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Abstract

Persistent Scatterers (PS) are coherent measurement points obtained from time series of satellite
radar images, which are used to detect and estimate millimeter-scale displacements of the terrain
or man-made structures. However, associating these measurement points with specific physical
objects is not straightforward, which hampers the exploitation of the full potential of the data. We
have investigated the potential for predicting the occurrence and location of persistent scatterers
using generic 3D city models and ray tracing methods, and proposed a methodology to match PSs
to the point-like scatterers predicted using RaySAR, a ray-tracing SAR simulator. We also inves-
tigate the impact of the level-of-detail (LOD) of the city models. For our test area in Rotterdam,
We find that 10% and 37% of the PSs detected in a stack of TerraSAR-X data can be matched
with point-scatterers identified by ray-tracing using LOD1 and LOD2 models, respectively. In
the LOD1 case, most matched scatterers are at street-level, while LOD?2 allows the identification
of many scatterers on the buildings. Over half of the identified scatterers correspond to easy to
identify double or triple bounce-scatterers. However, a significant fraction corresponds to higher
bounce levels, with approximately 25% being fivefold-bounce scatterers.

Keywords: synthetic aperture radar (SAR); persistent scatterers; level of detail (LOD); ray tracing;
simulation

1 Introduction

Persistent Scatterer Interferometry (PSI) [1] is a geodetic technique to measure surface displace-
ments using multi-epoch Synthetic Aperture Radar (SAR) images. PSI estimates the displacement
parameters from phase observations from selected coherent points, known as Persistent Scatter-
ers (PS), with millimeter-level precision. Using advanced high-resolution SAR satellite systems,
such as TerraSAR-X and COSMO-SkyMed, this technology can be used to monitor individual
structures [2, 3, 4, 5, 6].

However, persistent scatterers differ from traditional well-defined geodetic benchmarks. It is not
that clear whether the observed signal stems from one dominant reflector, like a corner reflector,
or from the effective summation of several reflectors within the resolution cell. Moreover, even
if the PS is one dominant reflector, its precise localization remains a challenging task. Obviously,
the capability to link persistent scatterers to (locations on) particular objects would enhance PSI
analyses, for example by reducing the uncertainty in the interpretation of the observed displace-
ments in relation to specific driving mechanisms.

The relevance of establishing a one-to-one link between PSs and specific objects is most obvious
when there are different driving mechanisms involved. For example, points may represent deep
and/or shallow deformation, e.g. due to gas production and groundwater level changes, respec-
tively. Consequently, nearby PSs may show different deformation signals. In other cases different
parts of a building or infrastructure may deform differently, which may be a precursor of a par-
tial or full collapse of the structure.In these complex scenarios, linking persistent scatterers to



the objects in the built environment would not only help identifying the local deformation in the
object, but also facilitate the interpretation of the deformation signals.

Using the precise geolocalization of each PS seems to be the most straightforward approach to
link the scatterer to an object. In fact, the geolocalization accuracy of PS for high-res (meter-
resolution) SAR data is shown to be in the order of centimeters in azimuth and range[7], and
several dm up to 1.8 m for cross-range [8]. This positioning uncertainty can be described with a
variance-covariance matrix and visualized with an error ellipsoid [9, 10]. This way, the relatively
poor cross-range precision of radar scatterers could be improved by intersecting the scaled error
ellipsoid with 3D models[9, 10]. Alternatively, an improvement of positioning precision could be
obtained by using SAR data from different viewing geometries [11, 12], albeit only for a selected
number of targets, such as lamp posts.

Yet, these methods all consider only the geometry of the problem, and are not based on physical
scattering mechanisms. Consequently, the estimated positions may be geometrically optimal, but
physically unrealistic. For example, for a perfect corner reflector, it is known that the effective
scattering center is at the apex of the reflector, even though the pure geometric position esti-
mate may turn out to be at a different position. As a result, understanding the physical scattering
mechanisms may help in the realistic physical positioning of scatterers.

Physical understanding of scattering mechanisms can be supported by SAR simulation methods.
However, this requires, at the least, a 3D geometrical representation of the scene (i.e. a 3D city
model) [13]. If this 3D representation is realistic with sufficient detail, the observed SAR scene
should be very similar to the simulated one. Subsequently, if there is sufficient similarity, we
will know which scattering mechanism produced the observed scatterers, and understand what
caused the observed displacements.

