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Abstract

3Dcitymodels are characterised by the level of detail (LOD),which indicates their spatio-semantic
complexity. Modelling data in finer LODs results in visually appealingmodels and opens the door
for more applications, but that is at the expense of increased costs of acquisition, and larger stor-
age footprint. In this paper we investigate whether the improvement in the LOD of a 3D building
model bringsmore accurate shadow predictions. The result is that inmost cases the improvement
is negligible. Hence, the higher cost of acquiring 3D models in finer LODs is not always justified.
However, the exact performance is influenced by the architecture of a building. The paper also
describes challenges in experiments such as this one. For instance, defining error metrics may
not always be simple, and the big picture of errors should be considered, as the impact of errors
ultimately depends on the intended use case. For example, an error of a certain magnitude in es-
timating the shadow may not significantly affect visualisation purposes, but the same error may
considerably influence the estimation of the photovoltaic potential.

1 Introduction

Level of detail (LOD) is a fundamental concept in GIS and 3D city modelling: it indicates the
data set’s resolution, usability, and the degree of abstraction of reality (Biljecki et al., 2014b). The
concept is borrowed from computer graphics, where it is used to balance the computational com-
plexity and the visualisation quality (fidelity). The latter, i.e. how similar the object looks like to
the original one, can be assessed with error metrics such the deviation between the geometry of
the original model and the geometry of its simplified counterpart (Luebke et al., 2003).

Such rationale can be applied to geoinformation science, in order to analyse whether it is worth
to invest funds and computational resources in data set of a particular LOD. However, in 3D GIS,
models are often used beyond visualisation for several purposes which significantly differ from
each other—they have different behaviour, different requirements for LODs, and an outcome of
different nature. For instance, 3D city models are used to estimate the real estate net internal
area in m2 (Boeters et al., 2015), insolation of buildings in kWh/year (Biljecki et al., 2015a), and
noise in dB (Stoter et al., 2008), resulting in different kinds of errors, differently influenced by a
particular LOD.

The aim of this paper is to investigate the influence of the resolution of spatial data on the quality
of a particular spatial analysis: the estimation of shadows in an urban environment (Fig. 1). This
use case is frequent in 3D GIS, and it is used in several application domains, for instance to assess
the shadow impact of new buildings to their surroundings (Sec. 2).

For a number of LODs, we compute their errors when used for this purpose. However, conduct-
ing such analysis is burdened by difficulties, among others: (1) multi-LOD data sets are seldom
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Figure 1: Our research in a nutshell: the estimation of the shadow differs between the different
levels of detail, and the accuracy of the prediction seems to increase with each LOD.
However, this should be investigated numerically and it is not straightforward as it may
appear.

available hindering such studies (Biljecki et al., 2015b); (2) available multi-LOD data sets nor-
mally contain real-world acquisition errors, inhibiting the comparison between LODs, since it is
hard to isolate the error induced by the degree of abstraction from the error caused by the ac-
quisition; (3) the outcome of each spatial analysis may not be unambiguously quantifiable, so the
accuracy cannot be easily expressed (Biljecki et al., 2015c); and (4) from the implementation as-
pect, it is not always easy to automatically run a spatial operation for a large data set and extract
results in a format that is suitable for error analysis. Wemitigate these problems with an approach
supported by a procedural modelling engine to automatically construct CityGMLmodels inmul-
tiple LODs (Sec. 3). The results (Sec. 4) are relevant for practitioners because they can aid them
to decide whether it is worth to acquire buildings in finer LODs considering that they come with
an increased cost of acquisition and storage.

2 Related work and background

2.1 Influence of data granularity on spatial analysis

Studies on the influence of the scale, LOD, and resolution to the quality of a GIS operation are
focused on 2D and to raster representations. Hengl (2006) discusses the importance of consider-
ing the resolution of a raster, and underlines that in GIS projects the resolution is usually selected
without any scientific justification. Usery et al. (2004) determined the resolution effects on wa-
tershedmodelling by resampling input rasters, and concluded that the resolution has a significant
effect on the accuracy of the result. Booij (2005), Chaubey et al. (2005), Ling et al. (2008), and
Pogson and Smith (2015) performed similar analyses with similar results.

