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H I G H L I G H T S  

• Street-level imagery became ingrained as an important urban data source. 
• Most comprehensive review on street view imagery in geospatial and urban studies. 
• We have screened 619 papers to identify the state of the art, focusing on applications. 
• 250 studies are classified into 10 application domains and span dozens of use cases.  
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A B S T R A C T   

Street view imagery has rapidly ascended as an important data source for geospatial data collection and urban 
analytics, deriving insights and supporting informed decisions. Such surge has been mainly catalysed by the 
proliferation of large-scale imagery platforms, advances in computer vision and machine learning, and avail
ability of computing resources. We screened more than 600 recent papers to provide a comprehensive systematic 
review of the state of the art of how street-level imagery is currently used in studies pertaining to the built 
environment. The main findings are that: (i) street view imagery is now clearly an entrenched component of 
urban analytics and GIScience; (ii) most of the research relies on data from Google Street View; and (iii) it is used 
across myriads of domains with numerous applications – ranging from analysing vegetation and transportation to 
health and socio-economic studies. A notable trend is crowdsourced street view imagery, facilitated by services 
such as Mapillary and KartaView, in some cases furthering geographical coverage and temporal granularity, at a 
permissive licence.   

1. Introduction 

Street view imagery (SVI) has gained a strong momentum in urban 
studies in the last few years. Such development was largely propelled by 
the proliferation of SVI data (coverage and development of services such 
as Google Street View), advances in machine learning and computer 
vision that enable extracting a variety of information automatically, and 
the growing computing power to facilitate processing large amounts of 
images. 

As half of the world’s population is now covered by SVI (Goel et al., 
2018), it provides a valuable large-scale source of urban data, often 
replacing field visits with virtual audits (Badland, Opit, Witten, Kearns, 
& Mavoa, 2010; Berland & Lange, 2017). SVI has enabled examining 
visual features from the human (horizontal) perspective, which is not 
provided by other frequent data sources such as aerial or satellite 

imagery (Fig. 1). In fact, SVI has been described as a counterpart of 
remote sensing imagery (Zhang, Wu, Zhu, & Liu, 2019). 

Since the early days of services providing large-scale SVI, researchers 
recognised that it is well suited for assessing characteristics of the built 
environment (Kelly, Wilson, Baker, Miller, & Schootman, 2013). As 
such, it has been embraced across numerous domains. Over the years, 
SVI has been used for enhancing applications on contrasting sides of the 
spectrum of urban studies, e.g. real estate valuation (Law, Paige, & 
Russell, 2019), demographic studies (Gebru et al., 2017), collecting data 
on pedestrian counts (Yin, Cheng, Wang, & Shao, 2015), understanding 
crime (McKee et al., 2017), analysing accessibility (Hara, Le, & Froeh
lich, 2013), and mapping infrastructure defects (Chang et al., 2017). 

Thanks to the wide coverage and fine spatial sampling of various SVI 
providers, comparative studies among cities around the world and the 
creation of indicators and indexes to rank them have also emerged 
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(Naik, Philipoom, Raskar, & Hidalgo, 2014; Li et al., 2015; Long & Liu, 
2017). Furthermore, street-level imagery has proven itself valuable in 
conjunction with other sources of data such as social media (Cao et al., 
2018; Ye, Zhang, Mu, Gao, & Liu, 2020), and also for creating new 
geospatial data (e.g. mapping trees (Seiferling, Naik, Ratti, & Proulx, 
2017)) and enhancing existing datasets (e.g. inferring the type of a 
building from SVI to enrich a building dataset (Kang, Körner, Wang, 
Taubenböck, & Zhu, 2018)). 

In this paper, we provide a review of current applications of street 
view imagery in studies related to the urban context and the built 
environment and a synthesis of the most recent advances in the field, 
together with various aspects such as limitations and research oppor
tunities. To the extent of our knowledge, this is the most comprehensive 
and wide-ranging review paper on this topic. 

In Section 2, we briefly describe existing reviews. In Section 3, we 
give an overview of SVI services to provide an understanding of their 
differences and similarities, as a relevant aspect for our service-agnostic 
exploration. In Section 4, we describe the methodology of our systematic 
review. Section 5 summarises the quantitative insights of the review. 
The substance of the paper is Section 6 — it describes the state of the art 
of applications of SVI in urban analytics, systematically organised by 
application categories that we have derived during our review. Section 7 
proceeds to discuss the state of the art by summarising the obtained 
insights, key lessons learned, common challenges and issues, and it 
outlines research opportunities. Finally, Section 8 concludes the paper 
with takeaways. 

2. Related work 

To the best of our knowledge, there have been three review papers 
published in international scientific outlets that may be considered to be 
related to ours. 

In their review, Ibrahim, Haworth, and Cheng (2020) underscore the 
role of computer vision in understanding the interactions in the built 
environment. The review cuts across several topics (e.g. satellite imag
ery, algorithms), with street view imagery not being in the principal 
focus. Our review paper specifically zeroes in on SVI and provides a 
comprehensive review of the state of the art, predominantly focusing on 
its applications. 

Kang, Zhang, Gao, Lin, and Liu (2020) provide a review on the use of 
SVI for sensing urban environments in public health studies. Besides 
asserting the importance of SVI in auditing the built environment and 
examining the relationship between the environment and health out

comes, their paper also summarises the key aspects of how does (pre
dominantly commercial) SVI differentiate itself from other forms of 
urban data: (1) large coverage thanks to omnipresent map service pro
viders; (2) relatively homogeneous quality, sampling, and resolution; (3) 

free and efficient access to the data; (4) reliable and rich metadata; and 
(5) capture of the urban scenery from a human perspective. 

The paper of Rzotkiewicz, Pearson, Dougherty, Shortridge, and 
Wilson (2018) is another review focused on health research. They un
derline that the strong points of SVI are their low cost, ease of use, and 
time saved. At the same time, the weaknesses are image resolution and 
spatial and temporal availability in developing regions. Finally, they 
highlight that studies from South America, Africa, and rural areas are 
scarce. Our paper confirms this statement, as during our exploration we 
have collected metadata on the geographical coverage of the studies, 
which we discuss in Section 5. 

In our review, we realise that health studies are indeed a common 
application of SVI but just one among many. Thus, we expand on the 
aforementioned reviews by providing a broad, holistic, and compre
hensive overview of the opportunities that SVI provides in a wide range 
of urban studies and geospatial applications. 

3. Overview of major services 

At the moment, there are dozens of street view services, most of them 
being regional covering one or a few countries.1 This section describes 
the key services, primarily those that have worldwide coverage, with 
details that will aid in understanding different aspects discussed later in 
the paper. 

3.1. Google Street View 

Google Street View (GSV) is arguably the most well-known and 
widespread service providing SVI (Fig. 2). Barring rare exceptions such 
as backpack-mounted cameras to survey narrow roads, the panoramic 
imagery is acquired in a standardised manner: from a car mounted with 
multiple cameras on its roof, accompanied with various sensors 
including lidar (Anguelov et al., 2010). Since its launch in 2007, Google 
Street View reached coverage of more than 90 countries, expanding also 
into indoor spaces. The vast majority of imagery provides omnidirec
tional coverage, and it is taken from public roadways, except for a 
number of landmarks and some unconventional locations such as the 
International Space Station. The service can be accessed through the 
web interface integrated with Google Maps, smartphone apps, and an 
API (e.g. the images in Fig. 2 were downloaded through the Google 
Street View Static API). It is important to note that — unlike the web 
service — the API does not allow fetching historical imagery and it 
provides imagery at a lower resolution. 

Fig. 1. Illustration indicating the edge street view images have over those derived from aerial/satellite platforms, which have been used traditionally to extract 
spatial information. SVI pivoted the usual perspective from vertical to horizontal, enabling new insights into the built environment and facilitating new applications. 

1 https://en.wikipedia.org/wiki/List_of_street_view_services (last accessed: 
15 May 2021). 
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3.2. Crowdsourced services: Mapillary and KartaView 

Mapillary and KartaView (until November 2020 known as Open
StreetCam) are the remaining two services with a global focus. They 
both rely on crowdsourced imagery and are owned and operated by 
commercial entities. Because of their intrinsic similarities, they are 
described together. 

Anyone can contribute to Mapillary and KartaView, and the data can 
be used freely as both are licensed under the Creative Commons 
Attribution-ShareAlike 4.0 International License. Because contributors 
are free to upload their data to both platforms, some images can be 
found in both services. Both services are closely related to the Open
StreetMap (OSM) project and have been used as a data source for 
mapping in OSM (Juhász & Hochmair, 2016; Leon & Quinn, 2019). For 
example, Mapillary allows a special licensing arrangement so that the 
imagery can be used as a data source for acquiring data in OSM, and it is 
integrated into some OSM editors, facilitating mapping and tagging 
features, which can be quite beneficial as SVI gives the means to discern 
a multitude of information that is not possible with the traditionally 
used satellite imagery (see Fig. 1). Data from Mapillary has also been 
used to construct the well-known Mapillary Vistas Dataset, an annotated 
training dataset for semantic segmentation of street scenes (Neuhold, 
Ollmann, Rota Bulo, & Kontschieder, 2017), which can be used for e.g. 
training automotive AI systems (self-driving vehicles). 

In many ways these crowdsourced SVI platforms are similar but yet 
also significantly different from GSV, offering some advantages, and 
having disadvantages as well. 

The services are open to nearly any kind of SVI taken with any 
suitable equipment from different moving platforms. For example, see 
the images in Fig. 3, which cover the same location and view as in the 
GSV example in Fig. 2. The Mapillary image (Fig. 3a), was acquired with 
a smartphone, presumably taken by a contributor sitting in the first row 
on the upper deck of a public bus; while the KartaView imagery (Fig. 3b) 
was obtained with a dashcam mounted in a private vehicle. 

