
Open Geospatial Data,
Software and Standards

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23
DOI 10.1186/s40965-017-0036-1

SOFTWARE Open Access

The VI-Suite: a set of environmental
analysis tools with geospatial data applications
Ryan Southall1 and Filip Biljecki2,3*

Abstract

Background: The VI-Suite is a free and open-source addon for the 3D content creation application Blender,
developed primarily as a tool for the contextual and performative analysis of buildings. Its functionality has grown
from simple, static lighting analysis to fully parametric lighting, shadowing, and building energy analyses. It adopts a
flexible, mesh geometry based approach to the specification of calculation points and this has made it suitable for
certain types of 3D geospatial analyses and data visualisation.

Results: As this is the first academic paper to discuss the VI-Suite, a history of its development is presented along
with a review of its capabilities of relevance to geospatial analysis. As the VI-Suite combines the functionality of 3D
design software with performance simulation, some of the benefits of this combination are discussed including
aspects that make it suitable for the processing and analysis of potentially large geospatial datasets. Example use
cases with a 3D city model of the Hague are used to demonstrate some of the geospatial workflows possible and
some of the result visualisation options.

Conclusions: The free and open-source nature of the VI-Suite, combined with the use of Blender mesh geometry to
define calculation points, has encouraged usage scenarios not originally intended by the authors, for example large
scale urban shadow and radiation analyses. The flexibility inherent in this mesh based approach enables the analysis
of large geospatial datasets by giving the user refined control over the distribution of calculation points within the
model. The integration of GIS analysis into a digital design package such as Blender offers advanced
geometry/material editing and specification, provides tools such as ray casting and BVH tree generation to speed up
the simulation of large datasets, and enhanced visualisation of GIS simulation data including animated city
fly-throughs and high quality image production. The VI-Suite is part of a completely open-source tool chain and
contributions from the community are welcome to further enhance its current geospatial data capabilities.

Keywords: Shadow maps, Radiation maps, Blender, Radiance, Python

Introduction
This paper presents for the first time the VI-Suite, a free
and open-source integrated set of building environmental
performance simulation tools that encompasses function-
ality suitable for geospatial analysis. The VI-Suite uses the
3D content creation suite Blender as a host application
to provide modelling, rendering and animation capabili-
ties for pre/post-processing of the simulated scenarios as

*Correspondence: fbiljecki@gmail.com
23D Geoinformation, Delft University of Technology, Julianalaan 134, 2628BL
Delft, Netherlands
3Department of Architecture, National University of Singapore, 4 Architecture
Drive, 117566 Singapore, Singapore
Full list of author information is available at the end of the article

well as an intuitive and flexible nodal user interface for the
construction of simulation pipelines.
The VI-Suite uses some of Blender’s in-built function-

ality to create sun paths and shadow maps, integrates the
external applications Radiance and EnergyPlus to carry
out lighting and energy simulations and utilises external
Python libraries to visualise contextual and simulation
result data [1].
Although many of these capabilities can be found in

other software packages the free, multi-platform and
open-source nature of the VI-Suite, and all the applica-
tions it relies on including Blender, Radiance, EnergyPlus
and Python, makes the VI-Suite unique and available to
anyone interested in built-environment performance with

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40965-017-0036-1&domain=pdf
http://orcid.org/0000-0002-6229-7749
mailto: fbiljecki@gmail.com
http://creativecommons.org/licenses/by/4.0/

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 2 of 13

minimal hardware, platform or cost barriers. In addition,
the use of an advanced 3D design tool to provide a soft-
ware framework for a geospatial workflow presents some
additional advantages which are discussed later in this
paper.
In addition to its core architectural applications the VI-

Suite has been successfully used to conduct geospatial
data analysis and visualisation. This paper will focus on
these capabilities and begins with a description of Blender
and some of its features that make it suitable as a host
application, before going on to describe the VI-Suite in
terms of its aims, capabilities, and history of development.
The paper then proceeds to detail the process of cre-

ating shadow and irradiance maps before finally applying
these methodologies to a geospatial dataset; in this case a
3D city model. The integration of the analysis capabilities
of the VI-Suite with a comprehensive digital design pack-
age such as Blender is also shown to provide flexible and
appealing result visualisations.

Background
Blender
Blender1 (Blender Foundation) is a free and open-source
3D application that aims to be a ‘Swiss-army knife’
for digital content creation. It includes a mesh-based
3D modeller, advanced materials and texture specifica-
tion, animation system, a physically based renderer and
a deeply integrated Python2 Application Programming
Interface (API) amongst other features. Some of these
features have made Blender an increasingly popular host
application for a range of scientific visualisation and anal-
ysis tools [2–5] including GIS data processing3 and other
GIS related visualisation applications [6–8]. These key
features include:

Mesh based modelling As opposed to a surface (e.g.
Rhino) or solid (e.g. Solidworks) based modeller, geome-
try in Blender is primarily stored as a mesh, i.e. geometry
is composed of vertices, edges and faces. This allows data
to be associated with, and visualised at, specific geomet-
ric points, and the distribution of those points is eas-
ily manipulated by the user. It also means Blender can
natively import and export a number of common mesh
based geometry formats such as OBJ and 3DS with no loss
of geometric detail.

