
spatio-temporal features (Li, Han, et al., 2019; Liu, Singleton, & Arribas- 
Bel, 2020; Sohn, 2013), creating acoustic summary of sound features 
from urban environment (Oldoni et al., 2015), and analyzing the 
dominant source of noise under various types of land (Chew & Wu, 
2016). 

5.4. Urban dynamics 

The rise of the research domain of urban dynamics is associated with 
the increasing volume and accessibility of datasets that register indi-
vidual activities at a dynamic pace, e.g. smart card data that traces travel 
patterns (Manley et al., 2018), call records and cellular data that imply 
movements or social interactions (Sagl et al., 2014), and social media 
posts and photos that reflect personal sentiments on urban spaces (Olson 
et al., 2021). Given the complexity and large variety in such datasets, 
retrieving key information from them has become challenging (Sun & 
Axhausen, 2016). This problem is compounded with the lack of prior 
knowledge on the complex individual behaviors in cities, making su-
pervised learning a less favourable option for analysis. Therefore it is not 
surprising a large number of papers employ unsupervised learning to 
discover the interactions among space, time, and individuals from the 
high-dimensional spatio-temporal data, i.e. study the collective 
behavior patterns within cities (Bi & Ye, 2021; Chen et al., 2019; Kim, 
2020b; Li, Zhu, & Guo, 2019; Manley et al., 2018; Ouyang et al., 2018; 
Pieroni et al., 2021; Sagl et al., 2014; Sun & Axhausen, 2016; Xing et al., 
2020; Yu et al., 2021; Yu & He, 2017; Yue et al., 2018). 

Sun and Axhausen (2016) apply tensor decomposition method that 
reproduces the complex dependence and interactions in 14 million 
transit journeys extracted from smart card data by simple latent struc-
tures. The decomposition results depict several principle travel patterns 
and their corresponding profiles, e.g. peak hours, origin-destination, and 
age groups, revealing the underlying spatio-temporal structure of 
Singapore. The insight from the study could provide reference to prac-
titioners for fleet management and infrastructure planning. Besides 
tensor decomposition, clustering techniques are straightforward in 
dealing with travel data as well. For example, DBSCAN captures clusters 
in smart card data based on the time and location similarities of indi-
vidual travel behaviors. Compared with k-means clustering, DBSCAN 
considers point density and is therefore capable to identify high density 
temporal events that indicative of regular behaviors (Manley et al., 
2018). For related studies on using unsupervised learning in discovering 
travel patterns, see the work by Ouyang et al. (2018); Chen et al. (2019); 
Xing et al. (2020); Pieroni et al. (2021) and Yu et al. (2021). 

Human activities that represented by mobile phone data is another 
direction of behavior pattern study. Sagl et al. (2014) characterize 
variations in intensity and similarity of collective human activity via 
SOM, and Liu, Zhang, and Long (2019) further aggregate human activ-
ities with similar characteristics spatially and identify several urban 
vitality areas. In fact, pedestrian traffic measured by cellular activity is a 
popular indicator for urban vitality, and unsupervised methods is prove 
useful in unleashing its latent spatio-temporal features, for relevant 
studies see (Kim, 2020b) and (Guo et al., 2021). The findings from such 
studies also help to reveal how collective human activities relate to the 
underlying urban structures, e.g. connections within and between 
communities (Ghahramani et al., 2019), land use (Manley & Dennett, 
2019), and regional functions (Dong, Wang, & Liu, 2021). 

In addition to the behavior pattern portion, unsupervised learning on 
urban dynamics information also helps to uncover the way people 
perceive and interact with urban spaces. Much of the research aim to 
answer where do people like to visit in cities, that is to pinpoint the Area 
of Interest (AOI) (Devkota et al., 2019; Hu et al., 2015; Huang & Li, 
2019; Li et al., 2021; Liu, Singleton, et al., 2021; Sun et al., 2021). 