An advantage of such crowdsourced services, dubbed also as vol
unteered SVI, might be higher temporal resolution and coverage in 
places where GSV is not available (Mahabir, Schuchard, Crooks, Croi
toru, & Stefanidis, 2020). That is, on the micro-scale, it may include 
imagery from pavements, cycle tracks and walkways, while on the large- 
scale it may offer coverage in cities/countries where GSV and other 
commercial services are not available (Juhász & Hochmair, 2016). Ma, 
Fan, Li, and Ding (2019) performed an exploratory analysis of Mappilary 
data. One of their main findings is that — in contrast to GSV — a sig
nificant portion of images has been collected by users while walking and 
cycling. Furthermore, while the data and users have global coverage, it 
is especially ample in Europe and North America. Given the crowd
sourced nature of Mappilary and KartaView, the spatial sampling is one 
of the main factors differentiating these platforms from Google Street 
View and other commercial services, which tend to have full coverage of 
cities and relatively homogeneous sampling (Quinn & León, 2019). 

Another notable difference is that both services allow downloading 
imagery contributed by different users taken with different equipment at 
different times at the same location. That means that in some locations, 
the temporal resolution of the imagery will be finer than of GSV, which 
is typically acquired every few years, and having restricted access to 
older imagery. On the note of downloading, a further advantage over 
GSV is that the imagery can be fetched at a higher resolution. 

When it comes to the nature and quality of imagery, there are a few 
key aspects to note. First, more often than not, the imagery is not 
panoramic as in GSV. It is frequently acquired with dashcams recording 
the front view of the road, rather than the streetside, typically offering a 
narrower field of vision than GSV imagery, consequently limiting in
sights that can be extracted (cf. Fig. 2 and Fig. 3). Second, because of the 
large differences among contributors and equipment they use, the 
quality of the imagery is inevitably highly heterogeneous. For example, 
note the reflection on the windshield in Fig. 3b, as the imagery was 
recorded from inside a vehicle. Third, the positional accuracy of the data 
is not always high, which may cause issues in mapping applications 

Fig. 2. Example of street-level images in Google Street View, which are part of the same panorama (Orchard Road, Singapore; September 2020). ©2021 Google.  

Fig. 3. Comparison of images of the same location as in Fig. 2, obtained from the two crowdsourced services, contributed by users using different equipment 
and platforms. 
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(Krylov & Dahyot, 2019). Fourth, at the moment, the spatial coverage of 
these user-contributed services is not nearly as comprehensive as that of 
GSV, which is a notable limitation. 

3.3. Tencent Street View and Baidu Total View (China) 

As further examples of SVI services, after overviewing those with a 
global focus, in this section we focus on local instances. Our review will 
reveal (Section 5) that there is a sizeable portion of papers conducted 
using two SVI providers in China: Tencent Street View and Baidu Total 
View. Therefore, in this section, we will give a brief overview of these 
two examples of local services. 

Baidu Maps is a web mapping service provided by Baidu, which can 
be considered as the counterpart of Google Maps for China. Since 2013 it 
offers a street view service — Baidu Total View. While the coverage of 
satellite imagery and maps in Baidu Maps spans beyond China, SVI is 
available only for China. Tencent Maps is a similar local service, pro
vided by Tencent, and since 2011 it has been offering SVI under Tencent 
Street View. 

Since GSV is not available in mainland China due to business re
strictions (Liang et al., 2017), and because Tencent and Baidu street 
view services are in many ways equivalent to GSV (e.g. they are pano
ramic and they offer API access) (Long & Liu, 2017; Williams, Xu, Tan, 
Foster, & Chen, 2019), it is not a surprise that researchers focusing on 
Chinese cities have been taking advantage of them in their studies. Re
searchers also assert that efforts developed using these local services 
should be replicable using GSV as well (Cheng et al., 2017). 

Local services in many other countries are also similar to GSV, and as 
in the case of China they might have coverage in specific places where 
GSV is not available, e.g. GSV is not available in Morocco but Carte.ma 
Streetview, a local service, covers about 10 major cities; and while GSV 
is available in Yerevan, Armenia, Yandex has a notably denser coverage. 
However, as it will be evident in the next section, our review uncovers 
that the two Chinese services mentioned in this section are virtually the 
only two local data sources that are featured in international peer- 
reviewed literature. 

4. Methodology 

4.1. Overview and time frame 

In identifying papers relevant for this review, we have followed the 
common systematic review methodology, which is also in line with the 
latest review papers published in the field (e.g. Berthon, Thomas, & 
Bekessy, 2021; Chatzimentor, Apostolopoulou, & Mazaris, 2020). That 
is, we have selected a few relevant keywords to fetch the initial pool of 
papers, which we have screened to sift out those that are not relevant for 
this review. Afterwards, we have focused on the papers identified as 
relevant, and extracting information from them. Considering our aim to 
review the most recent advances in the field, we have focused on papers 
published in the last three years (2018, 2019, and 2020). At the same 
time, to ensure that our review is sufficiently diverse and that it captures 
most, if not all, of the applications of SVI, we have randomly sampled 
papers published before this time frame, and we ascertained that there 
are no instances that are not covered already by those in the afore
mentioned period. The papers published in the last three years mainly 
continued research on the same applications and introduced new ones. 
The details of this process are described in the continuation of this 
section. 

4.2. Search criteria 

To identify an initial pool of papers, we have searched Scopus for all 
recent publications that contain relevant keywords ‘street-level imag
ery’ and ‘street view’ in their title, abstract, or keywords. We have 
noticed that in literature, the terms street view, street-level image, and 

street-level imagery are common and used interchangeably, so we have 
used these terms in the search. Using these broad terms ensures high 
diversity and number of papers required to capture the breadth of ap
plications, but also strengthen the discussion of accompanying topics 
such as research opportunities. 

While the keyword ‘street view’ is of generic nature, it also doubles 
to capture all papers mentioning ‘Google Street View’ and ‘Tencent 
Street View’. For that reason, one might argue that the review will be 
biased towards these services. However, this is not the case. To make 
sure that our search includes a wide range of papers and it is not biased 
towards the aforementioned services, we have searched also for a couple 
of other specific services. For example, searching for ‘mapillary’ gives 31 
results, while identifying papers ‘openstreetcam’ gives only 3 publica
tions (as a comparison — searching for ‘google street view’ results in 
hundreds of publications). We have realised that these papers have 
either already been captured in our initial search with the generic 
keywords, or if not — they are almost exclusively focused on topics 
outside of the focus of this review (e.g. published in computer vision 
outlets and describing research not of relevance for this review). 
Furthermore, we have picked a couple of local services and browsed 
through the literature to identify papers mentioning them but to no avail 
as they mostly did not yield any result at all. For example, searching the 
literature for Malaysia’s Urban Explorer and Kuwait Finder does not 
return a single publication that is relevant for this review. 

The search and the review were performed during the second half of 
2020, with the final query executed on 14 November 2020. It yielded 
619 publications. 

4.3. Selection criteria, screening, and extraction of information 

Afterwards, we have screened the abstracts of the papers in the initial 
pool to create a corpus of those that are relevant for this review, 
following the criteria: (1) the study was conducted within an urban 
context; (2) the paper is in English; and (3) the study is not predomi
nantly a computer vision paper (e.g. one that deals with advancing a 
machine learning method in which SVI is used only for testing pur
poses). Almost all papers fulfilled the first two criteria, except a few that 
have been excluded because they do not focus on the built environment 
and urban context, e.g. using GSV for agricultural monitoring (d’An
drimon, 2018). More than half of the papers were chiefly computer 
science articles, rather than an urban or mapping study, so they were 
excluded. 

Out of the 619 initial publications, 250 have been carried forward for 
the review. During the review, for each paper, we have extracted several 
characteristics (e.g. street view service that was used, geographical 
coverage, open science aspect, and the number of images used in the 
study), which we summarise in Section 5. 

As it is the case with other systematic reviews, we acknowledge that 
there is a possibility that we have inadvertently excluded some relevant 
papers. Nevertheless, considering the large number and variety of pa
pers that we have reviewed, we are confident that our review does not 
suffer from significant bias, it is sufficiently representative of the current 
trends in this domain, and it presents a stringent and comprehensive 
snapshot of the state of the art. 

4.4. Taxonomy and thematic clusters 

After examining all relevant studies, we have developed their 
meaningful categorisation. The delineation of applications in review 
papers such as this one is complex and may be subjective (Biljecki, 
Stoter, Ledoux, Zlatanova, & Çöltekin, 2015), which is compounded by 
the very diverse and intertwined landscape of research in this topic. 

We have delineated the papers by topic — into 10 categories: 
greenery, urban morphology, transportation and mobility, socio- 
economic studies, real estate, walkability, health and well-being, 
urban perception, spatial data infrastructure, and other. The state of 
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the art of applications of SVI is described by these identified domains 
(Section 6). To give justice to the breadth of all urban applications of SVI 
we have identified but at the same time to balance the length of the 
paper, we mention most of them briefly to create an inventory, and 
select a diverse subset that we describe in detail. For further information 
on a particular application, the reader is referred to the rich list of 
references. 

5. Results 

This section describes the general insights and statistics of the 
screened papers. First, Fig. 4 indicates the temporal evolution of the 
number of papers in the last 15 years in our initial pool, suggesting a 
steady upward trend of papers relying on SVI. 