A list of current SAR simulators includes, but is not limited to, SARAS [14, 15], Pol-SARAS [16],
CAS [17], Xpatch 4 [18], GRECOSAR [19], CohRaS [20], SARViz [21], and RaySAR [22]. SARAS
and CAS are oriented to ocean applications and do not consider multiple scattering for complex
targets [14, 15, 17]. Pol-SARAS is the polarimetric version of SARAS, and it allows the simulation
of natural scenes [16]. Xpatch 4 is an object-oriented version of Xpatch, which provides 0-D radar
cross section, 1-D range profile, 2-D SAR image, and 3-D scattering center signatures, based on
the shooting and bounces rays with supporting of parallel computation [18]. Xpatch has been
widely used in studies of the vehicle, typically an airplane or a ground vehicle [23, 24, 25]. GRE-
COSAR can generate polarimetric SAR (POLSAR) and polarimetric inverse SAR (POLISAR)
images of complex targets, and is used extensively for vessel classification studies [19]. CohRa$S
is a SAR simulator based on ray tracing, mainly for small scenes with high resolution, and only
supports geometries made up of convex polygons [20]. SARViz is a SAR image simulation sys-
tem which only simulates single and double bounce reflections and does not include coherent
addition of multiple echos [21]. Finally, RaySAR is based on ray-tracing, oriented towards the
simulation of salient features in SAR images [26, 27, 28]. Despite the natural limitations resulting
from the ray-tracing approach, it has some key advantages that motivated its use for the research
presented in this study: (i) it can handle an arbitrary number of bounces, (ii) it keeps track of indi-
vidual scatterers, (iii) providing their 3D location and bounce level; and (iv) it is computationally
inexpensive, which allows the simulation of relatively large and complex urban scenes.



Here we investigate the potential for predicting the occurrence and location of SAR scatterers (i.e.
potential PS) based on physical scattering mechanisms, using generic 3D city models. In partic-
ular, we analyze the influence of the level of detail (LOD) of these city models on this prediction.
The LOD is a generic metric describing the degree of adherence of the dataset to its real-world
counterpart [29]. The paper focuses on the urban environment, where we are limited by the short
supply of high resolution 3D city models. We use the ray-tracing SAR simulator RaySAR [22] to
predict the radar scattering by illuminating the 3D scene with a SAR sensor. The rays can follow
multiple reflections within the object scene, yielding a collection of point-like multiple-bounce
scatterers that represent potential PS candidates. The use of ray-tracing algorithm implies that
a significant part of the radar signal is not correctly modeled. Nevertheless, city models with a
level of detail that allows a full electromagnetic solution are not available nor expected to become
available in the foreseeable future.

Section 2 introduces the 3D ray-tracing simulation as well as the methodology to match the de-
tected PSs with the Simulated Point-Scatterers (SPS). Results corresponding to a test-area in Rot-
terdam are presented and analyzed in Section 2.3. Finally, Section 4 presents our conclusions and
future work.

2 Methodology

2.1 Point Scatterer Simulation with RaySAR

Ray tracing is a rendering method used to create an image by following the path of a ray through
a 3D model and simulating the reflections on the surfaces it encounters. Ray tracing is based
on geometrical optics, which is valid for surfaces that are large and smooth relative to the wave-
length. RaySAR is one of the several SAR data simulators based on ray tracing. It is built on
the open source Persistence of Vision Ray-tracer (POV-Ray) [30], using the PoV-Ray basic algo-
rithms for ray tracing, intersections tests between rays an objects, the estimation of intensities,
shadow calculations, etc [22].

RaySAR generates a set of scattering centers positioned in 3D SAR coordinates, i.e., azimuth,
range, and cross-range. RaySAR subsequently projects and interpolates these scatterers on the 2D
range-azimuth grid, adding the different contributions coherently in order to generate a simulated
SAR image. In this study, however, we are mostly interested in the intermediate set of individual
scatterers.

The set of scattering centers is provided by RaySAR as a list of signal vectors V:
V=lajric;Ibf] (1)

where [a; r; ¢;] gives the position of the scattering phase center in azimuth, range, and cross-
range, [ is a relative intensity normalized between 0 to 1, b specifies the number of bounces (trace
level), and f is a boolean indicating a specular reflection [0 or 1]. The signals V" are referred to



as contribution signals. These signals are the basis for the simulated image generation and point
scatterers identification.

