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ABSTRACT
There has been a great deal of research about errors in geographic information and how they
affect spatial analyses. A typical GIS process introduces various types of errors at different stages,
and such errors usually propagate into errors in the result of a spatial analysis. However, most
studies consider only a single error type thus preventing the understanding of the interaction and
relative contributions of different types of errors. We focus on the level of detail (LOD) and
positional error, and perform a multiple error propagation analysis combining both types of error.
We experiment with three spatial analyses (computing gross volume, envelope area, and solar
irradiation of buildings) performed with procedurally generated 3D city models to decouple and
demonstrate the magnitude of the two types of error, and to show how they individually and
jointly propagate to the output of the employed spatial analysis. The most notable result is that in
the considered spatial analyses the positional error has a much higher impact than the LOD. As a
consequence, we suggest that it is pointless to acquire geoinformation of a fine LOD if the
acquisition method is not accurate, and instead we advise focusing on the accuracy of the data.
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Introduction

Geographical data are produced in many different fla-
vors and combinations: at different levels of detail
(LODs) and at different accuracies depending on the
nature of the data, spatial scale, acquisition technique,
and available funds. These different qualities affect
spatial analyses in distinct ways, and investigating the
propagation of a specific type of error (e.g. thematic
error) has been extensively researched in geographical
information science. However, mixed error propaga-
tion studies, which analyze the joint propagation of
multiple error types, are scarce. Error propagation
analyses commonly focus on one type of error and on
one spatial analysis, and they are never carried out at
multiple scales. This prevents the understanding of the
relation, magnitude and relative contribution of each
type of error.

In this paper we focus on the errors induced by (i)
different LODs and by (ii) positional errors incurred by
the acquisition. We run experiments to isolate and
quantify them, and to investigate whether the benefit
provided by spatial data of finer LOD is still valid in
cases of significant acquisition errors.

Understanding the relation between detail and acqui-
sition error is important for stakeholders in GIScience in

order to put the two quality characteristics into perspec-
tive. For example, the presented approach provides prac-
titioners and scientists a way of determining whether it is
worth increasing the accuracy of the dataset, or rather its
LOD, when designing the specification of a dataset to be
acquired, so that the produced data will be suitable for a
specific purpose (e.g. “What should the minimum accu-
racy and LOD available in the data be, so that these are
usable for accurately calculating the volume of build-
ings?”). Likewise, it is relevant to set expectations about
the capabilities of a certain dataset: this involves deter-
mining whether a dataset is adequately detailed and
accurate enough to derive sufficiently reliable results in
a spatial analysis. For instance, a user can avoid ordering
the acquisition of an expensive and overly detailed data-
set, which in a certain spatial analysis brings only a
minuscule benefit when compared with a less detailed
and less costly alternative.

Before proceeding to the core of the paper, it is impor-
tant to separate the two considered qualities of geogra-
phical data – LOD and accuracy, which are unfortunately
perennially misapprehended as synonyms. While there is
an association between the two (representations at finer
scales tend to be of higher quality (Heuvelink, 1998)),
these are two independent concepts (Chrisman, 1991).
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For instance, a national government may produce a GIS
dataset in which buildings are modeled in a coarse but
accurately derived representation, and a municipality
may produce a dataset of a city in finer detail but with
less accuracy due to an inferior acquisition technique (e.g.
automatic reconstruction from lidar instead of terrestrial
measurements).

While acquisition induces multiple types of errors
(e.g. thematic and positional), in this paper we focus on
the positional errors resulting from acquisition.
However, the developed work may be applied to inves-
tigate other aspects of acquisition as well.

The type of questions that we address in this paper
are usual considerations for GIS users:

• Given two distinct datasets covering the same area
(from multiple sources), where one is less detailed but
more accurate than the other, which is the better choice
for a particular spatial analysis?

• At what LOD and at what accuracy should a 3D
model be acquired to be usable for a particular spatial
analysis? Understanding this aspect would aid data
producers in designing a specification that bears in
mind the intended use of the data.

• Is it beneficial to acquire a dataset of a fine LOD if
the acquisition technique has poor accuracy?
Understanding this aspect may prevent wasting effort
to produce a dataset that is detailed and it is perhaps
visually pleasing, but is ultimately not acceptable for a
particular spatial analysis because of poor accuracy.
This reasoning was also described by Burrough and
McDonnell (1998): “The quality of GIS products is

often judged by the visual appearance of the end-pro-
duct [. . .]. Uncertainties and errors are intrinsic to
spatial data and need to be addressed properly, not
swept away under the carpet of fancy graphics dis-
plays.” (p. 220)

This research is also relevant in regard to the
increasing availability of datasets with heterogeneous
quality (Goodchild & Li, 2012). An example of such
dataset is one based on old but accurate cadastral data,
in which newer buildings have been supplemented with
other acquisition techniques such as footprints digi-
tized from aerial images. Such approaches may result
in data of variable accuracy and differing LODs, a
phenomenon inherent to volunteered geoinformation
(Camboim, Bravo, & Sluter, 2015; Fan, Zipf, Fu, &
Neis, 2014; Senaratne, Mobasheri, Ali, Capineri, &
Haklay, 2017; Touya & Brando-Escobar, 2013; Uden
& Zipf, 2013). Because such data are becoming increas-
ingly used for spatial analyses (Wendel, Murshed,
Sriramulu, & Nichersu, 2016), it is worthwhile to inves-
tigate for which portions of the dataset caution should
be exercised due to lower reliability than in other parts
of the dataset. Figure 1 shows an example of such
dataset.

Our experiments help in determining which LOD
and accuracy are sufficiently acceptable for particular
spatial analyses.

Figure 2 illustrates the goal of this paper: to run the
same spatial analysis (estimating wind flow) on two
different datasets, where one is less accurate and has
a coarser LOD than the other.