In 3D GIS such studies are rare. A possible reason is that 3D city models cannot be simply “re-
sampled” to easily obtain additional LODs for analysis.

Brasebin et al. (2012) tested the fitness for use of LOD1 and LOD2models of two French data sets
in the determination of the sky view factor (SVF).The result is that for 75%of the analysed samples
the improvement in accuracy is less than 2%. Besuievsky et al. (2014) carry out a similar study
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with SVF focusing on the windows of buildings, with a few variants of high-detailed architectural
models, and find a significant difference in the results.

Strzalka et al. (2011) investigate the use of 3D city models for forecasting energy demand, and
argue that the suitability of an LOD depends on the configuration of buildings (i.e. for an area
with predominantly flat roofs they suggest that an LOD1 suffices). However, experiments with
other LODs are not documented.

Kibria et al. (2009) survey the perceptual value of a few LODs in spatial planning. It turns out
that in some planning phases a finer LOD is actually undesirable.

2.2 The role of shadow in GIS

The estimation of shadows cast by buildings is a common topic in geoinformation science, and it
is important for a number of application domains, such as thermal comfort (Hwang et al., 2011;
Yezioro and Shaviv, 1994) and solar energy (Carneiro and Golay, 2009; Strzalka et al., 2012). This
use case may be related to the visibility operation which is used for diverse purposes (Bartie et al.,
2010; Peters et al., 2015). In this context, the estimation of shadow is a variation of the visibility
problem, with the particularity that the sun is practically an infinitely distant point resulting in
parallel rays, and that its position is variable.

Herbert and Chen (2015) underline that understanding shadow is crucial in urban planning, for
assessing the effect new buildings induce on existing ones. They perform a survey among urban
planners on the quality of the visualisation of the shadow based on different visual representations
(e.g. level of transparency, 2D vs. 3D), and also include a query about the suitability of the LOD.
However, only LOD1 was given as an option, and the participants were given the opportunity to
perceptually assess whether a 3D model of LOD1 is sufficient or not for such analysis.

Estimating shadows is important for determining solar envelopes, the subset of urban space with
a certain period of assured access to sunshine (Knowles, 2003). These are defined in terms of dis-
crete numbers of hours of sun, but they can also be defined in terms of solar irradiation (Morello
and Ratti, 2009). Solar envelopes are to a degree enshrined in local and state laws, where resi-
dents are protected with the right to solar access (e.g. the façade of houses must receive a certain
amount of hours of direct sunlight per day; see Den Haag (2011) and City of Mississauga (2012)
for exemplary regulations).

In urban planning, shadows are not analysed only for buildings, for instance, Lange and Hehl-
Lange (2005) study shadow casting from a proposed wind turbine, and Kumar et al. (1997) fore-
cast occlusion by terrain.

Accounting for shadows is commonwhen estimating the solar potential of buildings (Mardaljevic
and Rylatt, 2003; Carneiro and Golay, 2009; Tooke et al., 2011; Redweik et al., 2013; Eicker et al.,
2015; Nguyen and Pearce, 2012; Hofierka and Zlocha, 2012). Strzalka et al. (2012) develop a
method to determine the shadow projected on a roof surface in order to account for the reduced
yield of solar panels when estimating the feasibility of their installation. The method is designed
as a visibility problem between small triangular partitions of a surface and the sun at various
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timestamps. The centroid of each partition is tested for visibility to the sun, and if the sun’s ray
intersects any of the other surfaces, the partition is marked as shaded at that timestamp.

In a related research, Alam et al. (2013) note that while LOD1 block models are sufficient for
shading, higher LODs will inherently bring different results. However, this is not supported em-
pirically, and in this paper we bridge this gap.

Jochem et al. (2009) develop a method for estimating the insolation of roofs from point clouds,
taking into account shadows. While they deal with a single-LOD representation, they highlight
that roof overhangs and chimneys may play an important factor in the magnitude of the shadow.
This is important, because different LODs contain a different degree of detail, and in our research
we investigate their claim.