Fig. 1 sketches the localization of the phase-center of a radar echo by RaySAR for a double bounce
signal. Starting from the virtual sensor plane, a primary ray for each pixel is followed along its
path until intersection with the modeled scene is found. At the intersection point, a reflected ray
is spawned in the specular direction, and traced until the next intersection with the model, and so
on. The azimuth, cross-range and range coordinates of the double-bounce signal are given by
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Figure 1: Sketch of how RaySAR localizes a double bounce signal and projects it in the sensor
plane.

To select potential PS candidates (simulated Point-Scatterers), contribution signals with specular
multiple scattering characteristics (I > 0, b > 1, and f = 1) are chosen. The selection criteria are
based on the premise that many PSs are physically associated with multiple specular reflections
of the radar signal on relatively large surfaces.

2.2 Definition of a 3D Scene for RaySAR

The input to RaySAR is a 3D scene model including (i) a virtual SAR system, (ii) 3D building
models, (iii) surface parameters.



2.2.1 Virtual SAR system

The virtual SAR system is described by the observation geometry and the system resolution. The
geometry is defined using an orthographic projection and a parallel ray approximation. This par-
allel ray approximation makes the observation geometry azimuth invariant, as it should. How-
ever, it also makes the geometry elevation (hence range) invariant, which is not entirely correct.
We will, nevertheless, assume that this approximation is good enough for a small scene. Thus, the
observation geometry is defined by an incident angle and an azimuth angle with respect to the
scene, which has to be specified in RaySAR as a position of the sensor with respect to the center
of the scene.

2.2.2 3D scene model

In this research, the building model is reconstructed with 3dfier [31] by combining the large-
scale topographic dataset of the Netherlands, BGT (’Basisregistratie Grootschalige Topografile’
in Dutch) dataset and the laser altimetry, AHN3 ("Actueel Hoogtebestand Nederland’ in Dutch)
datasets. The acquisition of 3D models can be constructed directly with a text editor or software
which can assist in visual controlling modeling (e.g., CAD). Importing available 3D model into
the POV-Ray format is an option considering there are a lot of city models available.

The 3D object model has to provide sufficient geometric detail for SAR simulation. The amount
of detail and spatial resolution of a 3D city model are specified as LOD, denoting the abstraction
level of a model as opposed to the real world object [29]. The LODs have been described by
CityGML [32], a prominent standard for the storage and exchange of 3D city models. LOD1 is a
model in which buildings are represented as blocks (usually obtained by extruding their footprint
to a uniform height). LOD2 is a more detailed model including roof shapes [32, 33]. As it is the
case with many other applications of 3D city models [34], it is to be expected that the LOD and
quality of the used 3D model will have an influence on the performance of the simulation of radar
signals, a topic which we investigate in this paper.

2.2.3 Surface Parameters

The scattering properties of the scattering surfaces in the 3D model are specified by the parameters
described in Table 1. The first parameter, F7,, controls multiple scattering by setting the fraction
of the ray intensity that is specularly reflected. Thus, setting F,, = 0 will completely suppress
multiple scattering.

The second parameter, F§, controls the relative intensity of the first reflection, counting from
the illumination source. The roughness parameter, F}., controls the angular width of the first
reflection. Values of low roughness and medium roughness surfaces are given based on a constant
relative permittivity of 5.7 + j - 1.3 for man-made objects [22].

Fig. 2 shows 4 images simulated with varying (F,, F, F; ) values according to the Table 1. The
parameter F;. works with specular coefficient Fj, see Fig. 2a and 2b. With increasing roughness,



Table 1: Surface Parameters

Parameters Impact on Radar Scattering Value range  Low Roughness ~ Medium Roughness
Weight Fw  Weights the specularly reflected signal on a surface (loss of signal

strength) of multiple reflections and works with a specular coefficient. 0-1 0.7 0.5
Specular F Resembles specular reflection and provides a spreading

of the highlights occurring near the object horizons. 0-1 0.7 0.5
Roughness ~ F,.  Defines the width of a cone where a specular highlight

occurs from 1(very rough) to 0( very smooth). 0-1 8.5.107% 3.3.1073

the number of features seen in the simulated images increases. Fig. 2c and 2d illustrate the results
of a combination of three parameters. With the weight factor F,,, the strong multi-scattering
is clearly described. The intensity of a multi-reflected signal is weighted with the F,. In this
research, we use the medium roughness Fy, = 0.5, Fs = 0.5, F}, = 3.3 - 1073, comparing to low
roughness parameter setting, medium roughness parameters are closer to the reality using the X-
band data, see Fig. 2e. It is important to emphasize that the phase-center location of the simulated
scatterers does not depend on the surface parameters. Below, we focus solely on the phase-center
location of multiple-bounce SPSs.