In Fig. 5, we include the share of street view services (i.e. data 
sources). The first key observation is that GSV dominates in research 
projects, thanks to its coverage and quality of data, being used in about 
two thirds of studies. The next important insight is that in the second and 
third place follow Chinese services Baidu and Tencent, and not vol
unteered services, as one might expect. Despite the increasing coverage 
and open data policy of Mapillary and KartaView, and their popularity 
in the community, it appears that crowdsourced imagery has not yet 
gained currency in urban studies, likely because they are not complete 
enough yet and have issues such as heterogeneous quality and a small 
share of panoramic imagery. Many of the methods and applications in 
the identified papers require consistent coverage and quality, especially 
if computer vision techniques are used. It is also relevant to note that 
virtually all studies focus on one data source, with just a few exceptions 
(e.g. Krylov & Dahyot (2019) use both GSV and Mapillary in a 
comparative study on positioning objects detected in imagery). 

Given the high spatial resolution of street view services, cities may be 
covered with hundreds of thousands of images. Thanks to advancements 
in computer vision and availability of computing power, it is possible to 
analyse such a large amount of data. When provided, for each study, we 
have extracted the number of images that were used in the data analysis 
(Fig. 6); and indeed a large portion of the studies have analysed thou
sands of images. Moreover, there is more than a dozen studies processing 
more than a million images. For example, in a study producing neigh
bourhood summaries of conditions across the United States, Nguyen 
et al. (2020) analyse 164 million images. 

Fig. 7 illustrates the open science aspect of this research domain. 
Nearly a third of papers are published as open access, while the situation 
with data and code is far less beneficial. Only a fraction of studies offers 
open data or open-source code, inhibiting replication and 

reproducibility. For an example of a paper with the resulting data 
released as open data, see (Toikka, Willberg, Mäkinen, Toivonen, & 
Oksanen, 2020), in which a dataset describing the visibility of vegeta
tion in Helsinki was generated by analysing SVI. 

The geographical aspect of the studies is also important to consider. 
For each study, we have noted the spatial extent in focus. The most 
frequent case is that a study focuses on a single city: such cases account 
for 80% of papers. We have identified 89 unique locations, which are 
mapped in Fig. 8. There have been also comparative studies that focus 
on multiple locations. In most cases, such studies focus on a few or 
several cities. For example, Fu, Jia, Zhang, Li, and Zhang (2019) use 
imagery from Baidu to extract scene perception characteristics and un
derstand the influence on housing prices, and compare the results be
tween Beijing and Shanghai. However, there are also studies including 
dozens of locations. For example, Goel et al. (2018) analyse imagery 
from 34 cities in Great Britain to predict travel patterns. Among the 
studies that include multiple locations, 44% of them are international, 
that is, including cities from different countries. 

Despite the availability of data, there are clear gaps in most of Asia, 
South America, and Africa, but also in much of Europe. Some of these 
locations have in a few occasions been subject of large-scale compara
tive studies, but not publications solely focusing on them. Such gaps 
present a scientific opportunity, e.g. at least inviting replications of 
studies carried out elsewhere. 

Fig. 9 reveals the share of categories according to our taxonomy 
(Section 4.4). There is no application that is predominantly popular (i.e. 
accounting for more than a quarter of publications), though there are 
significant differences among their prevalence. 

6. Review 

6.1. Spatial data infrastructure 

The application domain with the largest number of publications in 
the recent period is using imagery for creating and maintaining spatial 
data infrastructures. While the studies that will be presented in the 
subsequent sections also focus on extracting objects from images, this is 
a category of research that does so predominantly or solely for mapping 
purposes, i.e. purely to collect spatial data. SVI presents a significant 
opportunity to keep maps updated. Thus, it is no surprise that a large 
number of papers proliferated exploring such potential. 

While publications presented in this section stop short of an analysis/ 
urban study and do not use SVI for a purpose beyond data collection, an 
advantage of such publications is that they usually tend to be more 
detailed on the methodology and performance of the data collection. 
They may also provide ideas for future urban studies that might take 
advantage of particular information that have not been explored yet. 

Many of the identified studies focus on buildings. Aside from some 
exceptions such as mapping buildings (Ogawa et al., 2019; Zhang et al., 
2020), studies focus on extracting their characteristics to improve se
mantic completeness. As building information in crowdsourced venues 
such as OpenStreetMap is often sparse (Biljecki, 2020), such techniques 
increasing the completeness of attributes might contribute to use cases 
requiring them. 

The type, condition, and function of a building appear to be the key 
characteristic related to buildings that were subject of research (Kang 
et al., 2018; Gonzalez et al., 2020; Laupheimer, Tutzauer, Haala, & 
Spicker, 2018; Yu et al., 2020). It is often done in combination with 
aerial or satellite imagery (Hoffmann, Wang, Werner, Kang, & Zhu, 
2019). For example, Li, Chen, Rajabifard, Khoshelham, and Aleksandrov 
(2018) demonstrate the estimation of the year of construction of 
buildings from GSV images in Victoria, Australia. The age of a building is 
a critical piece of information for energy demand and retrofit studies. 
Therefore, their method can be used to enrich building datasets without 
such attribute to enable such studies. In relation to buildings, SVI was 
used to estimate the height of a building and number of floors, which can 

Fig. 4. The rapid increase of urban studies using SVI. Note that year 2020 is 
excluded from the plot since it is not complete and Scopus might still be adding 
2020 papers well in 2021. However, the number of papers published so far 
(during the submission of this paper in November 2020) suggests that it will 
continue the upward trend, exceeding the year 2019. 

F. Biljecki and K. Ito                                                                                                                                                                                                                           



Landscape and Urban Planning 215 (2021) 104217

6

be used to generate its 3D model (Kim & Han, 2018; Taubenböck, Kraff, 
& Wurm, 2018; Kraff, Wurm, & Taubenböck, 2020). However, the ac
curacy has not been reported. On that note, Bruno and Roncella (2019) 
have investigated 3D reconstruction from GSV, but report hit-or-miss 
results. Generating 3D models from GSV has been a long-standing 
topic of interest with papers dating to the early days of this subject 
(Torii, Havlena, & Pajdla, 2009). A distinct work presented by Kim, Kim, 
and Choi (2019) demonstrates inferring characteristics of cities from SVI 
and passing them into a procedural modelling engine to generate 3D city 
models. However, their methodology generates data of imaginary cities 
rather than of the real-world. Wang, Kang, and Zhu (2018) combine SVI 
with spaceborne synthetic aperture radar (SAR) data to generate 3D 

building models in Berlin. Their work suggests challenges such as 
borderline quality of images, but indicate that by fusing multiple data
sets, one can leverage on particular advantages of each dataset. 

Further studies focused on extracting building characteristics include 
detecting graffiti artwork in facades (Novack, Vorbeck, Lorei, & Zipf, 
2020; Tokuda, Cesar, & Silva, 2019) and identifying commercial es
tablishments (Peng, Gao, Xiao, Guo, & Yang, 2018). Noorian, Psyllidis, 
and Bozzon (2019) use GSV to classify the type of points of interests 
(stores) located in buildings. Their method largely relies on extracting 
text from storefronts, classifying them into 22 categories, such as 
bookstore and pharmacy. For related work see Noorian, Qiu, Psyllidis, 
Bozzon, and Houben (2020). 

Srivastava, Muñoz, Lobry, and Tuia (2018) utilise GSV to predict 
land use (e.g. educational, hospital, religious; derived from OSM data) in 
France, with preliminary work in the Netherlands (Srivastava, Vargas- 
Muñoz, Swinkels, & Tuia, 2018). They report mixed results as the ac
curacy depends on the class due to the similarity and overlap between 
classes. In an extension of the work, Srivastava, Vargas-Muñoz, and Tuia 
(2019) investigate the fusion of aerial and ground views, improving the 
accuracy of the predictions. Among other reasons, this study is high
lighted for its focus on the contribution of SVI among other sources of 
urban data. Further studies focused on land use and urban zoning clas
sification include the publications of Cao and Qiu (2018), Cao et al. 
(2018), Huang, Qi, Kang, Su, and Liu (2020), Feng et al. (2018), Kar
asov, Külvik, Chervanyov, and Priadka (2018), and Chang et al. (2020). 

Likely because road data is nowadays complete and easily obtainable 
(Barrington-Leigh & Millard-Ball, 2017), mapping roads is seldom 
conducted, but they have been subject of classification and semantic 
enrichment. For example, Marianingsih and Utaminingrum (2018) have 
investigated using GSV images to classify the road surface type (e.g. 

Fig. 5. Sources of SVI identified in our study.  

Fig. 6. Number of images used in the studies.  

Fig. 7. Share of papers that is open (open access publication, open-source code, or data released as open data).  
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asphalt, gravel). Related work has been done on the classification of 
street types (Zhang, Siriaraya, Kawai, & Jatowt, 2020), assessing the 
quality of roads and detecting defects (Chacra & Zelek, 2018), and 
quality control of road data (Zhou & Lin, 2020). 

It appears that mapping is for a substantial part focused on smaller 
urban features and street furniture, or those that are frequently omitted 
from spatial datasets, such as traffic signs and traffic lights (Campbell, 
Both, & Sun, 2019; Nassar & Lefevre, 2019; Lu, Lu, Zhang, & Hall, 
2018), light poles (Ao, Wang, Zhou, Lindenbergh, & Yang, 2019), utility 
poles (Krylov, Kenny, & Dahyot, 2018), manholes (Vishnani, Adhya, 
Bajpai, Chimurkar, & Khandagle, 2020), public drinking water fountains 

(Wilson, Signal, & Thomson, 2018), bike racks (Maddalena, Ibáñez, & 
Simperl, 2020), and urban drainage network (Boller, de Vitry, Wegner, 
& Leitão, 2019). A large number of studies focus on mapping trees and 
their characteristics (Berland, Roman, & Vogt, 2019; Branson et al., 
2018; Chen et al., 2020; Laumer et al., 2020; Li & Yao, 2020; Nassar, 
Lang, Lefevre, & Wegner, 2019; Thirlwell & Arandjelović, 2020; Wang 
et al., 2018; Xie, Li, Yu, Zhou, & Wang, 2020; Qiu et al., 2019). 