Figure 1. 3D building models of heterogeneous lineage within the same dataset. Example of a 3D model of a village in Austria
obtained with crowdsourcing. In reality, almost all buildings in the area have pitched roofs, however, they are modeled only in a
few buildings on the left. The rest of the buildings are represented by simple block models. Data courtesy of OpenStreetMap and
OSM2World.
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While the difference between the two LODs is
obvious, it cannot be determined whether the differ-
ence in the results should be attributed primarily to the
progression of the LOD or to the increase in the accu-
racy of the data. Furthermore, due to the absence of
ground truth data, it is not clear whether the improve-
ment that a more detailed dataset brings is still advan-
tageous, as it may still deviate considerably from the
real-world. A minor caveat here is that due to the
absence of ground truth data we do not have proof
that in this case the dataset of the finer LOD and higher
accuracy brings more accurate results. However, it is
reasonable to assume that such comparative differences
bring more accurate results (or at least equally accu-
rate) in comparison to analyses using their coarser and
less accurate counterparts.

In Section Background we introduce a theoretical
framework and an overview of related work. Section
Data and method presents the design of a method to
decompose and quantify the two types of errors under
consideration. We select three spatial analyses (estimat-
ing the area of the building envelope, gross volume of a
building, and solar irradiation of roofs) in order to
investigate their different behaviors. We investigate
whether these spatial analyses are more sensitive to
positional error or to the reduction in the LOD. The
results are presented in Section Results and discussion.

Background: decomposition of errors and
related work

Decoupling errors

We decompose the errors induced in a typical GIS
process into multiple components. Figure 3 illustrates
our standpoint: error is induced before any acquisition
has even taken place because a specification is designed
to capture a certain subset of reality at a certain LOD.
For instance, a data producer may decide to model
buildings with simple roof shapes, without openings
and finer details; such LOD induces an error which
we call representation-induced error.

The second step in the process is to realize the specifica-
tion with data acquisition techniques. Due to the imperfec-
tion of measurements, several types of errors are induced
in the process and the results of a spatial analysis are
further degraded. When such errors propagate through a
spatial analysis, we call this as acquisition-induced error.
Here we focus on the positional error, as it is one of the
most prominent types of errors in many context and
application (Ariza-López & Rodríguez-Avi, 2015b;
Drummond, 1995) and subject to intensive research (e.g.
Biljecki, Heuvelink, Ledoux, & Stoter, 2015; Cheung & Shi,
2004; Chow, Dede-Bamfo, & Dahal, 2016; Jacquez, 2012;
McKenzie, Hegarty, Barrett, & Goodchild, 2016; Ruiz-
Lendínez, Ariza- López, & Ureña-Cámara, 2016).

Figure 2. The results of two wind flow analyses of the Singapore central business district: one carried out on an accurate and
detailed 3D city model shown here (flow lines in blue), and another one with a crude block model (flow lines in red). The left panel
shows both LODs in corresponding colors, while the right panel reveals only the data in the finer LOD for clarity. Data, analysis, and
image (c) Singapore Land Authority.
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We term the combination of the acquisition-
induced and positional errors as combined error, and
describe them in further detail in the next subsections.

Representation-induced error

Depending on the purpose and scale of measurement,
real-world phenomena may be modeled in different
ways – different LODs.

In appropriate scale ranges (Mackaness, 2007), data
modeled in finer detail are inherently believed to ben-
efit spatial analyses, at the expense of an increased cost
of acquisition, storage complexity and maintenance,
and hindering the speed of spatial analyses. Hence,
the benefit may not always justify the investment.

Experiments that we present in this paper are
relevant for understanding how different LODs
affect the accuracy of a spatial analysis. This has a
twofold meaning. First, as modeling data at finer
LODs comes at a higher cost, a relevant question is
whether a certain spatial analysis can take advantage
of this finer detail. Second, the problem may be
approached from the generalization perspective; 3D
geoinformation at fine LODs may in fact be too
complex for certain spatial analyses. Hence, the
data are occasionally generalized to reduce complex-
ity while attempting to preserve usability (Deng &
Cheng, 2015). Insights into the performance of the
LODs may help to achieve that balance: by general-
izing the models to a point at which their complexity
is sufficiently reduced but at the same time their
usability is not compromised by the reduced LOD.

There has been a considerable amount of research
on the influence of different representations in

cartography and remote sensing across multiple scales
(Hillsman & Rhoda, 1978). For instance, Veregin
(2000) and Cheung and Shi (2004) study the effect of
the simplification of lines (e.g. roads) in maps and their
propagation to positional displacement.

Usery et al. (2004), Booij (2005), Chaubey, Cotter,
Costello, and Soerens (2005), Ling, Ehlers, Usery, and
Madden (2008), and Pogson and Smith (2015) investi-
gated the effects of input rasters using different resolu-
tions and found a significant difference in the outcome
of a spatial analysis. For example, the study of Chaubey
et al. (2005) indicates that the resolution of digital
elevation models affects the output of a hydrologic
spatial analysis.

In another relevant study, Ruiz Arias, Tovar Pescador,
Pozo Vázquez, andAlsamamra (2009) estimated the solar
irradiation of several locations with digital elevationmod-
els of different resolutions (100 m vs. 20m grid). A strong
point of Ruiz Arias et al. (2009) is that predictions were
evaluated against independent, accurate measurements
from meteorological stations, essentially obtaining the
difference against true data. The results showed that the
improvement of the resolution of the Digital Elevation
Models (DEMs) was minuscule in comparison to the
error induced by the spatial analysis.

In 3D geoinformation, the influence of different
representations has mostly been evaluated in urban
planning and related domains in which the visual
impression is the main decisive factor (Ellul &
Altenbuchner, 2013; Hannibal, Brown, & Knight,
2005; Herbert & Chen, 2015; Kibria, Zlatanova, Itard,
& Dorst, 2009; Rautenbach, Çöltekin, & Coetzee, 2015).

There are related analyses comparing the results of a
spatial analysis utilizing data of the same area modeled

Figure 3. Longitudinal error decomposition as discussed in this paper: errors are induced at different stages of a typical GIS process,
most prominently errors induced by abstraction and by realization of the data. In reality it would include additional errors; see the
overview of Lunetta et al. (1991).

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 159

D
ow

nl
oa

de
d 

by
 [2

7.
0.

23
2.