(o) (d)

Figure 2: Parameters function on SAR image simulation, (a) image with Fy, = 0, Fs = 0.7, F}. =
8.5 - 1074, (b) image with F, = 0,F, = 0.5,F, = 3.3 - 1073, (c) image with F,, =
0.7,F, = 0.7, F, = 8.5-107%, (d) image with F, = 0.5, F; = 0.5, F, = 3.3-1073, (e)
Mean intensity map of 49 TerraSAR-X images.



2.3 Linking of Simulation Points with PSs

One of the main steps in the work presented is the matching of the SPSs with the PSs identified in
the InSAR time series. The matching is done by evaluating the weighted Euclidean distances be-
tween the positions of the simulated point-scatterers and the positions of the PSs. The weighting
reflects the 3D position error ellipsoids, as defined by the positioning Variance-Covariance (VC)
matrices, of the PSs [9]. For each PS, the positioning uncertainty in the local reference frame
(East, North, and Up/Height) is given by

2 2 2
PO D
Qenh = R3><3 : Qrac : R3><3 =|%n On OTpp (3)
2 2 2
%h 9nh h
where R is the rotation matrix from radar geometry to local reference frame, Q. the position-
ing VC matrix in 3D radar geometry with diagonal component variances (02, o2, 02) in range,

azimuth and cross range, the diagonal (02, 02, o) and non-diagonal (02,,, 0%, , 02, ) are the vari-

en’ e

ances and covariances in east, north and up coordinates. For each PS, from the eigenvalues of
Qecnh>a 3D error ellipsoid is drawn with the estimated position as its center. The semi-axis lengths
of the ellipsoid are described by the eigenvalues of Q,,,;, which are 02, o2, o2. The shape of el-
lipsoid is derived from the ratio of their axis lengths, given by (1/y1 /~2), where y1 = 04 - 0.,
and 1 = 0, - 0, L. The orientation of ellipsoid is dependent on the local incidence angle of the

radar beam at the PSs.

Fig. 3 illustrates the matching of an SPS with a PS based on the 3D error ellipsoid. The position
uncertainty of a PS is illustrated by 3D error ellipsoid with 0.01 level of significance. The PS is
matched to the corresponding SPS, which has to be inside the error ellipsoid.

As part of the matching process, it is necessary to consider and remove potential systematic po-
sitioning errors. The systematic errors may be the result of an oversimplified geometry (e.g. the
already mentioned range invariance), or errors in the knowledge of the acquisition SAR geome-
try.

A fine coregistration is performed using the Iterative Closest Point (ICP) algorithm [35, 36],
which minimizes the sum of the weighted Euclidean distance between SPSs and PSs by Least
Square Estimation (LSE) in an iterative way. Each iteration of the 3D error ellipsoid based ICP
includes two steps: matching pairs of SPS and PSs based on the 3D error ellipsoid; and finding
the transformation that minimizes the weighted mean squares distance between pairs of points.
The transformation results are applied to the point cloud of PSs, thereby changing the correspon-
dence.

2.4 Simulation Assessment

A quantitative evaluation of the matching between the PS and the Simulated Point Scatterer (SPS)
is given by the confusion matrix M described in Table 2. Three performance ratios are consid-
ered:
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Figure 3: An example of finding the corresponding simulation point of a PS based on the 3D error
ellipsoid. The position of the PS is indicated by a black triangle. A cigar-shaped error
ellipsoid with a ratio of axis lengths 1/2/35 (with o,. = 0.019 m) illustrates the PS position
uncertainty. The corresponding SPS is located inside of the error ellipsoid and indicated
by a black dot. The ellipsoid and PS are projected in east-north, north-up, and up-east
planes to illustrate their intersection with the SPS.

o True Positive Rate (TPR): the ratio of the PSs that are matched to SPSs, with regards to the
total number of PSs.

« False Negative Rate (FNR): the ratio of the PSs that have not been matched to an SPS, with
regards to the total number of PSs, also known as miss rate. For FNR, we have FNR =
1-TPR.

« False Positive Rate (FPR): the ratio of the SPSs that have not been matched, with regards
to the total number of SPSs.

Hereby, the metric TPR describes the matching ratio between simulation points and PSs, and is
the primary evaluation indicator of simulation scatterers. FPR also an important indicator for
describing the ratio of redundant simulation points.