Shadowing plays an important role in the research of Helbich et al. (2013). Their premise is that
solar radiation is significantly capitalised in flat prices, and they consider the shadow effect in or-
der to improve the accuracy of a hedonic house pricemodel. They highlight that such simulations
should be conducted for different positions of the sun because of the considerable differences in
the results.

Finally, shadows are crucial in geo-visualisation to increase the quality of the visual communica-
tion (Appleton and Lovett, 2003).

2.3 The role of shadow in computer graphics

Shadows have a longstanding underpinning in computer graphics where they play a significant
role, as they enhance the realism of the scene and provide cues of spatial relations such as depth
(Williams, 1978; Woo et al., 1990). As a result, many algorithms have been developed to estimate
shadows and enhance realism, e.g. recursive ray tracing (Whitted, 1980). Furthermore, many
other computer graphics algorithms are closely related to this topic and frequently applied, e.g. the
determination of shaded portion of the roof when estimating the insolationmay be considered as
a ray-triangle intersection problem (Möller and Trumbore, 1997). We consider such algorithms
in the design of our experiment.

3 Methodology

Our methodology for estimating whether finer LODs bring improvements in the estimation of
shadows consists of the following stages:

1. Producing multi-LOD data: procedural generation of 3D city models (in CityGML).

2. Shadowing: rendering shadows from the models, and obtaining the shadow in a GIS form
for analysis. We consider the shadow a building casts on the ground.

3. Analysis: quantification of shadows, and measuring their error for each LOD.
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3.1 Source of data and considered LODs

In our approach, as a source of multi-LOD data we use procedurally modelled 3D models stored
in CityGML in multiple LODs. The models have been generated by Random3Dcity, an open-
source project of Biljecki et al. (2014a). The advantage of procedurally generated data is that they
are not burdened by acquisition errors, and that a large number of 3D models can be obtained
easily. Synthetic data have been previously diversely used in GIS (see, among others, Li et al.
(2000) and Burnicki et al. (2007)).

In principle, for our tests we use the traditional CityGML LODs (Gröger and Plümer, 2012).
However, the engine generates multi-LOD data based on a specification of Biljecki et al. (2016),
which refines these LODs, providing us with a larger number of representations to benchmark.
Weuse the following representations. LOD1.1 is a blockmodel obtainedwith extrusion to a single
height, LOD1.2 mandates smaller building parts (e.g. alcoves), and in LOD1.3 each building part
has its own height (a building does not have a single height as in 1.1/1.2). LOD2.0 is similar to 1.1,
with the addition of a simple roof structure. LOD2.1 adds smaller building parts, and LOD2.2
requires dormers and other roof superstructures of similar size. LOD2.3 demands the explicit
modelling of roof overhangs (such models are usually constructed in a combination of terrestrial
and airborne techniques). LOD3, the finest LOD, contains openings, roof overhangs, and smaller
façade details. Because this is the finest representation available, we consider it as ground truth.
Fig. 1 shows the following LODs: 1.1, 2.0, 2.1, and 3.

3.2 Sun position and location on Earth

Fig. 2 indicates a substantial difference in the behaviour of this spatial analysis when it comes
to the different relative position of the sun, caused by the different time of day and location on
Earth. In order to diversify our experiments, we consider two locations: Delft (Netherlands)
and Kuala Lumpur (Malaysia), and several timestamps during three characteristic days in 2015:
spring equinox (20Mar), summer solstice (21 Jun), winter solstice (22 Dec), and an arbitrary day:
27 April. This variety results in 81 different positions of the sun spread over daytime.

3.3 Computation of the shadow

We define the shadow SBi as the subset of the R2 (the ground, a horizontal plane in our case,
considered as the shadow receiver) that is occluded by a building Bi. When 3D city models are
utilised SBi

r denotes the shadow forecast with a data set of the representation (LOD) r. We com-
pute the shadow by projecting each polygon of a buildingmodelBi to the planewith a perspective
transformation (Blinn, 1988), according to the position of the sun. The union of the projected
polygons represents the shadow (Fig. 3), however, in the final step we adjust the polygon by re-
moving the footprint of Bi.
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Figure 2: Orthogonal top view composite of 9 shadows during a day (also known as the butterfly
shadow diagram; the outline of each shadow is drawn at hourly intervals) for an LOD3
model. It suggests the different degree of influence of LOD-related details on the shadow
depending on the date, time, and location. The building footprint is shown in black.