Python API Python is an open-source, high-level com-
puting language used for Blender’s API. This Python API
is deeply integrated allowing, for example, specification
of data and control over mesh elements, manipulation of
the Blender interface and the drawing of custom OpenGL
graphical elements over the interface itself. With the
Python API it is therefore possible to create custom user
interfaces to control the creation and visualisation ofmesh
based data.

Animation System Blender’s frame based animation sys-
tem can be used to visualise variant data sets and is also
used by the VI-Suite to specify variant simulation contexts
that enable parametric as well as static analyses.
In addition, the Blender interface is very flexible and

customisable for different usage cases. This, coupled with
the Python API, allows plugin (called addons in Blender)
developers to create embedded custom user interface and
display elements.

VI-Suite history
The features mentioned above made Blender an early
choice as a host application to provide geometry and
materiality creation and export for the Radiance lighting
simulation suite [9]. Early examples include Brad4 and
Radex.
Radiance is a set of free, multi-platform and open-

source tools for the visualisation and calculation of artifi-
cial and natural lighting and radiation metrics. Radiance
comes with no native user interface and consists mainly
of a number of executable files, typically run from the
command line. This has made the use of pure Radi-
ance somewhat problematic for novice users and students
[10]. Radiance can however accept mesh based geometry
descriptions and can convert OBJ files to native Radi-
ance geometry. The mesh based geometry format used by
Blender, coupled with the ability to create custom user
interfaces with the Python API, made Blender an appro-
priate choice to act as a Radiance frontend. In these early
examples Blender acted primarily as a pre-processor i.e. a
geometry/material creator and exporter that could initi-
ate the Radiance simulation and visualise the results using
Radiance’s native rendering tools.
The first component of the VI-Suite, the Lighting Visu-

aliser (LiVi), was inspired by these early examples to
embed Radiance functionality within Blender. LiVi began
in 2009 as a standalone addon for Blender that would
convert Blender geometry and materiality to a valid Radi-
ance format and initiate the Radiance simulation via
additions to the Blender user interface. A key difference
to previous Blender/Radiance integrations was that LiVi
could then post-process or import numerical results gen-
erated by Radiance back into Blender for visualisation.
This was achieved by specifying Blender mesh geometry
as sensing surfaces and then colouring the faces of that
geometry with the Python API according to the results
generated. Figure 1 shows an early LiVi simulation of
instantaneous solar irradiation within a city scene. The
legend is drawn over Blender’s 3D view by LiVi via the
Python API.
The advantage of including post-processing within the

scope of the addon was that results could be navigated and
visualised in-situ very quickly to encourage fast, perfor-
mance based architectural design iteration.

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 3 of 13

Fig. 1 Early VI-Suite Lighting Visualiser (LiVi) simulation

In 2013 development began on the Energy Visualiser
(EnVi) a standalone Blender addon that would act a a
pre/post-processor for EnergyPlus; a free and open source
application for building lighting, energy and ventilation
performance analysis [11]. EnergyPlus also comes with no
native geometry creation or specification interface and
uses text based descriptions of mesh geometry to define
building form, again making Blender a viable frontend
application.
Whilst EnVi was still at prototype stage Blender intro-

duced Python scriptable nodes. Nodes in Blender were
traditionally used to apply a sequence of filters to an image
but version 2.67 introduced the ability to create custom
nodes via the Python API.
A nodal interface can provide a more flexible and intu-

itive user experience by allowing the user to construct
their own task specific interface, especially if the activ-
ity undertaken can be broken down into discrete stages.
These scriptable nodes therefore presented the opportu-
nity to combine LiVi with EnVi, along with a number
of other contextual analysis tools, into one node based
interface called the VI-Suite. A sabbatical award from
the University of Brighton in 2014 enabled the release of
version 0.1, and at the time of writing version 0.4.12 of
the VI-Suite is publicly available. Figure 2 shows a typ-
ical current Blender and VI-Suite window configuration
showing the 3D view, where geometry is edited; the node
editor, where VI-Suite simulations are constructed; the
VI-Suite display panel, where visualisations are controlled;
the VI-Suite material panel, where material characteristics
are defined; tabular and graph OpenGL overlay elements,
where result data can be visualised. Figure 3 shows a
typical node set-up within Blender’s node editor for a
LiVi lighting simulation with location, geometry, context
and simulation nodes representing location specification,
geometry export, sky export and simulation stages.