In a study on the evolution of AOI in six cities across ten years, Hu 
et al. (2015) apply DBSCAN to geotagged Flickr photos to extract point 

cluster based on density. Moreover, the authors develop a spectral 
clustering workflow that computes image similarity so that photos 
contain views shared by multiple people are grouped into clusters, and 
the photo that is most similar to all others is selected representation of 
the AOI. The results help reveal the growth of cities' attractive regions 
alongside with urban development, may inform the planning of “char-
ismatic” destinations. This work also demonstrates the versatility of 
unsupervised learning, as in the same work, it is applied in parallel on 
different types of data and the results are combined. Many other studies 
on AOI follow the same two-step workflow, i.e. first identifying AOI 
clusters, then interpreting the grounds for attractiveness. The approach 
to the second step varies, besides the aforementioned identification of 
preferable photos, it can also be achieved through topic modeling from 
posts (Huang & Li, 2019) and POI (Li et al., 2021). However, the tech-
nique used in the first step is almost exclusively DBSCAN, with only a 
single research applying k-means on phone signal data (Sun et al., 2021). 
DBSCAN is particularly suitable for AOI extraction for two reasons: (1) 
the number of AOI clusters is hard to estimate but DBSCAN does not 
require such pre-determined number of clusters as k-means clustering 
does; and (2) it is solid at detecting clusters with arbitrary shapes (Hu 
et al., 2015). However, as unsupervised methods learn patterns from the 
data structure, researchers point out that the resulting locations may 
inherit the location accuracy issue in the input datasets and are not 
representative enough for all age groups (Devkota et al., 2019; Huang & 
Li, 2019; Sun et al., 2021). 

Similarly, there is a set of papers that pay specific attention to human 
perceptions of space (Cai et al., 2019; Capela & Ramirez-Marquez, 2019; 
Liu, Yin, et al., 2020; Olson et al., 2021; Sparks et al., 2020; Steiger et al., 
2016). Although all of them deal with text data, there appears to be no 
predominant methodology or purpose among these studies, thus, we 
highlight a few characteristic papers: Steiger et al. (2016) combine SOM 
with LDA to extract the spatio-temporal aggregation of popular topics 
from georeferenced tweets, Capela and Ramirez-Marquez (2019) detect 
topics that compose the “personality” of each city in the electronic 
media outlets by LDA topic modeling, Liu, Yin, et al. (2020) visualize the 
semantic structure of urban regions through embedding the POI-type 
onto 2-dimensional space using t-SNE, which preserves semantic rela-
tionship among words during dimensionality reduction, and Olson et al. 
(2021) exploit autoencoder to learn the compact representations of re-
views from Yelp from relatively sparse word usage, and use the repre-
sentations for the ascription of tangible neighborhood change. In 
addition to the specific applications, the work by Abdul-Rahman et al. 
(2021) establishes a general framework to simplify the process of 
extracting public sentiment on urban issues from social media, where 
LDA categorises sentiments into major themes such as high rental prices, 
noise, and social segregation. The code supporting the proposed method 
is released openly. 

Another essential component of urban dynamics is traffic flow. Un-
supervised learning has been introduced for traffic forecasting since an 
early point, Sun et al. (2006) predict short-term traffic flow by adopting 
Gaussian mixture model (GMM) to compute the joint probability dis-
tribution between input traffic and the output (traffic in the next time 
interval). The fundamental concept of choosing GMM is events in the 
natural world obey Gaussian distributions. Similarly, Fiez and Ratliff 
(2020) apply GMM in parking demand modeling. However, GMM only 
predicts by Gaussian distributions and does not take into account the 
real complex interconnections in the data. Given the advancements in 
deep representation learning (GAN, autoencoder), there is a surge of 
papers published in 2021 that opt for it for extracting implicit and 
complicated traffic features, and compressing the large volume of raw 
data (Chen et al., 2021; Ranjan et al., 2021; Zhang et al., 2021). For 
example, Chen et al. (2021) propose a hybrid forecasting model with 
autoencoder embedded, and Zhang et al. (2021) train GAN to learn the 
probability distribution of the real historical traffic flow, generate future 
traffic flows through the learned probability distribution. The models in 
both of the studies effectively improve the prediction accuracy 
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compared to previous statistical models and have a strong generalization 
ability. 

Aside from the regular patterns in cities, there are also outliers, i.e. 
special events. In this context, crowdsourced data is akin to sensors in 
cities, and unsupervised learning is of assistance to process the massive 
volume of data and identify anomalous urban events in real-time, pri-
marily by focusing on semantic information, a key information layer for 
event detection. For example, Wang and Taylor (2019) identify geo-
locations of Twitter topics that rapidly escalate in a short time period 
through LDA, and combine with sentiment analysis for ranking emer-
gency events by intensity of negative sentiment. The proposed frame-
work is directly built upon the API of this social media channel, 
therefore providing real-time tracking and assessment of disasters for 
emergency management agencies. For related work see (Zuo et al., 
2018). 