Though most of the studies described in this section are focused 
solely on mapping features or enriching attribute information, there are 
instances that demonstrate the use of the collected data for change 
detection (Branson et al., 2018; Peng et al., 2018; Revaud, Heo, 
Rezende, You, & Jeong, 2019), presenting an opportunity for main
taining spatial data infrastructure and providing possibilities for study
ing urban development. 

Researchers report that the reliability and accuracy of localisation 
much depend on the imagery and object. For example, Krylov et al. 
(2018) use GSV imagery to detect utility poles and traffic lights with a 
success rate of above 90% and report a positional accuracy of 2m. 
Branson et al. (2018) use the same source to map and classify trees. Their 
method detects about 70% of trees, mapping them with an accuracy of 
below 2m in 70% of cases, which is reaffirmed by a similar study con
ducted by Li and Yao (2020). In the study of Peng et al. (2018) focused 
on mapping shops in buildings, above 80% of them are correctly rec
ognised, and an average positional accuracy of 8m is achieved. 

In conclusion, the studies suggest a high potential of using SVI in 
creating and maintaining spatial databases, especially for features that 
are frequently less in the focus of contributors in crowdsourced geo
information, such as lamp posts and traffic signs. However, the studies 
presented in this section almost always focus on a specific location. As 
the type and appearance of certain features may be highly variable 
across different geographies (Thirlwell & Arandjelović, 2020), some of 
these studies may be challenging to replicate in other locations or may 
result in a different performance. Furthermore, positional accuracy re
mains a challenge inhibiting the generation of highly accurate spatial 
datasets, mostly due to noise and difficulties in localisation (Cheng et al., 
2018; Krylov & Dahyot, 2019). 

Fig. 8. Geographical distribution of studies focusing on a single location. Basemap credit: map tiles by Stamen Design; data by OpenStreetMap contributors; engine 
by Kahle et al. (2013). 

Fig. 9. Share of papers per theme according to our taxonomy.  
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6.2. Greenery 

The publication landscape is dominated by applications on extract
ing vegetation from SVI for studying urban greenery and related topics, 
e.g. thermal comfort, aesthetic conditions, and health. These studies are 
also distributed among other themes when they predominantly focus on 
that theme (e.g. association of greenery and obesity). Thus, we place this 
section at the beginning of our review, giving a foundation to under
stand the subsequent sections. This section overviews studies chiefly 
focused on understanding vegetation in the urban context using SVI. 

For the most part, studies essentially measure the amount of near- 
road greenery (e.g. relative measure of vegetation visible at the street 
level at a location) at a city-scale or across multiple cities, for urban 
planning interventions, and other applications such as planning tree 
maintenance, planting efforts, and greenway networks (Cai, Li, Seiferl
ing, & Ratti, 2018; Tang et al., 2020). A common measure that is used to 
quantify urban greenery and evaluate the visibility of urban forests is the 
Green View Index (GVI) (Yang, Zhao, Mcbride, & Gong, 2009), which is 
focused on the pedestrians’ view of greenery and can be extracted using 
SVI and computer vision techniques, largely semantic segmentation (Li 
et al., 2015; Stubbings, Peskett, Rowe, & Arribas-Bel, 2019), which has 
been used in dozens of studies (Dong, Zhang, & Zhao, 2018; Wu, Gong, 
Liang, Sun, & Zhang, 2020; Xia, Yabuki, & Fukuda, 2020); an example is 
given in Fig. 10. There have also been alternative but related de
velopments and modifications (Chen, Meng, Hu, Zhang, & Yang, 2019; 
Yu, Zhao, Chang, Yuan, & Heng, 2018; Lauko, Honts, Beihoff, & Rup
precht, 2020; Labib, Huck, & Lindley, 2020), such as an index quanti
fying the ability to see urban street greenery during transportation (Wu, 
Cheng, Chu, Xia, & Li, 2019). 

Many of the studies focus on a single city, but there are some that 
cover multiple territories, providing comparative analyses. Further, 
almost all studies focus on a single time period, but there are exceptions 
providing an analysis on the temporal change of the GVI in a city (Li, 
2020). 

Much of the research on quantifying urban greenery involves satel
lite imagery, however, SVI has an unparalleled advantage over them if 
the objective is to assess profile views of street greenery and giving an 
understanding of what people see on the ground, which cannot be 
captured by most remote sensing methods (Li et al., 2015). Nevertheless, 
studies often use SVI in combination with remotely sensed data, such as 
airborne lidar and satellite observations, to get a complete picture on 
urban greenery both near-road and in parks and off-street yards (Bar
bierato, Bernetti, Capecchi, & Saragosa, 2020; Richards & Wang, 2020; 
Gu, Chen, & Dai, 2019) or for validation of other methods (Kumakoshi, 

Chan, Koizumi, Li, & Yoshimura, 2020). 
A few detailed examples of studies follow. Li, Ratti, and Seiferling 

(2018) quantify the contribution of street trees in shading developing a 
method relying on GSV. Besides the aforementioned advantage of the 
pedestrian perspective, the researchers argue that the advantage of SVI 
over aerial or satellite imagery is that the above ground imagery cannot 
fully capture the shading effectiveness of the street trees. Using a seg
mentation technique detecting the portion of the sky in each panorama, 
their study estimates the sky view factor at about 300 locations in 
Boston, as a proxy for shade. By comparing locations with different 
amount of canopy cover, and accounting for the obstructions caused by 
buildings, the results suggest that street trees contribute to a decrease in 
the sky view factor by 18.5%. Studies such as this one contribute to 
understanding the role of greenery in increasing thermal comfort. 

Ye et al. (2019) measure the visible street greenery at a city-scale in 
Singapore, at a very dense resolution (more than 180 thousands loca
tions). The quantified greenery, extracted and classified from GSV im
agery, was coupled with values of pedestrian accessibility, which was 
quantified using a street network from OSM. One of the benefits of a 
study such as this one is to better inform urban planning interventions, e. 
g. establishing locations with priority for greening. 

As much as conceptually there is a substantial overlap between the 
methodology of quantifying urban greenery among the identified 
studies, the range of the applications is wide, and we describe them in 
each respective theme. In the remainder of this section, we feature two 
general studies that are more appropriate in this section. Chen, Zhou, 
and Li (2020) calculate the green view in several cities in South China 
using data from Baidu, and find a positive correlation with socio- 
economic indicators such as GDP, and with public revenue, indicating 
the importance of financial power of cities when constructing public 
green space. Wang, Hu, Tang, and Zhuo (2020) examine greenery in 
Beijing, suggesting its negative correlation with population density, and 
mixed results when determining the association with housing prices. 

6.3. Health and well-being 

Health studies documenting the application of SVI are plentiful and a 
major theme that we have identified. Thus, it is not surprising that the 
two review papers outlined in Section 2 have been focusing solely on this 
domain. Researchers in this domain recognise SVI as an important 
source to derive a variety of indicators on built environment charac
teristics that can be analysed to assess their association with the impact 
on health and well-being they have. Such results may be used to inform 
public health officials and policymakers to address issues and improve 
structural factors (Keralis et al., 2020; Phan et al., 2020; Javanmardi 
et al., 2020). 

Much of the health and well-being studies rely on quantifying 
greenness exposure, hence this section in a way extends the previous 
one. For example, many studies call attention to the association of 
physical activity and greenery in a neighbourhood (He, Lin, Yang, & Lu, 
2020; Yang et al., 2019; Villeneuve et al., 2018). While investigating 
such relationship has been studied long before the availability of SVI 
providers, primarily due to the global availability of satellite-derived 
normalized difference vegetation index (NDVI), its proliferation has 
enabled analyses at a larger scale and it enabled including streets rather 
than only parks and other green spaces (Lu, 2019). For example, Nguyen 
et al. (2018) use GSV to extract street greenness, crosswalks (as a sign of 
walkability), and building type deriving indicators to describe the built 
environment at a zip code level in three cities in the United States. The 
study suggests that there is an association between the neighbourhood 
characteristics and the prevalence of obesity and diabetes, i.e. the areas 
with the greenest streets and crosswalks had a lower prevalence of 
obesity and diabetes. 

In a large-scale multivariate study involving 31 million images at 7.8 
million intersections in 416 cities in the United States, Keralis et al. 
(2020) extract several built environment indicators at each location. 

Fig. 10. Semantic segmentation is the predominant computer vision technique 
that is used in calculating the amount of greenery from street-level imagery. It is 
also frequent in studies in other thematic categories. The image in Fig. 3b was 
segmented using DeepLab, a deep learning model for semantic image seg
mentation and was trained on the Cityscapes dataset (Chen et al., 2018; Cordts 
et al., 2016). The green portion of the overlayed mask represents the vegetation 
that is detected in the original image, facilitating the quantification of in
dicators such as the GVI. 
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Besides the previously mentioned common indicators, they examine 
whether visible utility wires overhead (as a scale of physical disorder) 
and whether a road is single-lane or not (as an indicator of the lower 
level of urban development) might have links to various health out
comes. Among other results, the study reveals that visible wires are 
associated with increased prevalence of all health-related behaviours (e. 
g. higher prevalence of diabetes, physical and mental distress, and 
drinking). Identifying indicators of neighbourhood physical disorder, 
such as defaced properties, litter, and abandoned cars, and linking them 
to health outcomes was also investigated by Chen et al. (2019), S. Mayne 
et al. (2018), S.L. Mayne, Pellissier, & Kershaw (2019), Plascak et al. 
(2020). 