Nodes provide the majority of the VI-Suite UI, encom-
pass much of its functionality and are, in terms of Python
code, objects i.e. instances of a class. These node objects
have properties (integer, string, menus etc) associated
with them which can be exposed within the node using
Blender’s standard interface elements. The nodes also
contain functions, or methods, to draw and update the
node. The nodes can also display buttons which, when
pressed, run operators or Blender specific functions.
These operators in turn run general functions that, for
example, initiate a Radiance simulation or embed simula-
tion results within the Blender mesh for visualisation. A
more detailed explanation of the input elements of specific
nodes is given in the next section.
Using Python objects in the form of Blender nodes

has led to a modular, object-orientated code base that
can be relatively easily extended to, for example, import
geospatial file formats. Users have already contributed
nodes for window shading analysis in EnVi and further
contributions are welcome.
As the close integration of the VI-Suite with Blender

offers extensive possibilities for advanced results visuali-
sation, recent releases of the VI-Suite have concentrated
on this aspect. Using the Python API to draw OpenGL
graphics over the main Blender window, the VI-Suite can
now display per-point numerics, scalable legends, scatter
graphs and tables etc. within Blender’s 3D view (Fig. 2). In
addition, legend values, scaling and colouration can all be
controlled by the user.

VI-Suite capabilities
As the VI-Suite takes the approach that Blender mesh
geometry forms the basis for the specification of calcula-
tion and visualisation points, any geometry data imported
into Blender can be quickly turned into a sensing surface
by associating a sensing material to some or all of the faces

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 4 of 13

Fig. 2 Blender interface with VI-Suite elements

Fig. 3 Example LiVi node set-up within the VI-Suite

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 5 of 13

of the mesh. Simple ground planes, 3D topographical data
and even building geometry can therefore all form the
basis of the calculation/visualisation points.
By using Blender mesh geometry as sensing surfaces the

user also has complete control over the spatial density of
the calculation points. Mesh density can be increased or
decreased locally, using Blender’s advanced mesh editing
tools, to achieve the desired results resolution whilst min-
imising calculation time. This level of calculation point
control can also be valuable in geospatial applications
where simulations over a wide area may be desired that
would require many calculation points at high spatial res-
olution. Instead the user can begin with a coarse sensor
mesh and refine locally where greater results resolution is
required.
Although originally intended for the performance anal-

ysis of buildings and their immediate context, this ability
to specify any mesh based geometric surface as a sensing
surface does offer a number of possibilities for geospa-
tial analysis and these possibilities have been augmented
with the ability to directly import geospatial data. These
features include:

• Import of Esri grid ascii data and conversion to
Blender mesh format

• Import of other GIS geometry data in mesh format
(e.g. STL, OBJ, 3DS).

• Creation of static and parametric terrain and urban
shadow/sky view factor maps. These analyses use
Blender’s in-built BVH tree and ray casting
algorithms to minimise simulation time.

• Creation of static and parametric urban scale
radiation/lighting maps using Radiance.

• Production of bitmap images/animations of results.
• Export of calculated metrics in CSV format.

Implementation
Shadow & sky view factor mapping
Two of the types of geospatially relevant analyses that
the VI-Suite can conduct are shadow and sky view fac-
tor (SVF) mapping, and both are calculated in a similar
manner.
A shadow map defines the proportion of the simulation

period that a point is exposed to direct sunshine assuming
that the sky is clear at all times. This can be useful for agri-
cultural or ground based solar power applications and, if
building geometry is defining the sensor points, a simple
analysis for Building Integrated Photovoltaic applications
and building overshadowing.
A Sky View Factor (SVF) map rather simply defines

the proportion of the sky hemisphere that can be seen
from a point i.e. not occluded by buildings and other
urban features, and is therefore not site location or
time dependent [12–14]. This type of analysis is often

conducted on or above the ground plane within an urban
context where buildings obscure a potion of the sky, and
is useful for urban sky views and street canyon enclosure
assessment.
Both these analyses may require a large number of com-

putations when conducted on large geospatial datasets,
especially if the dataset is defining the sensing geometry
as in Fig. 4. As in that example, if a large terrain model is
defining the sensing geometry with potentially millions of
calculation points, and thousands of time steps in a year,
shadow map analyses may require billions of shadowing
calculations. This is where the use of 3D design software,
in this case Blender, can be advantageous as it provides
two built-in capabilities via the Python API, often found
in such software, that allows the potentially large number
of calculation points generated by geospatial data to be
simulated relatively quickly: Bounding Volume Hierarchy
(BVH) tree creation and ray casting.
BVH trees can greatly speed up certain calculations

the result of which are the positions of spatial intersec-
tions e,g. collision detection. They are a generated set of
simplified, hierarchical bounding volumes encompassing
the detailed mesh geometry within the scene. Intersec-
tion calculations are initially done with these simplified
bounding volumes and only passed on to the detailed
geometry if a bounding volume encompasses the intersec-
tion point. The use of BVH trees does not compromise the
accuracy of the eventual intersection calculation. The VI-
Suite automatically converts all relevant shading geometry
within the scene into BVH tree representations, using an
in-built Blender function, ready for ray casting.
Ray casting calculates the intersection point of a ray

vector and a geometric surface representation, in this
case encompassed within a bounding volume. For shadow
mapping, rays are cast at each mesh sensor point from
the direction of the solar position for each time step of
the simulation. For sky view factor rays are cast from
each patch of the subdivided sky hemisphere (Fig. 5). If
the ray intersects with the BVH tree representation of
the non-sensing scene geometry the point is considered
to be shadowed at that simulation time step, or the sky
patch obscured. The final shadow/sky view status of each
geometric sensor point is then stored within the point
entity itself using Blender’s custom data layers via the
Python API.
The shadow mapping analysis is conducted with the ‘VI

Shadow Map’ node, with a ‘VI Location’ node to provide
location data in terms of latitude and longitude. The node
setup for a shadowmap calculation is shown in Fig. 6. The
shadow study node object contains a number of properties
to define the simulation parameters. These properties are:

• An ‘Ignore sensor’ boolean property to define if the
sensor geometry can self-shade.