Another information layer is composed of traffic records such as taxi 
GPS trajectories (Wang et al., 2018) and traffic video (Singh & Mohan, 
2019), identifying events in this portion can infer the occurrence of 
adverse traffic behavior or road accidents. The approach of detecting 
anomalous patterns in movement trajectories is straightforward, for 
example, hierarchical clustering is successful in distinguishing regular 
trajectories and anomalous trajectories (Wang et al., 2018). However, 
the information extracted from traffic videos is more ambiguous and 
presents larger variations. Therefore, representation learning is intro-
duced in such a task again, Singh and Mohan (2019) train a stacked 
autoencoder for generating deep representation of video features, the 
proposed generalized method is able to detect abnormal incidents, such 
as unusual speed, trajectories, position at high accuracy. 

Lastly, there is a portion of studies in which specific improvements to 
the unsupervised algorithms are made for better inspecting spatio- 
temporal data. Park et al. (2021), Liu, Huang, et al. (2021), and Choi 
and Hong (2021) optimize DBSCAN algorithm for clustering large-scale 
spatiotemporal datasets or detecting feature objects (similar to the task 
elaborated on in (Hu et al., 2015)) and collective activities in an more 
efficient manner, You (2021) proposes a clustering method that can be 
directly applied on spatial data without setting prior assumptions or 
user-defined parameters. Notably, those papers are all published very 
recently (in 2021), suggesting the rising attention on the pertinence of 
unsupervised methods and urban dynamics analysis. 

6. Discussion 

6.1. General observations 

Based on our review (Section 5), there are scores of ways unsuper-
vised machine learning permeated through urban studies — the use 
cases cover almost the entire landscape of urban data sources, from 
conventional census data (Paul & Sen, 2018) and satellite imagery (Du 
et al., 2018) to prevailing spatial big data of individual activities such as 
smart card records (Manley et al., 2018), call records (Rios & Munoz, 
2017), and social media (Olson et al., 2021). We observe that the input 
datasets in the reviewed papers are generally very large, e.g. 14 million 
transit journeys (Sun & Axhausen, 2016) and 7 million geotagged Flickr 
photos (Hu et al., 2015), which confirms the increasing importance of 
unsupervised learning in mining invisible patterns with the growing 
volume and diversity of urban data. 

Among all the application types, clustering is most frequently 
exploited (Fig. 12). The popularity of clustering is in line with two 
paradigmatic tasks in urban studies: typology study and spatial aggre-
gation profiling, which are found frequently in the reviewed papers. 
Typology study is a multi-faceted task across several domains and at 
various scales (Bobkova et al., 2021; Guo et al., 2021; Mikelbank, 2004; 
Nguyen et al., 2020; Oh & Kim, 2019; Tessler et al., 2016). Such fashion 
can relate back to the theories by urban study precursors, which simplify 
the complex urban systems into a few types for facilitating further in-
terpretations. Compared to the traditional categorizations constrained 

by limited analytical ability, unsupervised methods relegate the issue of 
arbitrariness through quantifying the latent relationship of a larger 
number of observations (Liu, Deng, et al., 2019). 

Spatial aggregation profiling inspects the geographical extent of 
clusters of specific functions (e.g. retail) or human activities (Liu, 
Singleton, et al., 2021; Manley et al., 2018; Pavlis et al., 2018; Sun et al., 
2016). Unsupervised learning demonstrates its ability in dealing with 
spatial data on tasks such as this one by taking into account not only the 
similarity and difference, but also the relative spatial distances between 
points. In fact, we have also noted several other spatially aware unsu-
pervised techniques for different application types, e.g. geographically 
weighted PCA (Wu et al., 2020), meanwhile new enabling frameworks is 
keep being published (Park et al., 2021; You, 2021), implying the wide 
applicability and growing relevance of unsupervised methods to 
geographical investigations. 

Considering the methodological aspect, some papers utilize the 
synergy of various unsupervised techniques in analysis and deriving 
interpretations (Gao et al., 2017; Hu et al., 2015; Samany, 2019). Yet a 
more common approach we noticed is combining unsupervised methods 
with other methods, for example, in some cases UL is introduced to 
improve the performance of previous models (Honjo et al., 2015; Xue 
et al., 2020), or is applied in conjunction with supervised methods, e.g. 
unsupervised topic modeling supplements supervised image segmenta-
tion (Taecharungroj & Mathayomchan, 2020; Wu et al., 2020), super-
vised model tests the validity of representations learned by from 
unsupervised method (Olson et al., 2021). Such collaborative workflows 
reveal that unsupervised learning can be applied not just standalone, but 
also to optimize existing methods and simplify downstream tasks. 
Moreover, supervised learning can provide validation to the UL results 
which assure reliability, also makes the UL results more comparable. 