20
5]

 a
t 1

9:
14

 1
9 

D
ec

em
be

r 2
01

7 



at different LODs (Besuievsky, Barroso, Beckers, &
Patow, 2014; Biljecki, Ledoux, & Stoter, 2017; Billger,
Thuvander, & Wästberg, 2016; Brasebin, Perret,
Mustière, & Weber, 2012; Deng, Cheng, & Anumba,
2016; Ellul, Adjrad, & Groves, 2016; Fai & Rafeiro,
2014; Neto, 2006; Peronato, Bonjour, Stoeckli, Rey, &
Andersen, 2016; Strzalka, Monien, Koukofikis, &
Eicker, 2015). In general, research has demonstrated
that in certain spatial analyses the benefit of a finer
LOD may be overestimated and even detrimental, as
the potential small benefit may be countervailed by cost
and complexity. A shortcoming of such analyses is that
most of these are performed on only two LODs, and on
real-world data, thus preventing the focus on the repre-
sentation-induced error alone. Moreover, some of the
datasets used, are generated from different sources,
containing different magnitudes of errors.
Furthermore, the analyses do not put the derived
error into perspective – the error induced by the
LOD may seem significant, but if other errors are
added to the equation, it could turn out to be
irrelevant.

An aspect that cannot be ignored is how the
spatial detail is modeled, as there are multiple valid
representations of a feature that are of the same
detail and scale. For instance, on a coarse scale a
city may be represented as a point. The placement of
the point (e.g. centroid vs. a point placed at the most
populous area of the city) may affect the calculation
of the distance between two cities. Such examina-
tions have been the subject of many research papers
(Cromley, Lin, & Merwin, 2012; Hillsman & Rhoda,
1978; Miller, 1996; Murray & O’Kelly, 2002). In this
research, we do not separate the two, but instead we
use the most common modeling approaches (e.g.
median height of the roof structure is selected as
the elevation of the top surface of LOD1 models),
based on the conclusions of Biljecki, Ledoux, Stoter,
and Vosselman (2016).

Acquisition-induced error

The realization of the specification intrinsically intro-
duces errors. Several different types of errors can be
introduced during the acquisition, which propagate
through a spatial analysis in different ways, depending
on the context. For instance, the standard ISO 19157
on geographic data quality defines several types of
errors, for example, completeness, topological, posi-
tional, thematic (attribute), and temporal errors (ISO,
2013). Most of these have been the focus of various
analyses, for example, thematic error (Veregin, 1995).

In this paper we focus on positional error, which has
been the subject of several error propagation analyses
(Beekhuizen et al., 2014; de Bruin, Heuvelink, &
Brown, 2008; Heuvelink, Burrough, & Stein, 1989).
For example, Goulden, Hopkinson, Jamieson, and
Sterling (2016) investigate the propagation of posi-
tional error in point clouds to the calculation of various
topographic attributes, such as slope, aspect, and
watershed area. Griffith, Millones, Vincent, Johnson,
and Hunt (2007) and Zandbergen, Hart, Lenzer, and
Camponovo (2012) observe the influence of positional
error in geocoded addresses on various administrative
use cases such as the assignment of houses to census
blocks, and allocation of students to their nearest pub-
lic schools. Hartzell, Gadomski, Glennie, Finnegan, and
Deems (2015) estimate the propagation of positional
error from terrestrial laser scanning to the measure-
ment of snow volume.

Positional errors are omnipresent in GIS and they
have been much discussed in the literature, hence they
do not require a lengthier introduction.

Multiple error propagation analyses

Virtually all error propagation analyses focus on one
type of error. In contrast, our analysis considers two
types of errors. To the extent of our knowledge, we are
aware of only a few analyses that investigate multiple
types of errors, that is, multiple error propagation
analyses. Moreover, not all of these investigate the
error propagation simultaneously, that is, in most
cases a separate analysis is made for each type of error.

Shi, Ehlers, and Tempfli (1999), Couturier et al.
(2009), and Tayyebi, Tayyebi, and Khanna (2013)
investigate the combined effect of positional and the-
matic error in land cover maps. Rios and Renschler
(2016) mix probabilistic and fuzzy positional error
models to expose the error in the detection of the
contamination of groundwater. Lee, Chun, and
Griffith (2015) examine the propagation of error in
blood lead-level measurements of children and the
locations of their residential addresses. Their analysis
exposes the error in the aggregated results per census
block.

An effort that is to some extent related to ours is the
recent paper of Leao (2016) which examines the trade-
off between spatial resolution and the quality of climate
data. The analysis is performed on 2D raster data. A
characteristic of the data is that due to interpolation the
relationship between resolution and quality is not con-
sistent, and the paper seeks to find the balance between
the two.
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Analysis-induced error

A spatial analysis per se is not faultless: no matter how
accurate and detailed a dataset we have at our disposal,
there will usually be error induced by the imperfection
of the empirical models and other factors behind a
spatial analysis. Usually these differences are due to
external factors that are not influenced by geographic
information. Here we do not focus on such error, but
we deem that this type of error has been overlooked in
related work, and it is important to acknowledge its
presence by dedicating a few paragraphs to it. A few
examples follow:

(1) Geographic information may be used to predict
the energy demand of households based on the mor-
phology of a building, among other factors (Bruse,
Nouvel, Wate, Kraut, & Coors, 2015; Nouvel et al.,
2015; Swan & Ugursal, 2009). However, such predic-
tions are sensitive to building occupation, energy con-
sumption habits and lifestyles of occupants, and
differences in insulations of homes; which are regularly
not included in the modeling (Guerra-Santin & Itard,
2010; Ioannou & Itard, 2015; Majcen, Itard, &
Visscher, 2013).

(2) 3D city models are frequently used to estimate
the solar irradiation of building rooftops for determin-
ing the suitability of installing photovoltaic panels
(Bremer, Mayr, Wichmann, Schmidtner, & Rutzinger,
2016; Lukač, Seme, Dežan, Žalik, & Štumberger, 2016).
However, estimation models are empirically derived,
and use other data which are prone to errors (e.g.
cloud cover data). Besides the imperfection of the
empirical models, each year is subject to different
atmospheric conditions. All of these factors are beyond
the scope of the quality of geographic information and
are typically ignored in a GIS analysis.

(3) Based on the distribution of building stock,
population estimation can be conducted. However,
different factors such as vacant buildings and variable
apartment densities due to socioeconomic aspects
affect the accuracy estimates. Again, these factors are
typically not included in an analysis and hence invoke
an analysis-induced error.