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 6 of 13

Fig. 4 Annual shadow mapping results on a DTM

• A menu property to define if a static or
animated/parametric simulation is to be conducted.

• Integer properties that define the start and end day of
the simulation.

• Integer properties that define the hour range of each
simulated day. This could be used to conduct a
simulation only for the mornings or ‘office’ hours.

• An integer property to define the number of shadow
calculations per hour. A larger number increases
result resolution at the price of greater simulation
time.

• A menu property to define if the faces or vertices of
the sensing geometry define the sensor positions.

• A float property to define the offset of the actual
calculation position from the sensing geometry.

• An operator button to initiate the simulation and
store the results within the sensing mesh.

Sky view factor is calculated with the ‘VI SVF’ node
(Fig. 7) which, as no location data is required, is a
stand-alone node. The node properties are similar to the
shadow map node except that the time based options are
not required. One new option, ‘Sky patches’, defines the

subdivision of the sky hemisphere to generate the vector
directions for the ray casting calculation. The sky hemi-
sphere can be divided according to the Tregenza (145
patches), Reinhart 577 (577 patches) and Reinhart 2305
(2305 patches) schemas commonly used in daylighting
analysis [15]. Figure 5 shows a graphical representation
of the three subdivision schemas. The greater the sub-
divisions the greater the result accuracy at the cost of
increased simulation time.
Once the simulation has completed the results can be

exported to CSV formatted text file or visualised within
Blender. The exported CSV file contains the point loca-
tions and results for each mesh sensing object and can
be used to import the results data back into geospa-
tial or other visualisation software. Visualisation within
Blender copies the sensing meshes and colours the copies
according to the results stored within the sensing points.
Colour scale, legend scale, per point numeric display can
then be controlled with the options in ‘VI-Suite Dis-
play’ panel. Results can be rendered out to bitmap image.
Figure 4 shows a Digital Terrain Map (DTM) of the south
coast of the UK overlaid with an annual shadow map-
ping results plane consisting of 12 million sensor points at

Fig. 5 Tregenza, Reinhart 577 and Reinhart 2305 sky division schemas

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 7 of 13

Fig. 6 Shadow map node set-up

5m resolution. The DTM used is a 20×15 km dataset by
Ordnance Survey of Great Britain, obtained from Edina
Digimaps [16] by importing directly the Esri grid file.
This rather extreme example required 105 billion shadow
calculations (12 million data points x 8760 h in a year),
which, by employing BVH trees and ray casting, took 14 h
on a single 3.1 GHz cpu. However, as first class Blender
mesh geometry is used as the sensor points approximately
1kB of available ram is required for each sensor point
to run the simulation efficiently (12GB of ram in this
particular case).

Fig. 7 Sky view factor node

Irradiance mapping
In addition to irradiance and illuminance calculations for
discrete moments in time the VI-Suite can also create
irradiance maps for periods of up to a year. Irradiance
maps define the cumulative solar radiation power avail-
able at a point over the simulation period. The units are
kWh/m2 for total radiation and luxhours for visible radia-
tion. A kWh/m2 calculation can be useful for quantifying
the solar potential of building surfaces for installing solar
panels [17–19], to determine whether a surface is suffi-
ciently insolated to invest in a photovoltaic panel and to
locate the most favourable parts of a building to place
one as the amount of power produced by a panel can be
estimated by multiplying the kWh/m2 value by a panel’s
rated efficiency. Several research papers dealing with
energy demand estimations benefited from such analyses
[20–22]. Such simulations may also be used in automatic
property valuation considering that solar radiation influ-
ences flat prices [23]. Other applications involving the
computation of the solar exposure are urban planning [24,
25], thermal comfort [26], and detecting buildings that
may be subject to overheating [27].
Irradiance mapping, although producing similar results

to the shadow mapping calculations detailed above, is
achieved with the LiVi component of the VI-Suite and
uses Radiance in the background to calculate results. Irra-
diance mapping, in a similar way to shadow mapping, can
be conducted on terrain meshes and on building geome-
try imported via Esri grid file or via the import of standard
mesh formats.
The node setup shown earlier in Fig. 3 is an example

of an irradiance mapping pipeline. The nodes each repre-
sent a step in the conversion to Radiance format and the
control of the Radiance simulation. These steps are:

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 8 of 13

Geometry conversion The Blender mesh geometry
must be converted to Radiance format and this is achieved
with the operator button within the LiVi Geometry node.
Not only does the spatial geometry need to be exported,
but as the distribution of light or radiation within a scene
can be influenced by material finish, the materials associ-
ated with the Blendermeshes have to be converted to valid
Radiance material definitions. Radiance material defini-
tions are defined in the VI Material tab in the Blender
interface. A node boolean property allows the user to
specify whether a static or parametric analysis is to be
conducted. For the latter a Blender animation of the para-
metric changes should be set up in advance. Any geometry
within the scene being used to define the sensor points are
also exported at this stage and the node allows the user,
via a menu property, to select whether the vertices or faces
of the relevant mesh geometry are the definer of these
positions.