Table 2: Confusion matrix M between SPS and PS

SPSs
Total Match Non-Match
True Positive Rate(TPR)  False Positive Rate(FPR)
PSs ~ > PSs ~ > SPSs
Fal i F
Non-Match | False Neg_atlz\:f; ]l\ifate( NR)
~ > PSs

Note that the PS or SPS selection criteria will have an impact on the performance metrics. For
example, a low amplitude dispersion threshold may lead to selecting less actual point-scatterers
and lead to a higher FPR. Since the final goal of our research is to improve our capability to
analyze deformation signals, we focus on the group of PSs that are deemed reliable. PSs are chosen
with an amplitude dispersion threshold set to 0.45 and further checked based on network phase
consistency [37]. Here, SPSs are scatterers predicted by the simulator based on the geometry.
Therefore, the final number of PSs is less than the SPSs from the simulator, because we eliminated
many points during the PSI processing, which increases the FPR.

2.5 Work-flow

The flowchart in Fig 4 outlines the work-flow of this research, which consists basically of three
parts: generation of simulation points, detection of PSs, and the matching of two point cloud sets.
The generation of simulation points consists of scene modeling, signals detection with Pov-Ray,
and selection of PSPs. The SAR data-stack is processed with the Delft implementation of Per-
sistent Scatterer Interferometry(DePSI) [37], which is based on the Delft framework of geodetic
estimation, testing, and quality control. DePSI detects PS with consistent reflection properties
over time as input for time series deformation and height estimation. Then, matching of two
point cloud sets is carried by ICP based on the 3D error ellipsoid.

RaySAR is not demanding in terms of computational resources. It is built on POV-ray, an open
source tool which traces rays in reverse direction. In this study, the calculation of 48 million
contribution signals took about 10 minutes on a 4-core workstation with 16 GB of RAM.

3 Experiment

3.1 Test Site and Data

The test area is located southeast of Rotterdam Central Station in the city of Rotterdam, the
Netherlands. The size of the area of interest (Aol) is around 1 x 0.5 km?. Fig. 5 shows an overview
of the test site, and its orientation with respect to the trajectory of TerraSAR-X. 49 TerraSAR-X
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strip-mode images are obtained from 19-Jan-2014 to 25-Feb-2017. Table 3 gives the basic param-
eters of TerraSAR-X data. Fig. 2e is the mean intensity map of 49 TerraSAR-X images over the
AOL

Figure 5: Google Earth overview image of test site, Azimuth and range direction indicate the view
of TerraSAR-X data.

Fig. 6 shows a polar histogram describing the orientation of the streets within the AOI calculated
based on OpenStreetMap [38]. The direction of each bar represents the compass bearings of the
streets and its length indicates the relative frequency of streets with those bearings. From Fig. 6,
two main orthogonal directions can be identified, one at about 336° (red bars), and another at
about 60° (cyan).

The results of the PSI analysis are illustrated in Fig. 7: 2290 points are selected as PS in the Aol. The
results are projected in the Dutch National Reference system RD (’Rijksdriehoeksstelsel’ in Dutch)
and vertical NAP (Normaal Amsterdams Peil’ in Dutch) reference system. The axes of Fig. 7 show
X (RD) and Y (RD) in meters, in East and North direction, respectively. The estimated heights
are indicated by colors, showing some higher buildings in the northwest and northeast corner of
the Aol, which can be found in Fig. 5.

Two 3D city models with different level of detail (LOD) were employed to simulate scatterers
using RaySAR. Fig.8 displays the 3D models at LOD1 and LOD2 of the Aol. In LOD1 model,
buildings are represented as boxes with flat roof structures(Fig. 8b), opposed to buildings in LOD2
(Fig. 8c), which have differentiated roof structures with varying heights, providing a more realistic
representation of the reality.

From the enlarged partial picture of the LOD1 model (Fig. 8b) and the LOD2 model (Fig. 8¢), it
is clear that buildings in LOD2 include many different parts with varying roof shapes and heights.

11



Table 3: Basic parameters of TerraSAR-X data stack

Satellite/Parameter TerraSAR-X
Track T025
Band(wavelength in cm) X (3.1)
Start Date 2014.01.19
End Date 2017.02.14
Number of images 49
Acquisition mode SM
Pass direction Ascending
Polarization HH
Pulse Repetition Frequency(Hz) 3790
Range Sampling Rate (MHz) 109.8
Incident angle (°) 39.3
Heading (°) 349.8
Slant range spacing (m) 1.36
Azimuth spacing (m) 1.86
Range Bandwidth (MHz) 100
Azimuth Bandwidth (Hz) 2765

180°

Figure 6: Street orientation map of the AOIL Each bar represents the compass bearing of the streets
and its length indicates the frequency of streets with those bearings. There are two main

directions at 336° and 60°.