While spatial analyses have been extensively
researched, surprisingly they are rarely validated using
true data, most likely due to a variety of reasons.
Foremost, the true value of a specific phenomena is
frequently absent as the exact value is typically unob-
servable (Heuvelink & Brown, 2016), or it is not fea-
sible to acquire it, as large-scale validation utilizing
more accurate data is expensive and laborious. For

instance, in order to validate the analysis-induced
error of solar potential estimates it would be required
to gauge the output of a myriad of solar panels or to
place instruments (e.g. pyranometers) on many roofs
(Erdélyi, Wang, Guo, Hanna, & Colantuono, 2014;
Jakubiec & Reinhart, 2013; Lukač, Seme, Žlaus,
Štumberger, & Žalik, 2014). Hence, when such scarce
studies are available, they are limited to small sample
sizes.

Another reason for the infrequency of such studies
is that the output of a spatial analysis using real-world
data already contains different types of errors (see
again Figure 3). Determining the analysis-induced
error is difficult because it may not be possible to
isolate other errors from the error budget. For instance,
Freitas, Cristóvão, Amaro e Silva, and Brito (2016)
assess the performance of using lidar data to predict
the sky view factor, by comparing measurements with
estimates derived with other methods. Here it is not
possible to deduce whether the performance improves
if the density of the point cloud (akin to scale or LOD)
is augmented. Furthermore, there is no proof that the
measurements that represent the ground truth are of
an order of magnitude more accurate to warrant their
role. Researchers working on other spatial analyses
such as estimating the residential stock also cite this
problem (Boeters, Arroyo Ohori, Biljecki, & Zlatanova,
2015).

This topic is important to keep in mind when asses-
sing the propagation of positional and LOD errors.

Data and method

Experiments

The method used in this research is straightforward: a
3D building model in multiple LODs is intentionally
degraded with simulated acquisition errors in repeated
iterations (Monte Carlo simulation; an approach
widely used in tasks such as this one (Xue et al.,
2016)), and is used in multiple spatial analyses. The
Monte Carlo method was used because of its conveni-
ence when spatial analyses are too complex to trace the
uncertainty propagation analytically (Yeh & Li, 2006).

The results of the spatial analyses using the erro-
neous models are compared with the results of their
error-free counterparts.

However, each of these steps is hampered by several
barriers, primarily lack of data and lack of suitable
spatial analyses. Besides technical details, in this section
we present solutions to these challenges.
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Representations

The concept of LOD in 3D GIS is somewhat different
from the one in cartography and imagery (Biljecki,
Ledoux, Stoter, & Zhao, 2014). In rasters, detail is
simply quantified as the size of pixels (spatial resolu-
tion). Hence it is straightforward to line up different
representations (e.g. orthophotos with pixel sizes of 10,
20, and 50 cm). In maps, the LOD is tied to scale: each
scale series (e.g. 1:10k, 1:20k, and 1:50k) contains a
certain amount of detail that ought to be mapped.
However, in 3D city modeling the distinction is not
as straightforward, due to the digital environment and
involvement of different features, which results in dif-
ferent understandings of measuring detail.

In this paper we focus on the most prominent LOD
categorization, the one found in the OGC CityGML
standard (Gröger & Plümer, 2012). The standard
defines LODs that progress in geometric detail and
semantic information: LOD1 is a block model, LOD2
is a generalized model containing basic roof shapes,
and LOD3 is an architecturally detailed model contain-
ing openings and facade detail (Kolbe, Gröger, &
Plümer, 2005).

These LODs roughly reflect the different outcomes
of different acquisition techniques (Biljecki, Ledoux, &
Stoter, 2016b). For instance, LOD1 is usually produced

by extruding footprints (Ledoux & Meijers, 2011),
LOD2 can be acquired automatically from lidar data
(Kada & McKinley, 2009), while LOD3 usually involves
substantial manual work or is obtained after conver-
sion from architectural sources (Donkers, Ledoux,
Zhao, & Stoter, 2016). Examples of buildings modeled
in these LODs will be exhibited in the next sections
(Figures 4 and 5).

LOD3 marks the boundary of 3D GIS, as data of
finer detail are considered to belong to the Building
Information Modeling arena. Moreover, LOD3 models
are rarely used in spatial analyses and we are not aware
of any LOD3 model produced on a large spatial scale
due to excessive costs of acquisition. Hence LOD3 is a
good choice as ground truth reference data.

Selection of the spatial analyses

3D city models may be used for a variety of purposes,
for instance, estimating the noise pollution at a location
(Stoter, de Kluijver, & Kurakula, 2008), assessing visi-
bility (Koltsova, Tunҫer, & Schmitt, 2013), and analyz-
ing thermal comfort (Nichol & Wong, 2005). However,
not all of the outcomes of these analyses result in a
quantifiable result, which is a prerequisite for error
propagation analyses as it provides a measure to

Figure 4. Two datasets of different LODs overlaid on an orthophoto (LOD1 – blue and LOD2 – yellow) of the same area but of
different accuracy. The models are produced in separate campaigns, resulting in different positional accuracies and varying
completeness. Data (c) Swiss Federal Office of Topography.
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compare results. Several spatial analyses appear to
derive ambiguous results, notwithstanding the chal-
lenges of how to quantify them. For instance, 3D city
models may be used for different kinds of visibility
analyses, and therefore quantified in different ways:
binary (a point in space is visible or not), distance
(range) of visibility, the area or volume visible from a
point, number of buildings that have visual access to a

feature, and population that has visual access to a point
(Cervilla, Tabik, Vías, Mérida, & Romero, 2016; Grassi
& Klein, 2016; Wrózyński, Sojka, & Pyszny, 2016; Yu
et al., 2016). Each one has different error propagation
behavior (Biljecki et al., 2017).