Context conversion The LiVi Context node defines the
type of lighting analysis to be conducted, and the type of
sky for the simulation; the latter again being exported to
a valid Radiance description. For an irradiance map the
menu properties in the LiVi Context node should spec-
ify a Climate Based Daylight Modelling (CBDM) analysis
type and an ‘Exposure’ metric type. This type of analy-
sis will require an EnergyPlus formatted weather (EPW)
file selected in the VI Location node to provide the hourly
beam and diffuse solar radiation data for the chosen loca-
tion. The simulation period can also be set here with
integer properties. During context conversion a cumula-
tive high dynamic range (HDR) image of the sky bright-
ness (including beam and diffuse elements) for the chosen
period is produced for 145 discrete Tregenza (Fig. 5)
patches of the sky (Fig. 8). As this HDR image contains
accurate cumulative brightness data according to the EPW
file, it can be used as a source of radiance when wrapped
around the simulation scene. This approach avoids hav-
ing to do a calculation for each hour step and makes the
calculation of cumulative irradiance for a large number of

Fig. 8 An example of a cumulative sky brightness HDR panorama for
Paris, France

sensor points relatively quick (an irradiance map for the
12 million sensor points on the ground plane in Fig. 4 was
generated in 13.5 h on a dual core cpu).

Simulation initiation The LiVi Simulation node has a
menu operator to specify the accuracy of the simulation
and initiates the simulation itself. In a similar manner
to the shadow study analysis, the results, which are in
this case cumulative illuminance (luxhours) and cumula-
tive irradiance (kWh/m2), are calculated for each specified
sensor point and stored back within the data point. Once
the simulation is completed results can once again either
be exported to CSV file or visualised and rendered within
Blender.

Results and discussion
Overview
In this section we demonstrate the use of VI-Suite for
environmental analyses using geospatial data. It is relevant
to note that the presented workflow is entirely supported
by free and open software and datasets.
Of the three geospatially relevant analyses that the

VI-Suite can conduct: shadow mapping, sky view factor
mapping and irradiance mapping the focus here is on
solar irradiance analysis of buildings and ground shadow
analysis. These two spatial analyses are among the most
applicable ones in GIS because they are used in a wide
range of use cases [28, 29], although they are also often
used in conjunction with other analyses such as sky view
factor [13, 30]. An overview of the example cases is given
below.
In GIS analysing the exposure to sun may be conducted

at both coarse (e.g. terrain) and detailed (e.g. building)
scales [31–33], and the ability to move between differ-
ent spatial resolutions with the VI-Suite are demonstrated
here.

Dataset
In the analyses presented here a 3D city model is used
to demonstrate a ground level shadow calculation and
building level irradiance calculation.
The 3D city model is a dataset by the City of The

Hague in the Netherlands5. The dataset is provided in
the City Geography Markup Language (CityGML) [34],
and it was converted [35] to the common OBJ format
with level of detail (LOD) 2 that included the roof profiles
and with surfaces thematically differentiated [36] i.e. wall
and roof geometry is exported as separate OBJ objects.
Although not used in the shadow map example below,
the convenience of this mesh separation is demonstrated
in the irradiance mapping example. While the conversion
of CityGML to computer graphics formats such as OBJ
often entails data loss (e.g. attributes are not preserved),
it does not affect the spatial analyses in question since the

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 9 of 13

required data (i.e. geometry and semantic differentiation
of surfaces) are retained.
The city model used here consists of around 50,000 pla-

nar faces, and covers an area of approximately 1 sq km.
As each Blender mesh face requires approximately 1 kB of
ram, this model can be imported/simulated with the VI-
Suite using approximately 50 MB of ram. Much larger city
models can therefore be simulated. As a rough approxi-
mation a city model covering 100 sq km could be analysed
with 5 GB of ram.

Shadowmap
The shadow mapping was carried out using a ground
plane as a sensing surface. Figure 9 presents the results of
this shadow study in the urban environment for the whole
month of June at 4 calculation steps per hour (as spec-
ified within the VI Shadow Map node) with a relatively
coarse ground plane sub-division. Analyses such as these
allow for a quick appraisal of the distribution of sunlight
penetration into a city.
If a greater spatial result resolution is required the sens-

ing geometry can be locally sub-divided using Blender’s
mesh editing tools. This local refinement can be useful
for assessing in more detail the impact of a building, or
proposed building, on the sunlight penetration in specific
parts of the city. Figure 10 shows local mesh and result
refinement around the block of buildings in the middle
of the image. At this resolution the changes in shadow-
ing from making one of the central buildings taller, or by
introducing shading elements between buildings, could be
seen in detail.