Regarding the state of the art of unsupervised learning, which is 
continuously evolving, we observe that it takes time for the advances in 
computer science to become adopted in urban studies. Approaches that 
have been developed years ago, e.g. autoencoder and GAN (Baldi, 2012; 
Zhao et al., 2017), are being spotlighted in urban studies only recently 
(Chen et al., 2021; Comber et al., 2020; Wijnands et al., 2019; Zhang 
et al., 2021). In addition, it appears that the penetration of UL tech-
niques varies considerably among the domains we examined, together 
with the adoption of the latest instances, e.g. transportation research 
and GIS are benefiting from the most advanced techniques whereas 
others lag. 

A potential limitation of this review is that the methodology (Section 
3), following the common systematic review approaches, does not 
include combing through preprints and conference papers, which may 
describe developments and directions not captured by this review. In 
addition, due to the breadth of research topics and few exposed tech-
nical details in reviewed papers, the comparison of performances of UL 
in urban-related tasks is not provided in this review. 

6.2. Issues 

In this section, we discuss the common challenges and limitations of 
unsupervised methods cited frequently by researchers, with a few ob-
servations on our own. 

Data quality. The effectiveness of unsupervised methods relies on the 
intrinsic structure and quality of the input data. Problems with the data 
can accrue in bias, and data collected from different sources may 
generate different results. Researchers cite the specific issues in social 
media data most frequently, such as the representativeness of de-
mographic groups (Hu et al., 2015), positional accuracy of geo-tagged 
photos and posts (Samany, 2019), and sparse signal in fringe areas 
(Steiger et al., 2016). In addition to data from social media, the quality 
of video and sound data is also a concern, as they are susceptible to 
environmental conditions such as darkness and noise (Oldoni et al., 
2015; Singh & Mohan, 2019). 

Besides the fact that unsupervised learning can be affected by poor 
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data quality, it is important to note that data that has obscure patterns 
also brings challenges. For example, Zuo et al. (2018) find it difficult to 
identify emergent events that are not intensively discussed in tweets, 
while Singh and Mohan (2019) report the issue in extracting patterns 
from vehicle movements with large variations. 

In addition, without labels that control the expected outcomes, un-
supervised learning generally has less accuracy in comparison with its 
supervised counterpart in performing the same task. For example, in 
land use classification and change detection tasks, supervised learning 
methods gained higher overall accuracy to 5–10 % than unsupervised 
methods (Chughtai et al., 2021; Mohammady et al., 2015). However, 
considering its benefits of reducing cost and labor, which are vital to the 
implementations of urban studies, there is inevitably a trade-off between 
the two. 

Interpretation. Considering that UL learns patterns without labels as 
semantic reference, it may be difficult to interpret the results. In the case 
of clustering, the most common way to generate substantive in-
terpretations is through manual summarizing the cluster features by 
identifying the most representative variables in each grouping. For 
example, Baum et al. (2006), Tessler et al. (2016), and Ferrara et al. 
(2017) develop and name localities' typology based on the most signif-
icant features from social and environmental indicators. However, these 
researchers all posit that such a method is not considered statistically 
sound. The large room of interpretation also entails that the conclusions 
may be easily affected by personal view, which impairs their 
comparison. 

In this regard, although UL is an objective method which preserves 
the intrinsic patterns within the data structure, human bias is still 
possible to happen in the interpretation stage. On the contrary, the 
human bias of SL might be produced during the crafting of labels. Before 
making a selection between the two methods, it is worth considering 
which is more convenient and the bias is more acceptable. 

Moreover, interpreting UL results is costlier as it requires pro-
fessionals to correlate the patterns with the domain knowledge, which 
explains its relatively less popular in urban studies than other domains 
— few experts in urban studies possess interdisciplinary knowledge as 
required. 

Similar to the absent semantic meaning, the statistical relationships 
between the results (e.g. typologies, determinants) and urban phenom-
enons of interest (e.g. energy consumption, forest dynamics) cannot be 
revealed by the result of unsupervised learning alone (Ferrara et al., 
2017; Li, Ying, et al., 2020), because it does not imply causation and 
degree of influence. 