The error propagation task is further impeded by
the fact that capabilities of existing software are limited.
In analyses such as this several building models are

Figure 5. Illustration of a subset of the experiments and results of one simulation on a sample of one 3D building model disturbed
according to two different levels of accuracy (σx;y;z ¼ 0:2 and 0.5 m). The results from the three considered spatial analyses are
listed in the figure, and two types of errors are given for each case: the acquisition-induced error, and the combined error (in
parentheses). This particular case is interesting because in the first two spatial analyses the LOD1 model inherently results in less
inaccurate results than the LOD2 model.
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disturbed in hundreds of simulations, resulting in a
large abundance of datasets that have to be analyzed.
Thus the capability to automatically and repeatedly
load the data and analyze the results is essential, so
studies such as this one entail the creation of custom
software. Moreover, the large number of model runs
entails an increased computational cost, which can be
substantial in some spatial analyses. For example, esti-
mating the wind flow (as in Figure 2) may take a few
hours of computational time. Since Monte Carlo simu-
lations involve repeated disturbances of data and re-
running spatial analyses for hundreds if not thousands
of simulations, this can result in substantial simulation
time. Hence, it is important to select spatial analyses
that are feasible for Monte Carlo simulations.

We select the following three spatial analyses that we
have found to be appropriate for our research:

(1) Area of the building envelope. 3D city models are
suitable to calculate the area of the exposed
building shell. This information is useful in
planning energy-efficient retrofitting, estimating
indoor thermal comfort and energy consump-
tion, analyzing the urban heat island effect, and
further similar applications (Chwieduk, 2009;
Deakin, Campbell, Reid, & Orsinger, 2014;
Eicker, Nouvel, Duminil, & Coors, 2014;
Maragkogiannis, Kolokotsa, Maravelakis, &
Konstantaras, 2014; Nouvel, Schulte, Eicker,
Pietruschka, & Coors, 2013; Perez, Kämpf, &
Scartezzini, 2013; Previtali et al., 2014; van der
Hoeven & Wandl, 2015).

(2) Gross volume of a building. Estimation of the
volume of buildings is useful in various analyses,
such as urban planning (Ahmed & Sekar, 2015),
estimating the stock of materials in the building
sector (Schebek et al., 2016), waste management
(Mastrucci, Marvuglia, Popovici, Leopold, &
Benetto, 2016), population estimation (Lwin &
Murayama, 2009), quantifying development
densities (Meinel, Hecht, & Herold, 2009),
energy estimation (Eicker et al., 2014; Nouvel
et al., 2013), and predicting thermal comfort
(Chwieduk, 2009; Perez et al., 2013).

(3) Solar irradiation of rooftops. Estimating the
insolation (solar exposure) of buildings is one
of the most prominent spatial analyses using 3D
city models. The solar irradiation of rooftops is
calculated based on the orientation and inclina-
tion of roofs, among other factors, which
involve spatial operations that are all prone to
errors. This application has wide applicability,
for example, assessing the suitability of installing

solar panels (Szabó et al., 2016), preventing
overheating (Nichol & Wong, 2005), and pre-
dicting house prices (Helbich, Jochem, Mücke,
& Höfle, 2013). Typically the annual exposure to
sun is estimated and quantified in kWh/m2

(Nault, Peronato, Rey, & Andersen, 2015). We
take into account solar irradiation because it is
an interesting use case, where the coarsest LOD
considered performs poorly because it only has
flat roofs, hence it is subject to large systematic
error. Due to computationally quite intensive
estimations we do not take shadowing into
account. However, the work of Biljecki et al.
(2017) demonstrates that the LOD does not
have a significant influence on shadow
estimation.

A particularity of our spatial analyses is that they are
prone to positional errors that affect deformable objects
(whose relative position can vary under uncertainty –
for example, the width of the modeled building may be
smaller than it is in reality). However, the analyses
considered here is not affected by errors related to
positional error in rigid objects (e.g. displacement of a
building by 20 m due to processing errors does not
alter its volume). For more on this topic the reader is
referred to Heuvelink, Brown, and van Loon (2007).

Procedural generation of the data

While it is reasonable to assume that using real-world
data in the analyses is the best option, it is important to
be aware that real-world data are also burdened by
acquisition errors. As a result, there is a risk of varying
levels of quality and inconsistencies in the realization
of the specification. For instance, the LOD may not be
consistent across the dataset. In addition, real-world
data have several other shortcomings making their
use implausible. First, real-world 3D datasets are hard
to perturb due to complex geometries, and they usually
contain topological errors, not only preventing spatial
analyses but also making the simulations more difficult
and prone to inconsistencies. Second, multi-LOD data-
sets are rare (data producers usually produce data in
one representation), and when they are available, they
are usually sourced from a different lineage; such inte-
gration may induce additional errors or other types of
errors (and is therefore not comparable) (Figure 4).
Third, an alternative to producing data in multiple
LODs would be to take a fine LOD and obtain coarser
counterparts with generalization. However, data mod-
eled in a fine LOD are seldom available, and when
available these are usually restricted to a small area,
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insufficiently large and diverse for experiments.
Moreover, while research in 3D generalization is plen-
tiful (Xie & Feng, 2016), there is no implementation we
are aware of. The absence of data in fine LODs would
make experiments less interesting and would result in
lack of a reference to gauge the results.

All of the above shortcomings can be solved by the
use of procedurally generated data as procedural mod-
eling offers a sterile and controllable environment sui-
ted for this problem. Procedural modeling involves
generating geographical data based on a set of custo-
mized rules to represent a specific setting (Müller,
Wonka, Haegler, Ulmer, & van Gool, 2006). Their
importance in GIS is growing (Tsiliakou,
Labropoulos, & Dimopoulou, 2014), for instance, to
enhance existing data (Müller Arisona, Zhong,
Huang, & Qin, 2013). In general, synthetic data have
already been in use in GIS when experimenting with
error and spatial analyses (Besuievsky et al., 2014;
Burnicki, Brown, & Goovaerts, 2007; Erdélyi et al.,
2014), and were proven powerful in testing diverse
configurations.

An advantage of procedural models is that they can be
generated in a straightforward manner and for a large
area, and such an approach minimizes inconsistencies.
Furthermore, the nature of procedural modeling war-
rants that the models are produced according to a strict
specification which introduces no additional errors.

In this paper, we use a procedural modeling engine
developed by Biljecki, Ledoux, and Stoter (2016a),
which generates 3D diverse building models, and can
generate a fine representation in LOD3, which we use
as reference data. The engine generates a diverse con-
figuration of buildings (from small sheds to tall build-
ings), warranting a variation of the input dataset.