Irradiance
The 3D city model was also used to provide calculation
points for the simulation of irradiance levels. The first
example takes advantage of the thematic differentiation
provided by CityGML. The CityGML dataset was con-
verted to OBJ with the CityGML2OBJs Python script,
which preserves the semantic description of surfaces by
creating multiple OBJ datasets [35]. Blender understands
this differentiation thanks to which a material specifically
for the roofs may be created. This material can then be
designated as a sensing material within the VI-Suite inter-
face and a coarse irradiance map calculated at roof level
(Fig. 11). Maps such as these can quickly identify the
regions of the city’s roof-scape that have the potential to
provide a certain amount of solar electrical power to hit,
for example, economic criteria.
Irradiance levels can also be calculated on refined

mesh geometry on a single, or part of a single, build-
ing. Figure 12 shows annual irradiance results on the
facade panels of a selected building with the correspond-
ing legend. Other buildings are wire-framed for the results
visualisation.
As well as a coloured visualisation of the results, the

VI-Suite offers per-point numerical display over selected
sensor mesh elements (Fig. 13). Display is confined to
only those sensor elements selected within the underlying
Blender mesh, which offers fine grained control over the
numerical display. Figure 13 for example shows numerical
display with only the mesh faces under one façade section
selected. An analysis like this may be useful if, for example,
it has been determined that a solar panel must receive at

Fig. 9 Shadow analysis performed with the VI-Suite

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 10 of 13

Fig. 10 Shadow analysis with local sensing mesh refinement

least 800kWh/m2 to be an economical replacement for the
conventional facade cladding. In this example this would
be the case for most of the facade panels in each of the top
10 rows of facade panels for the selected facade section.

Conclusions
The VI-Suite deeply embeds the ability to analyse the per-
formance of architectural and geospatial forms within the
3D content creation suite Blender. This approach attempts

to bridge the gap between analysis and digital design soft-
ware. Using Blender mesh geometry (faces or vertices) as
the specifier of calculation points within the scene means
calculation points can be manipulated with the same level
of flexibility, using the same tools, as conventional Blender
mesh geometry. This makes it easy to move between
scales; calculating over coarse grids for large area analyses,
finer grids for detailed architectural studies or a combina-
tion of the two. Using mesh geometry as a repository and

Fig. 11 Annual irradiance analysis of the Hague using the nearest available EPW climate file (Amsterdam). Results of analyses such as this one may
be used for analysing the solar exposure of rooftops for placement of solar panels, among other applications

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 11 of 13

Fig. 12 Visualisation of an annual irradiance analysis for a building facade showing legend and tabular overlays

visualiser for the calculated data also offers the possibility
to visualise results with the same flexibility and control as
with conventional Blender meshes offering transparency,
wireframes, animations etc and even allows for results
planes to be exported from Blender as mesh geometry, or
interchanged between Blender files. This latter capability
would, for example, allow multiple result sets to be visu-
alised together for comparative purposes within a single
Blender scene.

Although originally geared towards architectural stud-
ies, the use of mesh geometry to specify calculations and
visualisation points means that any valid mesh geome-
try can be studied. As geospatial data, such as Esri grid
and CityGML files, can be converted (including by the
VI-Suite itself) to Blender meshes, the VI-Suite is able
to conduct certain types of analysis on these geospatial
datasets. This brings geospatial analysis into the computer
graphics software realm, leveraging the capabilities of

Fig. 13 Annual irradiance values on the façade of a building with numerical display

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 12 of 13

Blender, such as BVH tree generation and ray casting, for
GIS. This may be an end in itself, with the ultimate output
being images and animations generated by Blender, but
also enables further analysis with conventional geospatial
software by exporting results to CSV file.
This original focus on generally smaller architectural

studies does however lead to some disadvantages of using
the VI-Suite for geospatial analysis. One is that the VI-
Suite does not geolocate any data beyond the specification
of a single latitude and longitude by the user. A shadow
map simulation of a very large area may therefore need
to be split up into smaller simulations, each with its own
latitude and longitude, to achieve the desired simula-
tion accuracy. Also, the use of first class Blender mesh
geometry as a sensor/result entity can lead to high com-
puter memory requirements; approximately 1kB of ram
is required per sensor point. This is rarely an issue when
dealing with result resolutions at an architectural scale
but may be an issue when dealing with very large geospa-
tial datasets. Finally, although Blender can import bitmap
image files, geometry in common mesh formats and Esri
grid ascii files, other geospatial specific file formats are not
currently supported.
As a demonstration, shadow and irradiance analyses on

a 3D city model of the Hague, at the urban and building
scales, has been conducted. The former case, conducted
on a ground plane, can quickly identify the solar expo-
sure and lighting characteristics of a city. The latter can
quickly establish the feasibility and position of optimal
solar energy installations.
For future work the implementation of additional anal-

yses such as computational fluid dynamics (CFD) is fore-
seen, but the authors would also like to encourage sugges-
tions, or indeed code contributions, from the geospatial
community to enhance the VI-Suite’s current GIS capa-
bilities, for example to allow the import of additional
geospatial data formats such as GeoTIFF and shapefiles.