Validation. Validation is an imperative step to assess the confidence 
of the findings and facilitate replication of studies in more geographical 
locations. Researchers cite two ways of validation: internal and external. 
Internal validation analyzes the internal structure (e.g. cohesion and 
separation) of the results, each UL technique has well-established in-
ternal validation methods, they are routinely used in many papers 
(Arbolino et al., 2019; Feng & Liu, 2013; Schmiedel et al., 2015; Serra 
et al., 2014; Vizzari & Sigura, 2015). 

However, studies engaging unsupervised applications in cities do not 
stop short at internal validation. Because urban studies have a close 
connection with real-world practice, justifying the results are aligned 
with the ground truth is always an area of focus. For this purpose, re-
searchers resort to various external sources — historical flooding maps, 
official emergency event records, land use from the master plan, results 
of preceding studies, ground survey, and manual labeling (Akande et al., 
2019; Aljumaily et al., 2017; Peng et al., 2021; Richards & Tuncer, 2018; 
Xu et al., 2018; Xue et al., 2020; Ye & Chen, 2015; Zhang et al., 2018). 
However, these studies are rare, accounting for less than 10 % of pub-
lications. Such external information is not always readily available (e.g. 
survey data is time-consuming and costly to gain), and results from 
certain application types (e.g. clustering and topic modeling) generally 
have no existing benchmark to compare with, consequently the integrity 
and reliability of UL may be questioned. 

6.3. Open science 

The open science aspect is worth highlighting. There are only 10 
papers in our review pool that released their code openly, the lack of 
sharing on advances inhibits their diffusion to other cities. Given the fact 
that unsupervised learning can lower the economic and professional 
barrier of massive scale urban analytics, it is especially valuable to the 
developing countries where most of the world's urbanization takes place 
(Ibrahim et al., 2021; Rahman et al., 2019; Rios & Munoz, 2017). 

There seem to be a need to raise the awareness of open science and 
this is something we hope this discussion will spur — the developers 
should consider sharing code or model for promoting geographical eq-
uity of urban study developments, and contribute to the open de-
velopments in the urban data science community (Yap et al., 2022). 

6.4. Research opportunities 

This section discusses potential research opportunities that may in-
crease diversity and depth to this rapidly expanding topic. Concerning 
the issues we discussed in Section 6.2, there are scores of possible 
research directions responding to them. For example, the proliferation 
of social network data (e.g. text, photos, and videos sourced from social 
media, and POIs) presents a viable opportunity for less subjective and 
more comparable interpretations. In rare instances of related studies, 
they all target limited applications, i.e. revealing urban functions and 
travel purposes (Bi & Ye, 2021; Gao et al., 2017; Huang & Li, 2019). It 
seems that research using crowdsourced information has gaps worth 
investigating because explaining other discovered urban patterns that 
relate to human perceptions remains unexplored, e.g. visual features, 
vitality, and urban morphology. 

Further, as revealed in the review, some tasks can be carried out both 
by supervised and unsupervised methods that have dissimilar traits: SL 
results in higher accuracy while UL is more transferable and accessible. 
We believe that revisiting SL studies using unsupervised methods will be 
a meaningful research direction, whose reliability could be validated by 
SL results as ground truth, while presenting cheaper and more efficient 
urban analysis frameworks for supplementing the gap in urban study in 
numerous developing regions. 

Continuing the discussion on geographical aspect, as unsupervised 
method can be easily employed in elsewhere, it is worthwhile to conduct 
comparative studies across locations of different social-economic and 
cultural backgrounds. To our knowledge, in the built environment and 
urban dynamics sectors this kind of study is largely under-investigated. 

As the current deep learning models such as autoencoder and GAN 
are proven to be highly capable in reconstructing data, fulfilling missing 
pieces, even making realistic predictions, engaging them into urban 
applications is unquestionably a research frontier. Considering the small 
proportion of related publications and the limited topics (e.g. trans-
portation prediction) (Ranjan et al., 2021; Singh & Mohan, 2019), there 
is a clear untapped opportunity of extending their use cases into a wide 
variety of scenarios such as complementing data infrastructure of digital 
twins (Rasheed et al., 2020), data compression for real-time urban 
monitoring, simulating dynamics in urban systems, and AI-generated 
urban planning and design. 