3.4 Selection of error metrics

The shadow cast on the ground is a polygon, thus the first measure that comes tomind to quantify
a shadow is its area a(SBi), and to compare it to the ground truth:

ϵr1 = a(SBi
r ) − a(SBi)

However, the deviation of the estimated value is inconclusive, as it appears in Fig. 4. There-
fore we introduce a new metric: the area of the symmetric difference (the union without the
intersection—see the light red area in the same figure):

ϵr2 = a(SBi
r ⊖ SBi) = a((SBi

r ∪ SBi) ∖ (SBi
r ∩ SBi))

In the GIS context this non-negative metric appertains to commission and omission errors, and
to false positives and false negatives: the union of the (i) subset that is estimated as shaded but in
reality it is not with the (ii) subset of the inverse case.

Because area is only one of the aspects that quantifies the extent of a shape, we compute the simi-
larity between the two shapes, which is a fundamental subject in computer science andGIS (Arkin
et al., 1991; Huttenlocher et al., 1993; Samal et al., 2004). There is a variety of methods and met-
rics to express the correspondence of two shapes in GIS (Ruiz et al., 2011; Goodchild andHunter,
1997), one of the prominent being the Hausdorff distance (Hausdorff, 1914). It has been widely
used in geoinformation science and 3D city modelling for diverse purposes (Min et al., 2007),
for instance, to assess the quality of GIS data (Girres and Touya, 2010), to assess the performance
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Figure 3: In our approach and our software implementation, the shadow on the ground is derived
as a unionised set (green) of projected polygons (in red; 51 polygons in this LOD3 case)
from the CityGML model, and accounting for the footprint.
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Figure 4: A case of two shadows from an LOD1 and an LOD3 (outlined in red and green, respec-
tively) that have the same area, showing that this error metric can be ambiguous. The
area of their symmetric difference (light red area) is 28.7 m2 (33.9% in relative terms),
and the Hausdorff distance in this case is 2.47 m.

of 3D generalisation (Cignoni et al., 1998), to aid map matching (Mustiere and Devogele, 2008),
to analyse movement trajectories (Liu et al., 2012), and to detect changes between two CityGML
models (Pédrinis et al., 2015).

The Hausdorff distance quantifies the mismatch between two geometries by identifying the point
on one shape that is the maximum distance from the other shape, therefore we define the third
shadow error metric as

ϵr3 =H(SBi
r , SBi) = max(h(SBi

r , SBi), h(SBi , SBi
r ))

where h(A,B) is a function that finds the point a ∈ A that is farthest from any point in B and
measures the distance from a to its nearest neighbour in B:

h(A,B) = maxa∈Aminb∈B ∣∣a − b∣∣

For the three error metrics we compute their root-mean-square error (RMSE). While the Haus-
dorff distance technically is not an error, it is not uncommon to compute its root-mean-square
value (Agarwal et al., 2010; Aspert et al., 2002).

For ϵ1 and ϵ2 we compute also the relative error (with respect to the true size of the shadow) to
put the derived numbers in perspective, which is not possible for ϵ3.
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3.5 Implementation

Available implementations do not fully support our methodology. For instance, several GIS tools
contain a module to forecast shadows at a specific timestamp, however, such functionality cannot
be exploited to our advantage: the shadow cannot be exported as a vector geometry nor most of
the tools can be automated. Furthermore, computer graphics software packages usually render a
shadow only in raster format. Therefore, we have implemented in Python a software prototype
that reads CityGML data, estimates their shadow for a particular location and timestamp, and
exports it as a polygon.