Availability and requirements
The VI-Suite source code can be viewed and checked out
from a Github repository6, and as the VI-Suite is written
in Python the source code is also available within each
release. Zip files containing Blender, VI-Suite, Radiance
and EnergyPlus for Windows and macOS systems can be
found at the main project website7 along with a com-
prehensive manual [1]. The VI-Suite addon with just the
Radiance and EnergyPlus executables is also available for
Linux 64bit systems. At least OpenGL 2.1 is required. The
licence is GPL version 2.

Endnotes
1 http://www.blender.org
2 https://www.python.org/
3 https://github.com/domlysz/BlenderGIS

4 https://github.com/pisuke/brad
5 https://data.overheid.nl/data/dataset/3d-model-den-

haag
6 https://github.com/rgsouthall/vi-suite04
7 http://arts.brighton.ac.uk/projects/vi-suite/

downloads

Acknowledgements
The creation of the VI-Suite would not be possible without the work of the
Blender Foundation, and many thanks go to them for creating and
distributing Blender. Thanks also go to:

• The Lawrence Berkley National Laboratory for creating Radiance.
• The US Department of Energy for creating EnergyPlus
• The National Renewable Energy Laboratory for providing Radiance and

EnergyPlus binaries
• The Matplotlib team, and John Hunter in particular, for creating and

releasing matplotlib.
• The Kivy Organization for releasing the UI framework Kivy.

We thank the anonymous reviewers and editor for their helpful comments on
the paper.

Funding
The first author would like to thank the University of Brighton Sabbatical
scheme for funding early development of the VI-Suite. The second author was
supported in the frame of the research programme Innovational Research
Incentives Scheme with project number 11300, which is financed by the
Netherlands Organisation for Scientific Research (NWO).

Authors’ contributions
RS developed the software, and wrote most of the paper. FB generated the
use cases on the 3D city model and contributed to the writing. Both authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Architecture & Design, University of Brighton, Mithras House,
Brighton BN2 4AT, UK. 23D Geoinformation, Delft University of Technology,
Julianalaan 134, 2628BL Delft, Netherlands. 3Department of Architecture,
National University of Singapore, 4 Architecture Drive, 117566 Singapore,
Singapore.

Received: 7 July 2017 Accepted: 24 August 2017

References
1. Southall R. Simulations and Visualisations with the VI-Suite. School of Art,

Design & Media, University of Brighton. 2017. School of Art, Design &
Media, University of Brighton. http://arts.brighton.ac.uk/projects/vi-suite/
documentation.

2. Kent BR. 3D Scientific Visualization with Blender. San Rafael: Morgan &
Claypool; 2015.

3. Zoppè M, Porozov Y, Andrei R, Cianchetta S, Zini MF, Loni T, Caudai C,
Callieri M. Using Blender for molecular animation and scientific
representation. In: Blender Conference. Amsterdam; 2008.

4. Pyka M, Hertog M, Fernandez R, Hauke S, Heider D, Dannlowski U,
Konrad C. fMRI data visualization with BrainBlend and Blender.
Neuroinformatics. 2010;8(1):21–31.

5. Kent BR. Visualizing astronomical data with Blender. Publ Astron Soc Pac.
2013;125(928):731.

http://www.blender.org
https://www.python.org/
https://github.com/domlysz/BlenderGIS
https://github.com/pisuke/brad
https://data.overheid.nl/data/dataset/3d-model-den-haag
https://data.overheid.nl/data/dataset/3d-model-den-haag
https://github.com/rgsouthall/vi-suite04
http://arts.brighton.ac.uk/projects/vi-suite/downloads
http://arts.brighton.ac.uk/projects/vi-suite/downloads
http://arts.brighton.ac.uk/projects/vi-suite/documentation
http://arts.brighton.ac.uk/projects/vi-suite/documentation

Southall and Biljecki Open Geospatial Data, Software and Standards (2017) 2:23 Page 13 of 13

6. Scianna A. Building 3D GIS data models using open source software. Appl
Geomatics. 2013;5(2):119–32.

7. Tabrizian P, Petrasova A, Harmon B, Petras V, Mitasova H,
Meentemeyer R. Immersive tangible geospatial modeling. In: Proceedings
of the 24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. San Francisco: ACM; 2016. p. 88.

8. Ilba M. An Analysis and 3D Visualization of Shading of Urban Spatial
Objects with the Use of the Phython Programming Language in the
Blender Application. Geomatics Environ Eng. 2015;9:35–44.

9. Larson GW, Shakespeare R. Rendering with Radiance: the Art and Science
of Lighting Visualization. Seattle: Booksurge Llc; 2004.

10. Compagnon R. The RADIANCE simulation software in the architecture
teaching context. In: Florence International Conference for Teachers of
Architecture vol. 2. Firenze; 1997.

11. Crawley DB, Pedersen CO, Lawrie LK, Winkelmann FC. EnergyPlus:
energy simulation program. ASHRAE J. 2000;42(4):49.

12. Svensson MK. Sky view factor analysis — implications for urban air
temperature differences. Meteorol Appl. 2004;11(3):201–11.
doi:10.1017/S1350482704001288.