Finally, opportunities can also be found in the rapidly evolving 
technological landscape of unsupervised learning, as newly developed 
methods may enable novel applications. For example, a recent self- 
supervised image pre-trained model has outperformed the best super-
vised model in a diverse set of computer vision tasks (Goyal et al., 2021). 
Similar efforts are being made intensively for improving both the ac-
curacy and efficiency of unsupervised learning, the cumulative progress 
appears to be promising. We believe that with the strides made in un-
supervised techniques, urban studies engaging them will grow expo-
nentially, but they should reduce the lag in adopting them. 
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7. Conclusion 

In this paper, we have reviewed the application of unsupervised 
learning in urban studies. Unsupervised techniques, despite their 
versatility and number of methods, have been somewhat overshadowed 
by supervised counterparts due to the different volume of papers and 
disparate applications. However, that makes it possible to capture the 
developments in a single and self-contained review paper, in which we 
have revealed trends and provided a comprehensive list of applications 
of the comprehensive list of more than a dozen unsupervised methods. 

We find that the applications of unsupervised learning span the 
entire landscape of urban data sources. With the growing human-sensing 
data and built environment records such as street view imagery, nov-
elties of UL applications have been emerging continuously, discovering 
new patterns and representations of cities that inform decision making 
or catalyze novel downstream analytics. Moreover, in many instances, 
unsupervised learning enables heterogeneous multi-source data 
convergence that explicitly represents the complex real-world urban 
systems at multiple scales (Zhan et al., 2020, 2021). 

We identify clustering as the most prominent application type, fol-
lowed by topic modeling that provides bottom-up understandings of the 
urban environment. Although unsupervised deep learning models have 
gained popularity in other disciplines, the potentials of them in urban 
studies are underexplored. Such domain is where we expect to see a 
growing volume of studies in the coming years. Relevant studies are 
emerging, in simulating urban growth (Albert et al., 2018), traffic 
forecasting (Chen et al., 2021), and environment beautification (Wij-
nands et al., 2019). 

The limitations of unsupervised methods are discussed in this review 
as well, followed by several research opportunities addressing them. 
Through making use of the urban semantics information we believe the 
interpretation bias of unsupervised learning results can be alleviated. It 
is also important to consider the strengths of both supervised and un-
supervised learning and optimize analysis methods through their 
synergy. 

We have also provided a concise introduction to unsupervised 
learning, as a gentle overview for our peers who are yet to consider using 
it in their research. Thanks to the growing and easily accessible free and 
open-source implementations, and the vibrant data science community, 
the entry barrier has never been lower. We hope that this paper will raise 
awareness of the potential of unsupervised learning and will catalyze 
further applications. 

We expect that in the future, we will indeed witness a growing vol-
ume of uses in urban studies, largely thanks to the increase in the volume 
of available data and the advancements in techniques. 
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Appendix A. Search syntax 

(((TS=(( “K-means” OR “hierarchical clustering” OR “DBSCAN” OR “Mean-shift” OR “Affinity propagation” OR “Gaussian mixture model*” OR 
“Spectral clustering” OR ( ( “principal component analysis” OR pca ) AND ( feature OR extract* ) ) OR “Latent Dirichlet Allocation” OR lda OR “Non- 
negative matrix factorization” OR nmf OR “Latent semantic analysis” OR “t-SNE” OR “Self-organizing map*” OR “Autoencoder*” OR “Auto-encoder*” 
OR “Restricted Boltzmann machine*” OR “RBMs” OR “Generative Adversarial Net*”) AND ( city OR urban* ) )) AND DT=(Article)) AND LA=(En-
glish)) AND WC=(Environmental Studies or Geography Physical or Green Sustainable Science Technology or Geography or Engineering Civil or Urban 
Studies or Regional Urban Planning) 

Appendix B. Reviewed papers  

Table B.3 
Key information from reviewed papers by data type. Key: UR: urbanization and regional studies; BE: built environment; US: urban sustainability; UD: urban dynamics.  

Data type Data source Publication Category Application type Technique 

Image Image (Ranjan et al., 2021) UD Prediction Autoencoder 
Photo (Nguyen et al., 2020) BE Clustering K-means 

(Samany, 2019) BE Feature extraction RBM 
(Taecharungroj & Mathayomchan, 2020) BE Topic modeling LDA 
(Park et al., 2021) UD Clustering DBSCAN 
(Hu et al., 2015) UD Clustering DBSCAN 

Satellite imagery (Kit et al., 2012) BE Feature extraction PCA 
(Krtalic et al., 2021) US Change detection PCA 
(Peng et al., 2021) US Change detection Autoencoder 
(Ye & Chen, 2015) UR Change detection Others 
(Du et al., 2018) UR Change detection LDA 
(Xu et al., 2012) UR Feature extraction Multiple 
(Feng & Liu, 2013) UR Feature extraction PCA 
(Ibrahim et al., 2021) UR Prediction GAN 