The sun positions are taken from PyEphem/XEphem1, the implementation of the ephemeris of
Bretagnon and Francou (1988). The shadow polygons operations (e.g. union and symmetric dif-
ference) are accomplished with Shapely2. The Hausdorff distance has been calculated with Post-
GIS3. For validating the correctness of shadows, we have first converted a CityGMLmodel and its
calculated polygon shadow to OBJ (with CityGML2OBJs; see Biljecki and Arroyo Ohori (2015)),
and imported it in Blender⁴, an open-source 3D computer graphics software. We have rendered
the setting for the same date, time, and location, thanks to the Blender add-on Sun Position⁵.
The shadows matched—this is evident in Fig. 3 where the rendered shaded area and the shadow
polygon are conflated from independent workflows.

Some of the shadow polygons were found to include long tiny spikes due to floating point errors,
which was inhibited with snap rounding (Hobby, 1999), and triangulation-based polygon repair
with the tool prepair (Ledoux et al., 2014).

In addition to calculating the error metrics, the computational cost was recorded (time and num-
ber of projected polygons), in order to suggest the load of each LOD.

4 Experiments

Wehave conducted experiments on 400 different buildings in 8 LODs (400×8×81= 259k shadows
in total). We present the errors in Fig. 5 and Tab. 1, and discuss them in Sec. 4.1.

4.1 Findings and discussion

The main findings of the experiments, as shown in Fig. 5 and Tab. 1, suggest that the relative
errors between most LODs are small, and the improvements of each LOD are not significant.
Furthermore, we point out other findings:

1https://pypi.python.org/pypi/pyephem/ and http://www.clearskyinstitute.com/xephem/
2https://pypi.python.org/pypi/Shapely
3http://postgis.net
⁴https://www.blender.org
⁵http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/3D_interaction/Sun_Position
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Figure 5: Errors and computation cost for each LOD. The metrics are normalised according to
the least favourable result.

LOD ϵ1 ϵ2 ϵ3
[m2] [%] [m2] [%] [m]

1.1 27.6 16.2 40.3 30.1 2.5
1.2 27.6 16.2 40.3 30.1 2.4
1.3 27.2 16.0 39.9 29.9 2.4
2.0 25.1 13.1 33.3 20.7 1.8
2.1 25.1 13.1 33.3 20.7 1.6
2.2 25.1 13.1 33.2 20.6 1.6
2.3 0.5 0.7 0.5 0.7 0.4

Table 1: Numerical results of the experiments. The error metrics are expressed as RMS values.
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• The improvement of LOD2 over LOD1 is almost negligible if considering the shadow as a
whole (only a 3% reduction in the area error).

• Overall, a finer LODdoes bring amore accurate result. However, that is not always the case
for each building. The improvement depends on the configuration of the analysed area. As
an example, Fig. 7 shows the distribution of ϵ2, ϵ3 errors for LOD 2.2. It shows that for
many buildings the error is negligible (e.g. in that LOD for 19% buildings there is no error
ϵ2; for LOD1.1 that value is at 10%). A more detailed inspection revealed that this applies
to buildings with flat roofs and no roof superstructures. If such buildings dominate in an
area to be analysed, the acquisition of finer LODs is probably not beneficial.

• Modelling dormers (LOD2.2 and 2.3) and other roof details has a negligible influence on
the quality of the prediction. This can be explained by the fact that dormers and chimneys
are not present in all buildings, and they make a difference only during a limited time of
the day (see the example in Fig. 2).

• Different data (types of buildings) and different settings (day, time, location) result in a
different behaviour and magnitude of the error, indicating that related experiments should
be diverse. Fig. 6 shows the variation of themagnitude of errors as a function of time during
one day.

• Fig. 6 also shows that while in absolute terms the ϵ1 and ϵ2 errors increase with the ac-
tual size of the shadow (close to sunrise and sunset), their relative counterparts decrease.
Furthermore, the behaviour of ϵ3 is different.

• LOD3 contains openings, which have no influence on the shadows (unless in the special
case of the sun rays passing through two windows, but this triviality was not taken into
account). The improvement over LOD2 is mostly caused by overhangs and other smaller
details, which on the other hand are probably not appreciated by the use cases that require
shadow estimation as an input. Furthermore, an LOD3 model entails a substantial cost of
acquisition and processing, which also has to be taken into account.