12
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Figure 8: (a) Overview of the used 3D city model; (b) a closer look on the LOD1 variant of the
dataset; and (c) its more detailed (LOD2) counterpart including roof shapes. Source of
data: BGT, AHN, and City of Rotterdam.

Datasets with LOD1 and LOD2 are the most common instance in practice because it is possible
to obtain them automatically, e.g. from LiDAR data by automatic building reconstruction [33].

3.2 Simulated Point Scatterer

POV-Ray/RaySAR detects all contributing signals within the Aol. The total number of received
signals from the LOD1 and LOD2 models is about 50 million. We detect potential point scatterers,
and consider these as signals that exhibit the characteristics of PS (I > 0, b > 1, and f = 1) from
the contribution signals.

We identify 2770 potential point scatterers from the model at LOD1, as described in Section 2.
Fig. 9a shows the distribution of simulated points in the LOD1 model. The colors indicate the
height of simulation points. In comparison to the real radar results in Fig. 7, the height values
of the SPSs is mainly below 15 m. The simulation points include 742 double bounces, 890 triple
bounces, 590 fourfold bounces, and 548 five-fold bounces, see the pie chart in the up- right of the
Fig. 9a. Most signals correspond to triple-bounce scatterers, followed by double-bounce ones.

14
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Figure 9: (a) Point scatterers simulated based on model of LOD1 with color represents height, (b)
Point scatterers simulated based on model of LOD2 with color represents height. The
background image is TOP10NL map.
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Using the LOD2 model results in 4390 potential point scatterers, as illustrated see Fig. 9b. Com-
pared to the real PS data, see Fig. 9b, more points, and with higher heights are detected. Spatial
distribution in height values of SPSs from the LOD2 model is similar to the measured PS, see
Fig. 7. PSs with higher heights are clustered in the northeast corner of the test site, which is also
predicted by the simulation. The height of simulation points in the corner of the northwest is
lower than PSs in Fig. 7, because the buildings in the corner of the northwest are missed in the
LOD2 model(equal to LOD1). The Google Earth image in Fig. 5 also indicate the newly-built in
the corner of the northwest. Simulated points from the LOD2 model include 799 double bounce,
2267 triple bounce, 632 fourfold bounce and 692 five-fold bounce, see the pie chart in the up-right
of the Fig. 9b. More than half of the points are the triple bounces.

Fig. 10 gives the height profile of PSs, the SPSs of LOD1 and LOD2, in the box indicated in Fig. 7
along the x-axis. The height profile of PSs and SPSs from LOD?2 is similar, while the SPSs from
LOD1 missed points with higher height.

3.3 Linking of PSs and SPSs

Following Section 2.3, PSs (Fig. 7) were matched to the point-scatterers predicted using the LOD1
(Fig. 9a) and LOD2 (Fig. 9b) models. Fig. 11a and Fig. 11b show the spatial distribution of PSs
and the corresponding SPSs. The dark circle indicates the location of PSs that have been matched
to SPSs. The dots represent the corresponding SPSs, color-coded by bounce level (see legend on
Figure).

Table 4 gives the confusion matrix between SPSs based on LOD1 and LOD2 models and PSs.
Scatterers from the model of LOD1 predicted 10% PSs correctly (correspondingly, around 90%
PSs were missed). 92% simulation points have not been matched to a PS. By using the LO2 model,
the amount of PSs matched with simulated scatterers increased to 37%. Naturally, the number
of predicted point-targets not matched to PSs also increased. However, it is noteworthy, that,
in relative terms, the number of scatterers matched to PSs grew much stronger than the overall
amount of predicted scatterers. Moreover, the ratio of simulation points that have not match to a
PS is decreased to 80%.