Street view images (Wu et al., 2020) BE Factor extraction PCA 
(Wijnands et al., 2019) BE Image translation GAN 

(continued on next page) 
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Table B.3 (continued ) 

Data type Data source Publication Category Application type Technique 

Numeric Census (Paul & Sen, 2018) BE Clustering K-means 
(Dias & Silver, 2021) UD Clustering Others 
(Lu et al., 2015) US Clustering SOM 
(Kropp, 1998) US Clustering SOM 
(Baum et al., 2006) UR Clustering GMM 
(Christodoulou & Christidis, 2020) UR Clustering K-means 
(Delmelle, 2017) UR Clustering Multiple 
(Arribas-Bel & Schmidt, 2013) UR Clustering SOM 
(Mikelbank, 2004) UR Clustering HCA 
(Fusco & Perez, 2019) UR Clustering Multiple 
(Liu, Deng, et al., 2019) UR Clustering K-means 
(Li & Xie, 2018) UR Clustering Multiple 
(Tang et al., 2020) UR Factor extraction PCA 
(Arbolino et al., 2019) UR Factor extraction PCA 

Geography (Paulvannan Kanmani et al., 2020) US Clustering SOM 
Meteorological data (Xu et al., 2020) US Clustering K-means 
Numeric attributes (Liu, Singleton, & Arribas-Bel, 2020) BE Clustering SOM 

(Bobkova et al., 2021) BE Clustering K-means 
(Abarca-Alvarez et al., 2019) BE Clustering SOM 
(You, 2021) UD Clustering Others 
(Oh & Kim, 2019) US Clustering Multiple 
(Li, Ying, et al., 2020) US Feature extraction PCA 
(Feng et al., 2020) UR Clustering K-means 

Sensor (Honjo et al., 2015) US Clustering HCA 
Survey (Tu & Lin, 2008) BE Factor extraction PCA 

(Bonaiuto et al., 2003) BE Factor extraction PCA 
(Xi et al., 2020) UD Topic modeling LDA 
(Martins et al., 2021) US Factor extraction PCA 
(Akande et al., 2019) US Factor extraction HCA 
(Arribas-Bel et al., 2013) UR Clustering SOM 
(Yuan et al., 2021) UR Clustering K-means 

Sound & video Sound (Oldoni et al., 2015) BE Feature extraction SOM 
(Chew & Wu, 2016) BE Feature extraction PCA 

Video (Singh & Mohan, 2019) UD Anomaly detection Autoencoder 
Spatial Land use/cover (Owen et al., 2006) BE Clustering Others 

(Schmiedel et al., 2015) US Clustering K-means 
(Lyu et al., 2019) US Clustering SOM 
(Naikoo et al., 2020) UR Change detection K-means 
(Qi et al., 2019) UR Clustering SOM 
(Lemoine-Rodriguez et al., 2020) UR Clustering Multiple 
(Rahman et al., 2019) UR Clustering HCA 

LiDAR point cloud (Xue et al., 2020) BE Clustering Others 
(Aljumaily et al., 2017) BE Clustering DBSCAN 

OSM (Jochem et al., 2021) BE Clustering GMM 
(Cui et al., 2019) BE Clustering DBSCAN 
(Liu, Huang, et al., 2021) UD Clustering DBSCAN 

POI (Yu et al., 2020) BE Clustering DBSCAN 
(Pavlis et al., 2018) BE Clustering DBSCAN 
(Sparks et al., 2020) UD Clustering HCA 
(Liu, Yin, et al., 2020) UD Topic modeling t-SNE 

Spatial-temporal Call records (Rios & Munoz, 2017) BE Clustering LDA 
(Ghahramani et al., 2019) UD Clustering HCA 
(Sagl et al., 2014) UD Clustering SOM 

Cellular (Sun et al., 2021) UD Clustering K-means 
(Kim, 2020b) UD Factor extraction PCA 

GPS (Tao et al., 2019) BE Factor extraction LSA 
(Wang et al., 2018) UD Anomaly detection HCA 
(Liu, Singleton, et al., 2021) UD Clustering DBSCAN 
(Zhang et al., 2021) UD Prediction GAN 

Parking data (Fiez & Ratliff, 2020) UD Clustering GMM 
Smart card (Wang et al., 2021) BE Clustering GMM 

(Kim, 2020a) BE Clustering Multiple 
(Ouyang et al., 2018) UD Clustering DBSCAN 
(Manley et al., 2018) UD Clustering DBSCAN 
(Sun & Axhausen, 2016) UD Factor extraction LSA 
(Ozus et al., 2012) UR Clustering HCA 
(Pieroni et al., 2021) UD Clustering Multiple 