13. Besuievsky G, Beckers B, Patow G. Skyline-based geometric simplification
for urban solar analysis. Graph Model. 2017. In press.

14. Yi YK, Kim H. Universal Visible Sky Factor: A method for calculating the
three-dimensional visible sky ratio. Build Environ. 2017;123:390–403.

15. Ward G, Mistrick R, Lee ES, McNeil A, Jonsson J. Simulating the daylight
performance of complex fenestration systems using bidirectional
scattering distribution functions within radiance. Leukos. 2011;7(4):
241–61.

16. Morris B, Medyckyj-Scott D, Burnhill P. EDINA Digimap: new
developments in the Internet Mapping and Data Service for the UK
Higher Education community. Liber Q. 2000;10(4):445–53.

17. Li Y, Liu C. Estimating solar energy potentials on pitched roofs. Energy
Build. 2017;139:101–7.

18. Lukač N, Seme S, Dežan K, Žalik B, Štumberger G. Economic and
environmental assessment of rooftops regarding suitability for
photovoltaic systems installation based on remote sensing data. Energy.
2016;107:854–65.

19. Li Z, Zhang Z, Davey K. Estimating Geographical PV Potential Using
LiDAR Data for Buildings in Downtown San Francisco. Trans GIS.
2015;19(6):930–63.

20. Agugiaro G. Energy planning tools and CityGML-based 3D virtual city
models: experiences from Trento (Italy). Appl Geomatics. 2016;
8(1):41–56.

21. Fonseca JA, Nguyen TA, Schlueter A, Marechal F. City Energy Analyst
(CEA): Integrated framework for analysis and optimization of building
energy systems in neighborhoods and city districts. Energy Build.
2016;113:202–26.

22. Bahu JM, Koch A, Kremers E, Murshed SM. Towards a 3D Spatial Urban
Energy Modelling Approach. Int J 3-D Inf Model. 2015;3(3):1–16.

23. Helbich M, Jochem A, Mücke W, Höfle B. Boosting the predictive
accuracy of urban hedonic house price models through airborne laser
scanning. Comput Environ Urban Syst. 2013;39:81–92.

24. Herbert G, Chen X. A comparison of usefulness of 2D and 3D
representations of urban planning. Cartogr Geogr Inf Sci. 2015;42(1):
22–32.

25. Lange E, Hehl-Lange S. Combining a participatory planning approach
with a virtual landscape model for the siting of wind turbines. J Environ
Plan Manag. 2005;48(6):833–52.

26. Hwang RL, Lin TP, Matzarakis A. Seasonal effects of urban street shading
on long-term outdoor thermal comfort. Build Environ. 2011;46(4):
863–70.

27. Nichol J, Wong MS. Modeling urban environmental quality in a tropical
city. Landsc Urban Plan. 2005;73(1):49–58.

28. Biljecki F, Stoter J, Ledoux H, Zlatanova S, Çöltekin A. Applications of 3D
City Models: State of the Art Review. ISPRS Int J Geo-Information.
2015;4(4):2842–889.

29. Liang J, Gong J, Zhou J, Zhou J, Ibrahim AN, Li M, Li M. An open-source
3D solar radiation model integrated with a 3D Geographic Information
System. Environ Model Softw. 2015;64:94–101.

30. Liang J, Gong J. A Sparse Voxel Octree-Based Framework for Computing
Solar Radiation Using 3D City Models. ISPRS Int J Geo-Information.
2017;6(4):106.

31. Kumar L, Skidmore AK, Knowles E. Modelling topographic variation in
solar radiation in a GIS environment. Int J Geogr Inf Sci. 1997;11(5):475–97.

32. Biljecki F, Heuvelink GBM, Ledoux H, Stoter J. Propagation of positional
error in 3D GIS: estimation of the solar irradiation of building roofs. Int J
Geogr Inf Sci. 2015;29(12):2269–294.

33. Hofierka J, Zlocha M. A New 3-D Solar Radiation Model for 3-D City
Models. Trans GIS. 2012;16(5):681–90.

34. Gröger G, Plümer L. CityGML – Interoperable semantic 3D city models.
ISPRS J Photogramm Remote Sens. 2012;71:12–33.

35. Biljecki F, Arroyo Ohori K. Automatic Semantic-preserving Conversion
Between OBJ and CityGML. In: Eurographics Workshop on Urban Data
Modelling and Visualisation 2015. Delft: Eurographics; 2015. p. 25–30.

36. Biljecki F, Ledoux H, Stoter J. An improved LOD specification for 3D
building models. Comput Environ Urban Syst. 2016;59:25–37.

http://dx.doi.org/10.1017/S1350482704001288

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Introduction
	Background
	Blender
	Mesh based modelling
	Python API
	Animation System

	VI-Suite history
	VI-Suite capabilities

	Implementation
	Shadow & sky view factor mapping
	Irradiance mapping
	Geometry conversion
	Context conversion
	Simulation initiation

	Results and discussion
	Overview
	Dataset
	Shadow map
	Irradiance

	Conclusions
	Availability and requirements
	Acknowledgements
	Funding
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