Table 4: Confusion Matrix between Measured PSs and predicted scatterers based on LODI1
model, and LOD2 model

SPSs-LODI (2770)  SPSs-LOD2 (4390)
Match Non-Match Match Non-Match

223 2547 842 3548
TPR FPR TPR FPR
PS 10% 92% 37% 80%
(2290) FNR FNR
90% 63%

16



50 PS
40 o 5 o °g
£ 30 0o % ° ." @ 0Q B8°
T 20 ‘.... w' -. s = ..'. &;.'..:.”‘.. Q...O
e 08 @@, Hoge e o8 e © %0 5090 .. & 8
10 & e .. .. “’ .i ..\00 ’. :..“'
0 %880 .‘36.0 o® @D oo 00008 000 % -.{" ®o " & e
-10
60
50 LOD2 _ | L
40 : = * e o o °
= 30 " o.o..‘ o, va e @00, , ...o::o’.. .o..’. o\.. :
° 0’00 e § ©®° °o. e 008 o 20 o
- fz ¢ oa® o .oo'r'..o : ) .Q’ l."l. y 0*': %
o° 8 o0 o
0e® @ . .. .‘ s ‘.'
13 O BE o -‘.\." ..‘ f .chﬁ:.‘.o:.
60
50 LOD1
40 ®
e 30 o . o
°
T 20 ® - . .
10 ° =l * ) ° = ) °
0 *ee0e "‘ = ’W“ o ‘e oo@til® occoe
@ o
10 ®
92150 92200 92250 92300 92350 92400 92450 92500 92550
X

Figure 10: Height profile of PSs, SPSs from LOD1 and LOD2, in the box indicated in Fig. 7 along
the x-axis.
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respectively.
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Fig. 12 provides a quantitative overview of the number of point-scatterers predicted for the LOD1
and LOD2 models, segregated by bounce level. In each of the bars, it is also indicated which
fraction of the SPSs was matched to a PS. Not surprisingly, the increase of the level of detail leads
to a very strong growth (close to a factor 3) of the predicted triple-bounce scatterers. The fraction
of predicted triple-bounce scatterers matched to actual PSs increased from 11% to 16%.
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Figure 12: The histograms of simulation points from LOD1 model and LOD2 model in Double,
triple, fourfold and fivefold bounce. The X-axis is LOD1 and LOD2. The Y-axis is the
count numbers from 0 to 2500. There were 742 and 799 double-bounce signals from
LODI1 and LOD2 model. Among these signals, 6% and 12% points were linked to
the PSs. Likewise, for triple-bounce signals, and fourfold-bounce signals and fivefold-
bounce signals.

For the other bounce-levels considered, the increase of predicted scatterers was quite modest.
However, the fraction of these scatterers that was matched to PSs increased by a factor two for
double-bounce scatterers, a factor three for fourfold bounce scatterers, and by more than a factor
six for fivefold-bounce scatterers.

The total number of matched scatterers increased from 223 in the LODI1 case, to 842 with the
LOD2 model. Triple-bounce scatterers, 100 and 358, respectively, remained dominant. However,
226 of the LOD2-model scatterers, or about one-fourth of the total, corresponded to fivefold-
bounce signals.

The number of predicted point-scatterers for the LOD1 (2770) and LOD2 (4390) models were
larger than the number of detected PSs. This can be explained by considering that PS selection
is done based on the amplitude stability of individual resolution cells in the interferometric data
stack. Typically, the amplitude will be stable if a single point-like scatterer is a dominant factor in
the radar echo for that resolution cell. Thus even if we know for sure that we have a stable point-
like target within our resolution cell, as this does not exclude contributions from other scattering
mechanisms, it does not imply that it will result in a PS. Moreover, as stated in section 2.4, the
selection criterion also contributes to the fact that the number of simulation points was larger
than the number of PSs.
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3.4 Target matching validation

A potential pitfall in the matching process is that if the local density of either PSs or SPSs is
higher, the amount of random matches increases as well (false positives). However, the amount
of random matches should be insensitive to their exact position. Hence, while some pairs would
be disassociated, roughly the same number is expected to appear.

Following this reasoning, we added random disturbances with Gaussian distribution to the co-
ordinates of the simulated points and performed the PS matching, following the procedure dis-
cussed in Section 2. In order to consider the worst case, the random disturbances are aligned
along the dominant orientation of the buildings. The z, y, and 2z coordinates of the simulated
points with random disturbances are given by

Tsim = Teim + Az
gsim = Ysim t Ay (4)
ésim = hsim + sz

where Zgim, Ysim> and zgim are the original coordinates of the simulated point scatterers, Az =
ny -sin(t), Ay = ny - cos(t), and Az = ng. The angle ¢ = 336° is the main orientation angle of
the streets and buildings as presented in Fig. 6. n; and ng are zero-mean Gaussian-distributed
random disturbances with a standard derivation of o meter.