Further studies include focusing on happiness (Hart et al., 2018), 
obesity (Li & Ghosh, 2018; Xiao, Zhang, Sun, Tao, & Kuang, 2020; Yang, 
Lu, Yang, Gou, & Zhang, 2020), stress (Jiang, Larsen, & Sullivan, 2020), 
and mental health (Wang et al., 2020; Hoffmann et al., 2019; Wang 
et al., 2019; Wang et al., 2019; Wang et al., 2019; Wang et al., 2019; Liu 
et al., 2020). Most studies have a substantial overlap in the features they 
extract from imagery (e.g. trees, crosswalks). Less common extracted 
characteristics of the built environment include sidewalk quality 
(Schootman et al., 2020; Gustat et al., 2020), recreational facilities 
(Mackenbach et al., 2018), and street interface enclosure (Meng et al., 
2020). 

Another domain of studies related to health and well-being is on 
infectious diseases. Andersson, Birck, and Araujo (2018, 2019) assert 
that the spread of diseases may be attributed to environmental factors, 
many of which can be sensed from SVI. In their papers, they focus on 
dengue fever. On that note, Haddawy, Wettayakorn, Nonthaleerak, Yin, 
and Wiratsudakul (2019) detect outdoor open containers (e.g. buckets 
and potted plants), which constitute potential dengue vector breeding 
sites. An application of their work is creating detailed dengue risk maps 
of large areas. 

SVI has also been used to supplement movement trajectories to 
provide additional insight for health studies. For example, Li, Deal, 
Zhou, Slavenas, and Sullivan (2018) carried out a study for under
standing the mood of adolescents, in which the movement of the par
ticipants was tracked. SVI from GSV was matched to the logged locations 
to gather more information about the surroundings, suggesting that 
greater exposure to nature was associated with a better mood. 

Finally, Egli et al. (2018) use GSV to examine food and beverage 
advertising around schools in Auckland, New Zealand, to determine the 
exposure of children to such ads. 

6.4. Urban morphology 

SVI is a powerful source to measure the urban form as perceived by a 
pedestrian in a street canyon (Middel, Lukasczyk, Zakrzewski, Arnold, & 
Maciejewski, 2019; Li & Ratti, 2019; Xu, Zhu, Tapper, & Bechtel, 2019). 
Examples of related studies, which are mostly focused on urban climate, 
are given in the continuation. 

GSV was used by Hu, Zhang, Gong, Ratti, and Li (2020) for street 
canyon classification in Hong Kong, presenting a valuable input for 
understanding the impact of building density on microclimate. The 
study also reveals that the performance of the classification is degraded 
by the amount of sunshine in the image, i.e. images in canyons that have 
East–West orientation may perform worse than those with the North
–South orientation. On that note, Li, Cai, Qiu, Zhao, and Ratti (2019) 
present a method to estimate the sun glare using GSV panoramas. Their 
work relies on image segmentation of GSV panoramas thanks to which 
obstructions that would block the glaring sun are detected, and locations 
vulnerable to sun glare are mapped. One of the use cases of their work is 
in traffic safety, as sun glare is a frequent factor leading to traffic acci
dents. Therefore, the method could be used to predict at a large scale on 
which roads and at what time does sun glare occur, and integrate it into 
navigation devices. A related study is the one of Du, Ning, and Yan 
(2020) estimating the sun duration at different locations in street 

canyons. 
A significant number of studies concentrate on estimating the solar 

irradiation, the sky view factor (SVF), and related indicators urban ge
ometry that may be used for various purposes, from microclimate 
studies to understanding light pollution (Nice et al., 2020; Liang et al., 
2020; Gong, Zeng, Ng, & Norford, 2019; Li & Ratti, 2019; Gong et al., 
2018; Li, Duarte, & Ratti, 2019; Tang, Zhang, Chen, Wan, & Li, 2020; 
Zhang, Middel, & Turner, 2019; Liu et al., 2019; Khamchiangta & 
Dhakal, 2019; Sun et al., 2020; Zeng, Lu, Li, & Li, 2018). The studies are 
mostly using approaches congruent with the one described in the pre
vious paragraph. In this list, we emphasise the work of Liang et al. 
(2020) who develop GSV2SVF, a software to calculate the SVF from 
GSV, and release it open-source. Their software estimates also the tree 
and building view factors. 

Further studies on urban form that use SVI include the work of Gage 
et al. (2018), which uses imagery to measure the amount of shade in 
outdoor recreation spaces, such as playgrounds and swimming pools. 
Data on the provision of shade in urban open spaces is important to 
support informed decisions in urban planning, and it has health impli
cations such as skin cancer prevention (Gage, Wilson, Signal, & Thom
son, 2018). Hu et al. (2020) posit that urban functions of streets, such as 
the amount of open space and building enclosure, which is extracted 
from SVI, can be used in street quality assessment. Finally, Monteiro and 
Turczyn (2018) inspect GSV data manually to monitor the evolution of 
the urban form. 

6.5. Transportation and mobility 

Considering that SVI is captured along streets, transportation and 
mobility studies are unsurprisingly another major application area. Most 
use cases in this domain revolve around traffic safety, as SVI provides a 
convenient source to conduct virtual street audits and extract charac
teristics of roads (Hong, McArthur, & Raturi, 2020). 

Hu, Wu, Huang, Peng, and Liu (2020) investigate clusters of pedes
trian crashes, and explore the relationship between crashes and road 
infrastructure characteristics. They gather several variables on roads 
from SVI, such as number of lanes, road surface condition, and width of 
the sidewalk. SVI is found beneficial, as it may provide additional at
tributes on the road network that are not typically available in tradi
tional GIS datasets. For related studies on using SVI in the context of 
pedestrian safety and crashes see the papers of Mooney et al. (2020), 
Nesoff et al. (2018), Kwon and Cho (2020), and Isola et al. (2019). 

Cycling safety has been subject of research as well. For example, 
Cicchino et al. (2020) look in the variations of protected bike lanes (e.g. 
degree of physical barriers) to understand their relationship with cyclist 
crashes and falls. Cycling infrastructure characteristics have been pro
vided by patients from emergency departments who fell or crashed 
while cycling, however, GSV was used to confirm them. 

With regard to safety, SVI has been exploited also for identifying 
traffic black spots (Tanprasert, Siripanpornchana, Surasvadi, & Thaj
chayapong, 2020), and exposing the relationship between trans
portation policies and the perception of safety (Hollander, Nikolaishvili, 
Adu-Bredu, Situ, & Bista, 2020). 

Besides the safety portion of this domain, the remaining identified 
use cases are quite diverse. For example, SVI was found useful by Chen 
et al. (2020) for automated assessment of pedestrian volume at a large 
geographic scale. Using a machine learning technique, they count the 
number of pedestrians in images, approximating the pedestrian volume 
at different locations. In their comparative study, the researchers assert 
that SVI can be used to replace the traditionally used laborious field 
observations, but they also expose limitations of SVI, most importantly 
that each image represents pedestrians only at a certain point in time. 

Transportation and mobility behaviour has been another major area 
of research in this domain with several studies published spanning 
multiple transportation modes (Zhang et al., 2019; Lu, Sarkar, & Xiao, 
2018; Goel et al., 2018; Lu, 2018; Yang et al., 2020; Zang et al., 2020; 
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Ibrahim, Haworth, & Cheng, 2019). For example, den Braver et al. 
(2020) recognise that the degree of car usage, besides being explained 
by individual characteristics, is also largely driven by neighbourhood 
environment characteristics. Many of these indicators have been gath
ered from SVI, e.g. density of speed bumps, pedestrian crossings, and 
traffic lights. Moving on to cycling, there have been studies explaining 
cycling patterns, e.g. Wang, Lu, Wu, Liu, and Yao (2020) and Lu, Yang, 
Sun, and Gou (2019) establish the relationship between cycling behav
iour and exposure to greenery, while Verhoeven et al. (2018) examine 
the preference of cyclists towards preferred routes, revealing the influ
ence of speed limits and the architecture of buildings along the cycling 
routes. 

Further transportation-related use cases of using SVI include iden
tifying potential urban congestion spots (Qin, Xu, Kang, & Kwan, 2020), 
understanding measures to mitigate near-roadway pollution (Gabbe, 
Oxlaj, & Wang, 2019), and predicting car driving difficulty (Skurowski 
& Paszkuta, 2018). 

6.6. Walkability 

SVI is particularly useful in walkability studies because it allows 
virtually walking down street segments to assess how conducive they are 
to walking (Steinmetz-Wood, El-Geneidy, & Ross, 2020), and it may 
provide information that is not found in other commonly used data 
sources in this domain (Yencha, 2019; Biagi, Brovelli, & Stucchi, 2020). 

The recurring topic is using SVI to quantify and assess how walkable 
are streets in a study area (Blečić, Cecchini, & Trunfio, 2018; Nagata 
et al., 2020; Bartzokas-Tsiompras, Tampouraki, & Photis, 2020). For 
example, in a wide-ranging study set in New York City, which arguably 
spans multiple categories, Miranda et al. (2020) analyse 7.7 million 
images to understand safe pedestrian access, and the role of the archi
tectural style of buildings on the pedestrian’s walking experience. 