Real estate transactions (Choi & Hong, 2021) UD Clustering DBSCAN 
Traffic flow (Anwar et al., 2016) UD Clustering Spectral clustering 

(Yue et al., 2018) UD Clustering Spectral clustering 
(Sun et al., 2006) UD Prediction GMM 
(Chen et al., 2021) UD Prediction Autoencoder 

Text Electronic media outlets (Capela & Ramirez-Marquez, 2019) UD Topic modeling LDA 
Social media (Zhong et al., 2018) BE Topic modeling LDA 

(Zuo et al., 2018) UD Anomaly detection LDA 
(Steiger et al., 2016) UD Clustering SOM 

(continued on next page) 
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Table B.3 (continued ) 

Data type Data source Publication Category Application type Technique 

(Sun et al., 2016) UD Clustering DBSCAN 
(Olson et al., 2021) UD Topic modeling Autoencoder 
(Wang & Taylor, 2019) UD Topic modeling LDA 
(Huang & Li, 2019) UD Topic modeling LDA 
(Abdul-Rahman et al., 2021) UD Topic modeling LDA 

Labels (Richards & Tuncer, 2018) US Clustering HCA 
Geo-textual advertisements (Su et al., 2021) BE Topic modeling LDA 

Multi-source Call records, POI (Yuan et al., 2020) BE Clustering K-means 
(Dong, Wang, & Liu, 2021) UD Clustering SOM 

Cellular, POI (Chen et al., 2019) UD Clustering K-means 
(Cai et al., 2019) UD Clustering K-means 
(Liu, Zhang, & Long, 2019) UD Feature extraction SOM 

Census, search index (Xue et al., 2021) UR Clustering K-means 
DEM, Land use/cover etc. (Gao et al., 2014) US Clustering SOM 
GPS, POI (Li et al., 2021) UD Clustering DBSCAN 

(Bi & Ye, 2021) UD Topic modeling LDA 
Geography, Census (Ferrara et al., 2017) US Clustering K-means 

(Tessler et al., 2016) US Clustering Multiple 
(Amaral et al., 2021) US Clustering SOM 
(Serra et al., 2014) UR Clustering K-means 

Geography, DEM, climate (Yang et al., 2019) US Clustering K-means 
Image, POI (Comber et al., 2020) BE Feature extraction Autoencoder 
Land use/cover, Census (Fiaschetti et al., 2021) UR Clustering AP 

(Bonilla-Bedoya et al., 2020) US Clustering HCA 
(Vizzari & Sigura, 2015) UR Clustering Others 

Land use/cover, LiDAR (Karimi et al., 2021) US Clustering K-means 
Land use/cover, climate (Zawadzka et al., 2021) US Clustering K-means 
Land use/cover, geography (Cabrera-Barona et al., 2020) UR Clustering K-means 
Numeric attributes, Census (Lopes et al., 2021) BE Clustering K-means 

(Li, Han, et al., 2019) BE Clustering SOM 
(Bo et al., 2019) BE Factor extraction PCA 
(Sohn, 2013) BE Feature extraction SOM 

Numeric attributes, cellular (Manley & Dennett, 2019) UD Clustering K-means 
Numeric attributes, climate (Kwon et al., 2021) BE Clustering K-means 
OSM, social media etc. (Devkota et al., 2019) UD Clustering DBSCAN 
POI, GPS (Jing et al., 2021) BE Clustering DBSCAN 

(Li, Zhu, & Guo, 2019) UD Clustering K-means 
(Xing et al., 2020) UD Clustering K-means 

POI, OSM, census (Miao et al., 2021) BE Clustering Multiple 
POI, Smart card (Zhang et al., 2018) BE Clustering K-means 
POI, Social media (Gao et al., 2017) BE Topic modeling LDA 
POI, Social media (Papadakis et al., 2019) BE Topic modeling LDA 
POI, land use/cover (Dong, Li, et al., 2021) BE Clustering DBSCAN 
POI, street view images (Hu et al., 2020) BE Topic modeling LDA 
POI, trip records (Yu et al., 2021) UD Clustering Multiple 
POI, Call records, OSM (Guo et al., 2021) UD Clustering K-means 
Smart card, GPS (Yu & He, 2017) UD Clustering Multiple 
Climate, DEM (Xu et al., 2018) US Clustering K-means  
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