Perturbation and grades of accuracy

3D city models may be derived with different
approaches involving diverse technologies, each with
different capabilities when it comes to the accuracy.
Hence, it is important to investigate different magni-
tudes of positional error (standard deviation σ).

In our approach, we simulate positional error by
degrading the geometry of a 3D city model with values
sampled from a normal probability distribution func-
tion with standard deviation σ, which is in line with
related work (Ben-Haim, Dalyot, & Doytsher, 2015;
Brown & Heuvelink, 2007; Xue et al., 2016). The ver-
tices of the 3D model are disturbed while retaining
right angles to mimic common acquisition approaches
of the data, such as photogrammetric mapping.

Our approach assumes that there is no correlation in
the errors in different dimensions.We follow the assump-
tion of uncorrelated errors in coordinates. 3D city models
are often acquired in different acquisition campaigns (e.g.
footprints are acquired with a geodetic survey, while the
elevation of the building is acquired with airborne laser
scanning). However, we acknowledge that correlated
errors may influence the outcome of the analysis, as
demonstrated by Navratil and Achatschitz (2004).

With the exception of satellite platforms (Duan &
Lafarge, 2016; Toth & Jóźków, 2016), researchers reg-
ularly report submeter accuracy of 3D acquisition tech-
niques (Jarząbek-Rychard & Borkowski, 2016;
Kabolizade, Ebadi, & Mohammadzadeh, 2012;
Mårtensson & Reshetyuk, 2016; Rottensteiner et al.,
2014; Wang, Kutterer, & Fang, 2016). Hence, we con-
sider positional accuracy in the range of 0–1 m in
10 cm increments resulting in 11 error classes. Taking
into consideration multiple accuracy classes also helps
in understanding the impact that increasing the error
of the input has on the error of the output.

Because of the integration of data from different sources
and the nature of acquisition methods, another point that
we consider is the varying level of accuracy in the planar
and vertical coordinates (σx;y!σz). While this is an inher-
ent property of 3D acquisition techniques such as laser
scanning (Gil de la Vega, Ariza-López, & Mozas-
Calvache, 2016; Goulden et al., 2016; McClune, Mills,
Miller, & Holland, 2016), the varying accuracies are espe-
cially emphasized in cases such where building footprints
and heights were derived in separate measurements, for
example, footprints from ground measurements and
heights guessed from the number of storeys orwith another
method of incomparable accuracy. In such cases the differ-
ence between planar and vertical accuracies may be sub-
stantial, so for each of σx;y and σz we combine 11 classes
resulting in 121 independent accuracy classes. LOD3 is an
exception as the perturbations were carried out up to σ ¼
0:3 m, as in reality the error is not larger than that.

Implementation

We generated a dataset of 100 3D building models in
CityGML and perturbed these in 1000 iterations using
Monte Carlo simulation, according to 121 accuracy
classes resulting in 12.1 million cases to be analyzed.
The methodology is described in Biljecki et al. (2015).

An example of a part of the simulations is shown in
Figure 5. The simulations and the spatial analyses took
several weeks. During the simulations, there were some
occasions with excessive acquisition-induced errors,
causing the realization of data containing topological
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errors. Our implementation includes a built-in validator
according to international standards in GIS (Ledoux,
2013), therefore simulations that had topological errors
were discarded to avoid the introduction of inconsisten-
cies other than positional errors.

Results and discussion

Due to the large number of results we specifically focus
on the most important findings. We present the results
graphically in plots and tables, and describe them in
the text. Furthermore, in order for a direct comparison
of results between different spatial analyses, we present
the errors in percentages of the true value.

Representation-induced errors

Table 1 shows the magnitude of errors induced by the
representation. Not surprisingly, the findings show that

LOD2 is a better choice than LOD1 in all three spatial
analyses, as it resembles the abstracted phenomena in
more detail. However, it is visible that in the first two
spatial analyses the difference between the two is rela-
tively small. Hence, it might not be justifiable to
acquire a finer model. LOD2 may come at a signifi-
cantly higher cost but for a marginal improvement.

The results for the computation of volume are inter-
esting: LOD2 conceptually derives the same volume as
LOD3, because the details brought by LOD3 (e.g. win-
dows, facade details, awnings, chimneys) do not bring
any difference to the computation of volume. Hence,

Table 1. Representation-induced errors in the three considered
spatial analyses.

RMSE in spatial analyses [%]

Representation Envelope Volume Solar

LOD1 7.9 3.7 14.2
LOD2 7.4 0.0 3.4
LOD3 0.0 0.0 0.0

Figure 6. The propagation of varying positional error per each spatial analysis. The results indicate different behavior of each spatial
analysis, preventing a generalized conclusion.
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ignoring acquisition errors at this point, it appears that
LOD3 does not bring any benefit over LOD2 when it
comes to the computation of gross volume.

Acquisition-induced errors

The results shown in Section Representation-induced
errors indicate the magnitude of error if the models
were (theoretically) acquired without acquisition errors.
This section first considers the effect of positional errors
in isolation. These effects are visualized in the dashed
lines of Figure 6, for each spatial analysis separately.

The results indicate that the error propagates linearly
in all three analyses, but that it has a different impact on
the final result. For instance, the error induced by acqui-
sition scenario σx;y ¼ 0:4 m/σz ¼ 0:2 m for the three
analyses is 6.6%, 12.6%, and 20.8%, respectively.

The propagation of positional error is similar
between LODs in all three spatial analyses. However,
notice that in the first experiment the error for LOD1
(dashed blue line) is larger than that of LOD2 (dashed
yellow line), which is not the case for the third spatial
analysis, while in the second experiment they coincide.
This result suggests that positional error affects differ-
ent LODs in different spatial analyses in different ways.

Two errors in combination

Figure 6 shows the combination of the two errors as solid
lines. In addition, the plot in the bottom right shows the
combined errors jointly for the three spatial analyses for
comparison. The representation-induced error is also
provided in the plots: this is the case where σ ¼ 0.

The results suggest that the combined effect of the two
error sources is not additive but is much more complex
than that. The reason has to be studied in further
research. The results also indicate that LOD2 is in most
cases better than LOD1 by a thin margin, which means

that despite the added positional error, the finer LOD2
still offers a slight benefit over the coarser LOD1.