4.2 Evaluation of error metrics

The results of a seemingly simple analysis of determining the accuracy of a shadow estimation
show that errors can be approached from different perspectives. Fig. 7 shows the relation be-
tween our second and third error metrics, and the distribution for each. We have computed the
correlation between the errors to investigate their relation:

r∣ϵ1∣,ϵ2 = 0.967 r∣ϵ1∣,ϵ3 = 0.099 rϵ2,ϵ3 = 0.085

An interesting outcome is that there is a low degree of correlation between the area error metrics
and the Hausdorff distance. As visible in the scatter plot, there are several cases in which the
magnitude of the area error metrics (ϵ1 and ϵ2) are small (<0.1 m2), with a significant value of ϵ3.
This is most evident in the results of LOD2.3 where the first two error metrics are low, and the
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Figure 6: This combined plot shows the variable behaviour of the three error metrics with respect
to the position of the sun, and thus—the size of the shadow in the ground. The values
refer to LOD2.2.

Hausdorff distance is not negligible. Manual inspection revealed that these deviations are caused
by small LOD3-only details such as chimneys, which render small shadow area differences, but
since they protrude, ϵ3 is of noticeable value (e.g. see the chimney in Fig. 3).

We are ambivalent on the use of the Hausdorff distance for this purpose. Besides the advantage
that ϵ3 revealed some discrepancies that were not detected by the first two, it helped to put the
area errors in perspective, i.e. some large area errors were in fact caused by practically insignifi-
cant deviations (e.g. long and narrow strips of shadows). The disadvantage is that the Hausdorff
distance is not a stable error metric (see Fig. 6), and it is sensitive to computational and geometric
errors, e.g. caused by floating point errors and slivers.

For the first two error metrics we have computed also a relative counterpart, as the relation to the
total size of the shadow. This helped to understand the true magnitude of the error (e.g. that the
RMS of ϵ2 for LOD1.2 is 16% of the shadow size).

5 Conclusions

In this paper we have presented a study on the influence of the LOD of a 3D building model on
the quality on a 3DGIS spatial analysis. We benchmark the accuracy of 8 LODs for estimating the
shadow, and conclude that investing in a data set with a fine LOD is not always a good idea. For
instance, for 50% of buildingsmodelled in the coarse LOD1.1, the error (ϵ1) is within 10.2% of the
size of the shadow (percentile rank of a score), which practically does not have much influence
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Figure 7: Scatter plot showing the relation between the error metrics ϵ2, ϵ3 and their distribution
(for LOD2.2). The histogram on the right shows the distribution of ϵ3, while the one on
top shows the distribution of ϵ2. The latter shows that for a substantial share of samples
the error ϵ2 is insignificant.

13



for some use cases. For areas with a higher share of buildings with a flat roof this fact would be
even more substantiated.

Therefore, we refute the universally accepted assumption that finer LODs inherently bring more
accurate results in spatial analyses, and we argue that such analyses should be conducted to un-
derstand the impact of LOD on a specific use case.

Shadows do not have a unique metric, a fact that is also valid for many other spatial analyses. We
use three error metrics: area error (ϵ1), area of the symmetric difference (ϵ2), and the Hausdorff
distance (ϵ3), which show different observations. In our study, we determine the influence of the
resolution of the models on raw shadows as standalone concepts. While we find that the LOD
has a variable influence, these smaller improvements may not always benefit a use case. Actually,
it may damage it: while the improvement is negligible, the acquisition and processing costs could
be substantially higher. This depends on the weight a shadow has as an input in a use case. For
instance, in geo-visualisation a more accurate shadow probably does not make any difference,
while in some other such as predicting the yield of photovoltaic panels it might be tangible.

For future work we plan to investigate the significance and influence of the LOD on the outcome
of a use case that uses estimated shadows as input. For instance, the error in the prediction of
the duration a wall is shaded during the day, or the error in the estimation of the loss of the solar
potential in kWh/year due to shadows.

Furthermore, we plan to investigate the benchmarking of continuous LODs (Arroyo Ohori et al.,
2015).
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