Walkability having multi-fold meaning leads to that a wide range of 
physical aspects are being investigated in the studies, such as the dis
tribution of pedestrian sheds and walkways (Zhou & Xu, 2020; Cao, Liu, 
Li, Wang, & Qin, 2018), quality of sidewalks and their accessibility 
(Plascak et al., 2019; Weld et al., 2019), enclosure of street canyons (Li, 
Santi, Courtney, Verma, & Ratti, 2018), pedestrian crossings (Steinmetz- 
Wood, Velauthapillai, O’Brien, & Ross, 2019), traffic mirrors and 
streetlights (Hanibuchi, Nakaya, & Inoue, 2019), and aesthetics (e.g. 
flowers and garbage) (Christman, Wilson-Genderson, Heid, & Pruchno, 
2019). Many of these aspects are analysed in combination. For example, 
Zhou, He, Cai, Wang, and Su (2019) present a quantified composite 
index for walkability (Visual Walkability Index) based on four indicators 
calculated from the segmented SVI, e.g. visual crowdedness and amount 
of obstacles. They implement the work in Shenzhen, calculating the 
index for several thousands of sites. The results suggest the great het
erogeneity of visual walkability across the city. 

Most of the work provides understanding built environment char
acteristics associated with walkability, though there is also research on 
providing route recommendations (Zhang et al., 2018; Wakamiya et al., 
2019), and some research projects include collecting walking data to 
verify the actual movement (Shatu & Yigitcanlar, 2018). 

A documented downside of SVI in walkability studies is that most 
commercial imagery has been recorded from a platform that is higher 
than the typical pedestrian view (Steinmetz-Wood et al., 2019). 

6.7. Socio-economic studies 

Studies on the interaction of social and economic factors have taken 
advantage of SVI as well. Several examples are given. 

The distinctive study of Ma (2019) analyses text identified in imag
ery. The detection of text in SVI, especially of storefronts, is not an un
common occurrence in studies; e.g. Hong (2020) analyses the diversity 
of languages in Seoul thanks to SVI, and there is another example given 
earlier in Section 6.1. However, their study largely focuses on detecting 

the typeface in SVI and indicates its association with the amenities, e.g. 
night clubs tend to have decorative typefaces. The study has a socio- 
economic aspect, suggesting that the typeface can be used as a proxy 
to infer economic and demographic status in urban regions, i.e. the 
prevalence of a certain typeface in an area is correlated with household 
income. 

Li and Ratti (2018) use GSV to investigate the shade provision of 
street trees in Boston, and relate their socio-economic aspects. Among 
other results, including ethnic group and education, the study suggests 
differences among age groups, indicating that there is a positive corre
lation between the percentage of senior citizens at a location and the 
amount of shade provided by street trees. 

Further studies in this domain that utilise SVI include predicting 
income and socioeconomic status (Diou, Lelekas, & Delopoulos, 2018; 
Glaeser, Kominers, Luca, & Naik, 2018), examining the association be
tween greenery and socioeconomic factors (Meng, Xing, Yuan, Wong, & 
Fan, 2020), understanding the population distribution (Deng, Liu, Chen, 
& Wu, 2020), identifying built environment characteristics that lead to 
crime (Sytsma, Connealy, & Piza, 2020; Dakin et al., 2020; Nesoff, 
Milam, Barajas, & Furr-Holden, 2019; Connealy, 2020), and examining 
the vitality of neighbourhood-based social organisations (Wang & Ver
meulen, 2020). 

6.8. Real estate 

SVI has been proven valuable in capturing information in the domain 
of real estate, primarily in valuation. Considering the intricacy of real 
estate valuation and numerous factors driving prices, studies that use 
insights extracted from SVI have done mostly to supplement tradition
ally used data, e.g. proximity to amenities (Hanibuchi et al., 2018), 
increasing the accuracy of the predictions and/or offering additional 
insights since SVI offers a peek into the appearance and visual charac
teristics of the surroundings of a property, something that is not avail
able in other datasets. For example, Johnson, Tidwell, and Villupuram 
(2019) utilise GSV data for analysing and quantifying curb appeal of 
residential properties in Denver. Their study suggests that curb appeal 
may add economically significant value to a house (7–14%), and it en
ables replication elsewhere by releasing code and data. 

Law et al. (2019) is another example of a study where GSV imagery is 
used in combination with other data (e.g. housing attributes) to predict 
house prices. The traditionally used housing attributes, such as location 
accessibility, explain the majority of the variance of house price, but 
augmenting the models with imagery increases their performance. 
However, the contribution of imagery is nevertheless still dwarfed by 
conventionally used attributes such as floor area and age, which remain 
the main drivers of the price. Further, researchers cite the difficulty of 
quantifying the visual appearance of real estate and geographical dif
ferences, which applies to most other studies in this domain. 

Other identified studies that extract features from street view images 
for property value assessment are presented in the following publica
tions: Bin, Gardiner, Li, and Liu (2020), Kang et al. (2020), Law, Ser
esinhe, Shen, and Gutierrez-Roig (2020), Zhang and Dong (2018), Zhao, 
Liu, Kuang, Chen, and Yang (2018), Ye, Xie, Fang, Jiang, and Wang 
(2019), Fu et al. (2019) and Chen et al. (2020). The last two mentioned 
studies are interesting to highlight because they include extracting an 
above-average number of characteristics from imagery, spanning 
greenery and urban morphology. 

Another topic in this domain is gentrification. Considering that 
gentrification results in visible changes to the building stock, Ilic, 
Sawada, and Zarzelli (2019) have looked into the usability of deep 
learning and GSV into mapping and understanding the process. Their 
study focuses on inferring positive changes in the appearance of prop
erties across a time period and mapping their concentration across a city, 
demonstrating that it is possible to indicate where and when gentrifi
cation processes are occurring, at a reliable level of accuracy and at a 
fine spatial resolution. For a related study see the publication of Lin and 

F. Biljecki and K. Ito                                                                                                                                                                                                                           



Landscape and Urban Planning 215 (2021) 104217

11

Yang (2019). 
Bochkarev and Smirnov (2019) develop the automated detection of 

advertisements and signage on building facades for the purpose of 
detecting illegal instances in St.Petersburg, and propose a monitoring 
system for local authorities. On a broader scope, such work could also be 
used to infer advertising density or economic activity, which has been 
investigated by Ye, Wang, Kita, Xie, and Cai (2019). 

SVI has been capitalised on by Connealy (2020) for understanding 
trends in food retail, e.g. detecting spatial clusters of food retailers. Their 
multi-pronged study focuses also on the health and socio-economic as
pects (e.g. understanding the association of the prevalence of specific 
stores with income and health data), and suggests that the work can be 
applied also for quality assurance in the domain of spatial data infra
structure. However, the work appears to involve substantial manual 
work, inhibiting large-scale applications. 

Gobster, Hadavi, Rigolon, and Stewart (2020) provide a policy 
assessment of vacant land reuse strategies, by examining fine-scale 
residential landscape change of vacant lots that have been sold to resi
dents. Their assessment method, which combines SVI and aerial imag
ery, includes 20 different aspects of land cover and condition, applying 
them to vacant lots one year before and after purchase. The study sup
ports such policies as it indicates improved signs of condition and care of 
lots after purchase. In a subsequent study, Gobster, Rigolon, Hadavi, and 
Stewart (2020) expand this research line and provide a framework for 
longitudinal monitoring of vacant lot programs using SVI. 

Finally, in the realm of real estate, there are valuation studies that do 
not use computer vision techniques to extract a set of insights, but they 
rather use SVI to manually supplement missing data or verify existing 
data of properties (Tanaś, Trojanek, & Trojanek, 2019). 

6.9. Urban perception 

SVI has enabled characterising street spaces from a human 
perspective at a large scale. Thus, it has been used in a significant 
number of urban perception studies (Gong, Ma, Kan, & Qi, 2019; Zhang, 
Zhang, Liu, & Lin, 2018). Many of these studies are focused on less 
tangible and less measurable aspects, such as inferring the urban func
tion, vibrancy, and appearance, which is mostly in contrast with the 
research presented hitherto, and might be subjective (Zhang, Ye, Zeng, 
& Chiaradia, 2019; Wang et al., 2019; Alhasoun & Gonzalez, 2019). The 
central theme is measuring the perceived quality of streetscape (Li & 
Long, 2019; Liu et al., 2019; Wu, Peng, Ma, Li, & Rao, 2020; Ye, Zeng, 
Shen, Zhang, & Lu, 2019), and researchers have been using SVI to 
measure urban perceptual attributes such as safety and wealth, 
vibrancy, comfort, and attitude towards greenery (Min, Mei, Liu, Wang, 
& Jiang, 2020; Yao et al., 2019; Wang et al., 2019; Fu & Song, 2020). 
Because of the nature of the research in this domain, studies often 
involve human surveys (Ye et al., 2019; Zhang et al., 2018; Ruggeri, 
Harvey, & Bosselmann, 2018), and they may involve additional data 
such as audio clips (Verma, Jana, & Ramamritham, 2020). 

The purposes of such research are largely meant to inform urban 
planning and design (Shen et al., 2018), but many studies also have 
more specific applications of understanding the perception of spaces, e. 
g. for analysing physical activity (Wang et al., 2019), influence of the 
built form on the human physiological response (Gorgul, Chen, Wu, & 
Guo, 2019), predicting crime (Zhang, Siriaraya, Kawai, & Jatowt, 2019; 
Fu, Chen, & Lu, 2018; Oliveira & Hsu, 2018), understanding colour 
tendency (Kato & Matsukawa, 2019), understanding symmetries of 
urban blocks (Samiei et al., 2018), and identifying commercial hotspots 
and popularity of locations (Wang et al., 2018; Zhang et al., 2020). This 
thematic category differentiates itself from the previous ones also by the 
concoction of features that is extracted. For example, to assess the 
general visual quality of the urban space, Tang and Long (2019) examine 
SVI to infer the variation of the streetscape, while Ye et al. (2019) 
measure motorisation. 