However, the propagation of error in the third experi-
ment gives unexpected results. LOD1 has an unfavorable
starting point (the representation induces gross errors
owing to flat rooftops), but eventually at σ ¼ 0:5 m it
surpasses the accuracy of the analysis with LOD2, probably
owing to the more complex geometry of LOD2. A second
unexpected result occurs in the first experiment (envelope
area): the acquisition error (dashed line) is larger than the
combined error (solid line), for both LOD1 and LOD2.
These results indicate the presence of a systematic error.

Recall the dilemma discussed in the introduction in
regard to using a dataset of a finer LOD but of lesser
accuracy in contrast to the inverse situation. In our
experiments an LOD1 acquired with σ ¼ 0:2 m is a
much better choice than the finer LOD2 acquired with
poorer accuracy (σ ¼ 0:5 m); see Table 2 for compar-
ison of all three considered spatial analyses.

Influence of differing planar and vertical error

To retain the simplicity of the presentation, the errors
so far have been considered with equal magnitudes
(σx;y ¼ σz). This section analyses the propagation of
varying error magnitudes in the planar and vertical
coordinates.

The behavior for all three experiments is similar,
both for LOD1 and LOD2. We therefore only present
plots for the combined error in LOD2: see Figure 7.

It appears that the varying levels of planar and
vertical accuracies have different impacts on the con-
sidered spatial analyses. The insights into the impact of
planar and vertical accuracies, as shown in Figure 7,
may guide choosing the proper acquisition approach
that warrants that the obtained 3D city model yields
results with an error lower than a certain threshold.

For all analyses, planar error has a larger effect than
error in the vertical coordinates. However, the degree
of such influence differs, and this behavior is mostly
exhibited in the estimation of solar irradiation.

Influence of the building form

Wenoticed that errors (both in relative and absolute terms)
substantially depend on the morphology of buildings. We
therefore divided the buildings into four quartiles based on
their volume. Figure 8 shows the behavior of errors for each
quartile in each spatial analysis and different type of error.

These plots clearly show that when it comes to relative
errors, they are larger in smaller buildings. However, in
absolute terms the behavior of errors is opposite: the errors
increase with the increase in the building size. The small

Table 2. Comparing errors (%) of two datasets with opposite
qualities: a fine detailed (LOD2) model acquired with poor
accuracy, and a coarse model (LOD1) acquired with higher
accuracy.

LOD1 σ ¼ 0:2 m LOD2 σ ¼ 0:5 m

Spatial analysis R A C vs. R A C

Envelope 7.9 4.3 8.4 7.4 9.6 10.1
Volume 3.7 7.1 8.1 0.0 16.9 16.9
Solar 14.2 10.7 16.4 3.4 26.6 27.5

Key: R–Representation-induced error, A–Acquisition-induced error, C–
Combined error.

The solar spatial analysis exhibits a paradox: initially the representation-
induced error is very large since most of the roof shapes inherently
significantly deviate from the real situation. However, due to the simpli-
city of the representation, the acquisition-induced error is much smaller
than with LOD2.
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exception in the third experiment (right plot in the bottom
row; showing different order for Q3 and Q4) is caused by
the varying degrees of insolation of roof surfaces. That is,
rooftops with smaller areas may have a higher amount of
solar irradiation than larger rooftops, so that rooftops of
smaller buildings may have a larger absolute error in solar
irradiation than rooftops of larger buildings.

These results imply that the outcome of analyses such as
these also depend on the base dataset that is used, primarily
because these are driven by the morphology of the build-
ings. In 2D this topic has been investigated by Berk and
Ferlan (2016), pointing out that the size and the shape of a
parcel may characterize the propagation of error when
calculating its area.

General discussion and key findings

A major finding of this paper is that taking care of the
accuracy of the data is more important than striving to

produce data of a finer LOD, at least in the spatial
analyses that we considered.

LOD1 and LOD2 are significantly different models –
they are acquired with different approaches with the
latter being more complex to produce. Despite such
distinction, when used in the first two spatial analyses
(envelope area and gross volume) the difference in the
performance of LOD1 and LOD2 is so small that it
appears that in many cases it is not worth acquiring an
LOD2. For instance, when an LOD1 is used in the
estimation of envelope area the RMSE is 7.9%, and
LOD2 shaves off the error to 7.4%, which is practically
negligible. In such cases it may be more favorable to
use the coarser LOD1–they are simpler to acquire, they
have a smaller storage footprint, and they are faster to
process. Hence the increased costs for obtaining the
finer LOD2 may not always be justified.

The leap between LOD2 and LOD3 is much larger
than between LOD1 and LOD2. Hence it would be

Figure 7. Contour plots showing the influence of variable accuracy levels onto the error of the three spatial analyses for LOD2. Note
that the color ranges vary among plots. The bottom right plot exposes the differences in error propagation by showing the
sensitivity of the spatial analyses at a certain threshold (value of 10% RMSE).
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beneficial to strive toward the large-scale production of
LOD3. However, such an advancement does not yet
appear imminent: while many LOD3 models of limited
spatial extent have been produced and used in various
analyses, their production will remain expensive and
wide coverage will not be feasible for some time.

Taking into account the realization of the 3D mod-
els, positional error has a substantial effect on the
errors of the quantities estimated in this study (build-
ing envelope area, gross volume, and solar irradiation
of rooftops). In these cases, positional error dominates
over the error induced by a coarse LOD. A fairly small

Figure 8. Dissecting the combined errors: building size influences the results. The plots on the left side show the errors in
percentages, while the plots on the right express the errors in the units of measurements.
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error of 0.2 m outweighs the benefit of a fine LOD, and
our results indicate that in two of the three considered
spatial analyses, an LOD1 acquired with σ ¼ 0:2 m is a
much better choice than the finer LOD2 acquired with
poorer accuracy (σ ¼ 0:5 m). However, this is not the
case for the solar irradiation of rooftops use case, in
which LOD1 cannot be used due to its systematic
shortcoming of having flat roofs. A paradox in this
spatial analysis is that at poorer accuracies the error
by LOD1 is smaller, due to the high sensitivity of solar
irradiation estimation to positional errors.