Fig. 13 shows the number of matched PSs as a function of . The number of matched pairs
decreases rapidly as the position disturbance o increases. Introducing a position error with o = 4
m, which is close to the spatial resolution of TerraSAR-X in stripmap mode, reduces the amount
of matches by a factor 4, while a further increase in the positioning error has only a limited effect
on decreasing the amount of matches. As less than 10% of the number of matches remains if the
positioning error is increased to an unrealistically high value, this analysis suggests that the vast
majority of matched pairs are physically correct.

Fig. 14 shows all PSs detected in the area of interest, with identified PSs represented by green
triangles and unidentified PSs indicated by magenta plus-signs. The area labeled A, where most
PSs where missed by the simulation, correspond to a newly built building not present in the LOD2
model. Moreover, the building model did not include the public facilities, like the flower boxes in
the area labeled B. Most predicted PSs are located at linear structures of buildings and identified
as triple bounce, such as the points in the area labeled C. Those scatterers originated from the
roof and ghost corners e.g. the corner of the wall and the ground, which is in agreement with
previous research[28].

Simulation points have precise locations and precise location in the model. The object snap of
PSs can be achieved by the correlation of PSs and SPSs. Fig. 15 displays an overview of matched
simulation points in LOD2 model. The supplementary file of this research includes a movie that
is a 360-degree view of model and simulation points that matched to measured PSs.
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Figure 13: Number of matched PSs as a function of the standard deviation of the disturbance
added to the position of the simulated scatterers. The rapid decrease of matched pairs
supports the assumption that the vast majority of matches is correct.
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Figure 14: Marched and unmatched PSs. The A-labeled area corresponds to a new building ab-
sent in the LOD2 model. The B-labeled area corresponds to a green-area free of build-
ings, where the PPs correspond to urban structures not included in the model. The
C-labeled areas are the examples of predicted PSs at the linear structures of buildings
and identified as triple bounce.
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Figure 15: Rendering of matched scatterers overlaid on LOD2 city model.

4 Conclusion

PS Interferometry can yield deformation with an accuracy of millimeter-order by exploiting PSs.
As discussed in the introduction, two key issues in PS Interferometry are the precise geolocation
of the scatterers in 3D space, and the association of the scatterers to specific physical features.
In this study, we have investigated the use of ray-tracing tools to address the second issue by
illuminating 3D city models with different levels of detail (LOD1 and LOD2 according to the
CityGML standard). As expected, the results obtained depend strongly on the level of detail of
the 3D model given as input to the ray-tracing tool.

For our area of study in Rotterdam we were able to associate 37% of the PSs identified in a stack
of TerraSAR-X data with simulated scatterers using a LOD2 city model. Using LOD1 models
not only reduced the fraction of identified PSs to around 10%, but also put most of them on the
ground. We did not have models for real cities with a higher level of detail. Nevertheless, from the
observation of high-resolution SAR data, it is generally understood that many point-like scatterers
result from features, such as windows, that are not captured in LOD2. It is expected that using
higher LOD models might further increase the fraction of identified scatterers.

Considering the details of the results, it worth noting that roughly one-fourth of the identified PSs
were associated to fivefold bounces. These type of scatterers cannot be linked to physical objects
by simply intersecting their location with the 3D models.

LOD2 models can be produced automatically from, for example, laser-scanning data. Therefore,
it should be expected that LOD2 city models may become commonplace in the near future. The
positive results of this study underpin the usefulness of integrating this information in the PS
processing.

Associating PSs to physical features is a necessary step if we want to fully exploit the InSAR signal
of individual scatterers, for example, to detect deformation of specific sections of a building. In
the work presented we have shown that this association can be made. Each simulated PS can
be traced back one or multiple reflections on specific locations of the 3D model. However, with
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the tools used, the bookkeeping necessary to trace scatterers back to individual features in the
model (specific walls, roofs, floors, etc) is still missing. A logical next step in our research is to
implement this bookkeeping, which includes identifying practical approaches to label features
and, in particular, visualizing the results.

Another important intermediate objective is to investigate, with the support of simulations, how
different deformation sources translate to individual PS deformation signals. For example, in
the case of a five-fold bounce scatterer, structural deformation may produce a signal with the
opposite sign than for a triple-bounce scatterer. As already indicated, the long term goal of the
work presented is to improve the interpretation of deformation signals in complex environments,
where the observed deformation signals may have different causes. This relies on the anticipated
increased availability of high resolution city models.
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