This line of research reasserts the importance of SVI over other urban 

data thanks to its unprecedented opportunities. Furthermore, there are 
also related studies in which SVI had a secondary purpose. For example, 
researchers have worked on recognising urban functions and quality of 
spaces from other data such as social media data, and SVI was used to 
either validate or augment the results (Ye et al., 2020; Bernetti et al., 
2020; Zeng et al., 2019). 

Further examples of perception studies relying on SVI include using 
it for analysing spaces over a period of time to understand visual changes 
and encroachment (Varghese, Gubbi, Ramaswamy, & Balamuralidhar, 
2019), and quantifying the perception of traditional buildings (Zhang 
et al., 2020). Finally, Yoshimura, He, Hack, Nagakura, and Ratti (2020) 
investigate how spatial layout is associated with spatial comprehension. 
GSV is used in a survey in which participants were tasked with guessing 
the location of particular street-level images. 

6.10. Other 

Finally, in this section we include an assorted collection of a few 
studies that are sufficiently distinct to not belong to any of the above 
categories. 

Mayer and Bechthold (2019) conduct a life cycle assessment study of 
buildings. SVI is proven useful to extract the fenestration of buildings, 
which is required for such studies. Not far from this topic, von Platten 
et al. (2020) utilise SVI to recognise building characteristics (e.g. façade 
insulation) that are required for estimating the energy retrofitting 
potential. 

Ganji, Minet, Weichenthal, and Hatzopoulou (2020) develop a model 
for air quality prediction, based on built environment characteristics 
extracted mostly from satellite imagery, however, SVI is interestingly 
used to measure building heights and used as one as the predictors of air 
quality. 

7. Discussion 

7.1. General observations 

The melange of applications described in Section 6 reasserts the 
versatility and multiplicity of SVI, and the scope of applications is ex
pected to grow. The geographical coverage and massive amounts of SVI 
have enabled an unprecedented opportunity to extract insights from the 
built environment that were previously not available or difficult to 
derive from other forms of urban data. The main drivers of the rapid 
increase of using SVI in urban studies in the past years were the 
increased automation, growth of computing power, increased coverage 
of SVI data, and the utilisation of deep learning techniques. Deep 
learning is now used routinely in studies and it turbocharged the 
extraction of features and segmentation of images, which are essential 
for many studies presented in Section 6. 

The review reveals that many studies have used SVI in conjunction 
with other datasets, such as social media, aerial/satellite imagery and 
more traditional geospatial datasets, complementing them and 
providing additional insight. In some of the studies, using SVI is not 
essential, but it has been taken advantage of for validation purposes or 
for improving the performance of predictions. 

It was challenging to delineate the intertwined landscape of appli
cations of SVI and segment papers into meaningful categories, and there 
are papers that cut across multiple domains, but such entanglement 
serves as a testament to the multidisciplinarity of this research topic. 

In many instances in which there is an overlap between SVI and other 
forms of data, it remains unknown whether SVI in such cases might be 
sufficient alone, or what is the performance in relation to other sources 
of data. An exception is a study of Mayer and Bechthold (2019), which 
uses multiple input datasets to understand the environmental impact of 
a building, such as building information obtained from a housing survey, 
and discuss the contribution of GSV. However, their study is very 
limited, focusing on only one sample. 
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During our review, we have also noticed that the size of each the
matic category is not proportional to innovation. For example, while 
urban greenery studies are plentiful, a large number of papers are largely 
replications or offer minor incremental advancements. For that reason, 
we expect that we have captured also almost all applications featured in 
papers published before the temporal scope of our systematic review. 

Computer vision is not in the focus of this paper, as it is focused on 
understanding the trends and application of SVI in urban analytics and 
GIS. That said, it is an inseparable component because much of the 
developments can be thanked to advances in computer vision and 
computing capacity. Here there are two key aspects we have noticed. 
First, while the vast majority of relevant work takes advantage of 
computer vision techniques to process the massive amount of imagery, a 
relevant finding is that there are papers using SVI without applying any 
AI (e.g. (Aklıbaşında, 2019) in greenery). Usually, these occur in studies 
that require extracting possibly subjective insights, such as the perceived 
safety and condition of neighbourhoods (Mayne, Pellissier, & Kershaw, 
2019; Plascak et al., 2020). Second, we noticed that many papers do not 
go much into technical details, which inhibits replication. 

On that note, it is important to discuss the open science aspect. The 
lack of sharing of the developments (e.g. code, trained models) also 
inhibits reproducibility and replication in other geographical areas (e.g. 
our map in Fig. 8 gives a hint of unexplored locations) or in the same 
locations in future. 

Considering the temporal aspect, it is important to note that longi
tudinal studies are very rare. The main reason for such gap is that most 
street view services, including GSV as the most popular one, do not allow 
retrieving historical imagery through API. There are studies that 
examine imagery from different periods (Connealy, 2020; Najafizadeh & 
Froehlich, 2018; Cândido, Steinmetz-Wood, Morency, & Kestens, 2018; 
Goel et al., 2018), but they collect the data manually from the web 
interface of GSV (which includes historical imagery) or through other 
means, rather than through the API (except the possibility that the im
agery was collected through an API over a long period of time and 
archived, which may not be allowed by the service). 

A perennial concern is licensing, as studies use imagery from com
mercial services with restrictive licences to generate new data, which 
might be in conflict with the terms and conditions of such services, and 
such topic is not discussed frequently. Recent papers indicate that SVI 
providers are gradually continuing to restrict access (Fang et al., 2020; 
Nguyen et al., 2019), which might catalyse the development of crowd
sourced SVI, a source that may alleviate such issues. 

7.2. Issues 

In this section, we note common issues and challenges that the 
reviewed studies reveal and are generic, rather than focused on the 
limitations of a specific service. 

Quality of images Despite the presumed quality assurance mecha
nisms that mapping services have in place, considering the large number 
of images, environmental conditions and geographical coverage, the 
quality of images is inevitably at least a bit heterogeneous. Researchers 
cite some specific issues that occur — dark images and poor lighting 
conditions, images that turn out not to be outdoor (e.g. tunnels and 
shops), blurriness, and heterogeneous weather (Li et al., 2018; Law 
et al., 2019; Miranda et al., 2020; Lauko et al., 2020). 

Obstructions Objects that are in the focus of studies often tend to be 
obstructed in imagery, and researchers frequently cite this issue, e.g. 
passing cars and people (Novack et al., 2020; Bin et al., 2020; Hu et al., 
2020; Najafizadeh & Froehlich, 2018). The vegetation seems to be the 
major hindrance, frequently obscuring buildings and other objects. But 
vegetation in imagery appears to be both a blessing and a curse, as — on 
the other hand — one of the most common applications of analysing SVI 
is related to vegetation and greenery (Section 6.2). Another hindrance is 
the range of imagery, as large objects such as buildings tend to entirely 
obscure the space behind them (Fig. 1 illustrates this aspect and hints at 

the advantage satellite imagery has over SVI in this particular point). 
Hence in some locations, the range of acquisition might be limited. 

Coverage SVI services tend to have geographically dense coverage, 
but uneven coverage seems to be another major issue, across multiple 
scales. For example, user-contributed services such as Mapillary often 
lag behind commercial services in terms of completeness of roads. 
Commercial counterparts are not perfect either: while GSV has made 
great strides in the past decade and has reached an impressive level of 
coverage, it is — unlike its siblings in Google Maps such as satellite 
imagery and map data — still not available in about half of countries 
worldwide, while in territories where it is available, smaller towns and 
rural areas might not be always included. Such omission entails that 
studies are tailored to cities (Szczepańska & Pietrzyk, 2020). Further
more, in certain towns only major roads are acquired, leaving large 
extents uncharted. 

Heterogeneous availability will inevitably result in heterogeneous 
mapping, which is a key downside for supporting the creation and 
maintenance of spatial data infrastructures. For research on coverage of 
street view providers, the reader is referred to the related studies (Quinn 
& León, 2019; Ma et al., 2019; Mahabir et al., 2020; Fry, Mooney, 
Rodríguez, Caiaffa, & Lovasi, 2020; Juhász & Hochmair, 2016). 

Update frequency Besides the geographical coverage, the temporal 
coverage, i.e. frequency of update, seems to be a common issue as well 
(Miranda et al., 2020; Helbich et al., 2020). In certain areas, imagery is 
collected infrequently, often being outdated and not providing sufficient 
frequency to carry out a study presenting the current status, updates to 
analyses, and enable temporal analyses (e.g. change detection). This 
issue is compounded by the aforementioned observation that services in 
principle do not enable querying historical imagery. It might also 
happen that different parts of the same city have been imaged in 
different periods, causing inconsistencies. 

The time period of the collection of the imagery has also been cited as 
an issue. First, the capture of the imagery may not match the desired 
study period or it may mismatch with the period of other datasets used 
in a study. Second, the time during the year when the data was collected 
may be an issue per se and lead to bias (Larkin & Hystad, 2018). For 
example, in a study on understanding the relationship between greenery 
and physical activity, Helbich et al. (2020) expose that commercial 
services offer imagery that was captured during winter months, which 
might not be appropriate for certain analyses (e.g. those that require 
measuring the level of greenery). As a solution, they collect their own 
imagery, in one of the rare instances we have encountered (Fig. 5). 