The combined error cannot be simply decoupled
into representation- and acquisition-induced error
because they do not sum up. This is also obvious
from the errors given in Figure 5, see for instance the
case of LOD1 disturbed with σ ¼ 0:5 m. Such result
indicates that there are interactions between the errors,
as they are not additive.

These experiments provide insight into designing
specifications of 3D city models while taking into
account the intended spatial analyses; the increase of
detail does conceptually bring some benefit, but in
practice, when models are realized (and hence affected
by the imperfection of measurement) the benefit is
countervailed by acquisition errors. As a consequence,
the representation benefit between LOD1 and LOD2
becomes negligible.

The results also show that each spatial analysis has
different behavior. Hence, it is important to consider
each spatial analysis separately in experiments. As the
work also suggests that spatial analyses have a substan-
tially different behavior when compared to each other,
data suitable for one spatial analysis may be of little
value for another.

Real-world data offer little room for manoeuvre in
experiments such as ours, hence we suggest researchers
in related work resorting to procedurally generated
models as their benefit in such analyses is underesti-
mated and unparalleled. By using a procedural
approach we were able to obtain models that are bur-
dened only with the errors we want (e.g. we did not
have to worry that other errors such as completeness
could have compromised our analysis), and by indu-
cing specific errors in a simulation we could isolate the
influence of different errors. On the other hand, it
should be noted that synthetic data might not always
properly represent real-world data.

A limitation of our study is that we do not address
the inability of software to take advantage of finer
LODs. For example, in theory there could be a sub-
stantial difference between using LOD1 and LOD2 for
estimating noise pollution (e.g. sloped roofs henceforth
available in LOD2 may bounce the noise in a different

way resulting in substantially different predictions, see
Van Renterghem and Botteldooren (2010) which
demonstrates that roof shapes are an important factor
to consider in noise pollution estimations). However,
the software may simply not be capable of taking
advantage of the more detailed geometry of the roof-
tops (e.g. it considers only the bounding box of a
building), and will give the same results as for LOD1.

Looking into this matter is certainly our priority
for future work, and for this, we plan to follow the
approach of Ruiz Arias et al. (2009). In their analysis
involving rasters of multiple resolutions, they com-
pare the results from multiple software packages and
conclude that some software solutions lead to larger
error propagation. In our analysis we have dealt with
volume and area computation, which should not
differ between different software packages (when we
programmed the two we compared the results from
another software for validation). However, this is
probably not the case for the solar irradiation use
case, especially because due to computationally
intensive calculations it was not possible to take
into account shadowing effects. In the context of
this paper, the absence of shadowing is an example
of a factor in the analysis-induced error.

Another aspect that we did not address, is that it is
not always possible to separate the LOD and positional
errors. Sometimes they are fused, for example, a com-
plex building footprint may be simplified as a rectan-
gle, and at the same time its geometry may be displaced
due to generalization rules. That is, because in coarser
scales such a rectangle would encompass the building
(e.g. a bounding box) and the vertices would not cor-
respond across multiple LODs (Arroyo Ohori, Ledoux,
Biljecki, & Stoter, 2015). In 3D GIS, LOD1 and LOD2
are usually realized using the same footprints (Biljecki
et al., 2016b), hence this does not affect much of our
work and while we do not contend that we have a
solution here, it is certainly important to acknowledge
the occasionally blurry distinction between representa-
tion and acquisition errors.

Finally, to maintain a reasonable level of simplicity,
this study did not take into account potential systema-
tic errors such as projection errors (Chrisman, 2016;
Girres, 2011), which may – together with the errors
caused by ignoring terrain elevation – affect the build-
ing footprint dimensions (Berk & Ferlan, 2016).

Conclusions

LOD and positional accuracy are arguably some of the
main ingredients in the metadata of most GIS datasets.
In this paper we performed a combined (multiple) error
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propagation analysis that demonstrates how much error
is induced on top of error caused by using different
LODs. Our main contribution in the subject of error
propagation is that we take into account simultaneously
multiple types of errors, and we consider multiple spatial
analyses. While errors may be induced at many different
points in a typical GIS process (Gahegan & Ehlers, 2000;
Lunetta et al., 1991), we deem that acquisition- and
representation-induced errors are the most prominent
ones, hence we focused on them.

The main conclusions of this paper are: (i) the
positional error is in many cases significantly more
dominant than representation error; (ii) as a result of
this, in a lot of instances there is no need to go for a
high representation level (LOD3) because the added
value will vanish due to acquisition error; (iii) the two
considered errors are not additive; (iv) error propaga-
tion is case specific, hence there is no general conclu-
sion that can be drawn for all spatial analyses; and (v)
when disturbed with larger positional errors a lower
representation may give better results in a spatial ana-
lysis than a higher representation disturbed with the
error of the same magnitude.

This paper also suggests that LOD in 3D GIS and
scale in 2D GIS are related but different concepts. Scale
in 2D is mainly associated with accuracy and precision,
with less detail on small-scale maps, while for 3D that
relation does not always hold. In 3D data of coarse
detail at a high precision/accuracy level is common,
regardless of the spatial scale.

Plans for future work are to investigate the behavior
of the propagated error in other spatial analyses, and to
investigate the behavior of correlated errors as these
may significantly impact the error propagation
(Navratil & Achatschitz, 2004). Correlations between
positional errors can be incorporated in a probabilistic
model but will require stationarity assumptions to limit
the number of model parameters (Heuvelink et al.,
2007). Furthermore, we intend to consider other types
of acquisition error common in geoinformation, such
as completeness, which next to positional accuracy is
commonly cited as a principal acquisition-induced
error (Ariza-López & Rodríguez-Avi, 2015a; Demir,
2015). Finally, a continuation of the work would be
to consider the bigger picture of errors and analyze
their consequences by associating them to a meaningful
application. For example, the impact of a 10% error in
the estimation of volume depends on the intended use
of the derived information. If the volume was used to
determine property tax, an error of 10% would not be
acceptable. However, if it was used to estimate the
volumetric building stock of a complete neighborhood
for heating demand estimation or for population

estimation, on a large scale such error might be less
severe as the errors would probably cancel out in
the sum.
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