Non-panoramic images Many applications focus on understanding the 
built environment alongside the roads, e.g. frontage of buildings (Fig. 2). 
Such a perspective has been facilitated by panoramic images that mostly 
commercial services offer. However, when it comes to crowdsourced 
SVI, only a fraction of imagery is panoramic, as most of it has been ac
quired by dashcams inside vehicles pointing towards the direction of 
driving (Fig. 3). Having only non-panoramic imagery in an area signif
icantly diminishes insights and subsequently prevents applications that 
require imagery including street-side profile. This limitation could be 
one of the key reasons why volunteered SVI services are still not pre
dominantly used in urban studies (Fig. 5). 

7.3. Research opportunities 

We maintain that there is a plenty of further research opportunities 
in this area. The application of SVI appears to be saturated in some topics 
such as analysing vegetation. Nevertheless, we postulate that there are 
further research opportunities even in these domains. For example, as 
greening initiatives and urban farming around the world are multiplying 
(Palliwal, Song, Tan, & Biljecki, 2021; Wu & Biljecki, 2021), it would be 
worthwhile to explore using SVI for monitoring greenery in buildings 
and other forms of green efforts in cities. 

In the spatial data infrastructure department (Section 6.1), SVI offers 
further opportunities as many aspects remain uninvestigated. For 
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example, extracting other urban features is foreseen as a certain research 
direction. A notable research gap is offered by those studies that 
demonstrate mapping objects and their characteristics, but do not use 
the extracted data for a particular analysis. Such research directions 
would also galvanise accompanying topics such as understanding bias in 
mapping from SVI, and the impact of the quality of images and the 
propagation of error. Furthermore, it seems that SVI has not been used 
much as an independent data source for spatial data quality assessment, 
especially OpenStreetMap. As much as a variety of spatial objects and 
their characteristics have been extracted from SVI, in the domain of 
spatial data infrastructure, there is a lack of using them for the purpose 
of spatial data quality control. The liberal licence of volunteered SVI 
platforms would allow such uses. However, caution should be exercised 
as volunteered SVI is in many occasions still inferior to commercial 
services such as GSV, e.g. it suffers from positional issues that will 
propagate into inaccurate localisation of detected objects (Krylov & 
Dahyot, 2019). 

As hinted earlier in this section, a small number of studies relies on 
manual work, rather than artificial intelligence techniques. Automating 
such studies presents a viable research opportunity, possibly increasing 
their scope or replication elsewhere, among other advantages. 
Furthermore, it would be beneficial to apply the latest developments in 
the machine learning community, which might not have been used 
much on SVI. In the rare instances we have identified, Kauer, Joglekar, 
Redi, Aiello, and Quercia (2018), Joglekar et al. (2020), Wijnands, Nice, 
Thompson, Zhao, and Stevenson (2019) use generative adversarial 
networks (a technique that can be used for image style transfer). The 
first two use it for urban beautification, and the third paper is focused on 
understanding the design of streetscapes in relation to health and well- 
being outcomes. Such techniques are seldom investigated, hence they 
might offer further research opportunities. 

As both commercial and volunteered services are increasingly 
engaging less common platforms such as scooters, bicycles, and pedes
trians for expanding the coverage of imagery in locations that may not 
be reached by cars, we believe that new applications may surface but 
also that existing ones will experience enhancements. For example, as 
such platforms will enable imaging locations previously out of reach, 
such as tertiary roads, pedestrian zones, walkways and cycling paths, we 
expect to see an increase of applications such as assessing walkability 
and bikeability covering infrastructure hitherto not evaluated. 
Furthermore, with the densifying coverage at the micro-scale — such as 
capturing narrow and less prominent roads — the morphological, 
architectural, and socio-economic diversity of SVI may be increased. The 
same goes for the growing availability of indoor data, which have been 
severely underexplored in research so far. For example, recently, GSV 
has added indoor imagery of all 114 large food centres in Singapore. The 
data was collected with a camera system mounted on a wearable 
backpack (National Environment Agency, 2019). The use of such im
agery in research is yet to be uncovered. 

Finally, as most studies have been conducted within a single city, a 
generic research opportunity that arises are scaling these research ef
forts beyond cities, replicating them in other cities, and conducting 
comparative studies among multiple cities. 

8. Conclusion 

We have provided an extensive review of the use of street-level im
agery in urban studies and mapping, through the examination of 250 
recently published papers. There are three takeaways we highlight to 
conclude the paper, which we believe is the most comprehensive one 
detailing the diverse role of street view imagery in the context of urban 
analytics and GIS. 

First, street view imagery is certainly here to stay. It has been 
entrenched in studies under the umbrella of urban analytics for a while. 
As this urban data source gained considerable momentum, and the 
supporting infrastructure (e.g. services, volume and coverage of data, 

computer vision techniques) is further developing and strengthening, 
the number of papers and applications is expected to continue growing 
in the foreseeable future (Fig. 4). However, access to data should not be 
taken for granted. Our review reveals that the vast majority of studies 
relies on commercial services. There is no guarantee that these services 
will be easily accessible for researchers in the future. 

Second, while the majority of recent papers relies on Google Street 
View, which is further penetrating into new locations, new players in the 
market2 and the expansion of volunteered street view imagery may open 
new horizons and might bring enhancements to the data, such as greater 
and finer coverage (incl. indoors), reduction of licensing ambiguities, 
and increase temporal resolution, potentially contributing to the emer
gence of new use cases (see Section 7.3). 

Third, street view imagery offers a source for maintaining spatial 
data infrastructures (Section 6.1). Besides the clear community and 
commercial interest, it remains to be observed whether national map
ping agencies will adopt it and treat it as a data source akin to their 
orthodox instances such as aerial imagery and point clouds. Further, in 
the context of SDI, another area of interest is high-frequency SVI, 
dramatically increasing the temporal resolution of recording the same 
locations, based on frequent data collection from platforms plying 
streets such as taxis, public transport vehicles, and garbage trucks. This 
idea has been tested recently with a variety of sensors, bringing im
provements in urban sensing (Anjomshoaa et al., 2018; O’Keeffe, 
Anjomshoaa, Strogatz, Santi, & Ratti, 2019; deSouza et al., 2020). 
However, it appears that optical imagery is yet to be investigated, and 
we predicate that it might bring enhancements and novelties for appli
cations such as change detection. 
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Kang, J., Körner, M., Wang, Y., Taubenböck, H., & Zhu, X. X. (2018). Building instance 
classification using street view images. ISPRS Journal of Photogrammetry and Remote 
Sensing, 145, 44–59. https://doi.org/10.1016/j.isprsjprs.2018.02.006. 

Kang, Y., Zhang, F., Gao, S., Lin, H., & Liu, Y. (2020). A review of urban physical 
environment sensing using street view imagery in public health studies. Annals of 
GIS, 26, 1–15. https://doi.org/10.1080/19475683.2020.1791954. 

Kang, Y., Zhang, F., Peng, W., Gao, S., Rao, J., Duarte, F., & Ratti, C. (2020). 
Understanding house price appreciation using multi-source big geo-data and 
machine learning. Land Use Policy, 104919. https://doi.org/10.1016/j. 
landusepol.2020.104919. 

Karasov, O., Külvik, M., Chervanyov, I., & Priadka, K. (2018). Mapping the extent of land 
cover colour harmony based on satellite Earth observation data. GeoJournal, 84, 
1057–1072. https://doi.org/10.1007/s10708-018-9908-x. 

Kato, Y., & Matsukawa, S. (2019). Development of generating system for architectural 
color icons using Google map platform and Tensorflow-segmentation, in: Intelligent 
and Informed - Proceedings of the 24th International Conference on Computer-Aided 
Architectural Design Research in Asia, CAADRIA 2019, pp. 81–90. 

Kauer, T., Joglekar, S., Redi, M., Aiello, L. M., & Quercia, D. (2018). Mapping and 
visualizing deep-learning urban beautification. IEEE Computer Graphics and 
Applications, 38, 70–83. https://doi.org/10.1109/mcg.2018.053491732. 

Kelly, C. M., Wilson, J. S., Baker, E. A., Miller, D. K., & Schootman, M. (2013). Using 
Google Street View to audit the built environment: inter-rater reliability results. 
Annals of Behavioral Medicine, 45, S108–S112. https://doi.org/10.1007/s12160-012- 
9419-9. 

Keralis, J. M., Javanmardi, M., Khanna, S., Dwivedi, P., Huang, D., Tasdizen, T., & 
Nguyen, Q. C. (2020). Health and the built environment in United States cities: 
measuring associations using Google Street View-derived indicators of the built 
environment. BMC Public Health, 20. https://doi.org/10.1186/s12889-020-8300-1. 

Khamchiangta, D., & Dhakal, S. (2019). Physical and non-physical factors driving urban 
heat island: Case of Bangkok Metropolitan Administration, Thailand. Journal of 
Environmental Management, 248, Article 109285. https://doi.org/10.1016/j. 
jenvman.2019.109285. 

Kim, H., & Han, S. (2018). Interactive 3D building modeling method using panoramic 
image sequences and digital map. Multimedia Tools and Applications, 77, 
27387–27404. https://doi.org/10.1007/s11042-018-5926-4. 

Kim, S., Kim, D., & Choi, S. (2019). CityCraft: 3D virtual city creation from a single 
image. The Visual Computer, 36, 911–924. https://doi.org/10.1007/s00371-019- 
01701-x. 
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Szczepańska, A., & Pietrzyk, K. (2020). An evaluation of public spaces with the use of 
direct and remote methods. Land, 9, 419. https://doi.org/10.3390/land9110419. 
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