
  
 

Open Geospatial Consortium 

Publication Date: 2016-08-01 

Approval Date: 2016-05-13 

Posted Date: 2016-03-09 

Reference number of this document: OGC 16-064r1 

Reference URL for this document: www.opengeospatial.net/doc/PER/citygml-quality-ie 

Category: Public Engineering Report 

Editor(s): Detlev Wagner, Hugo Ledoux 

 

 

 

OGC® CityGML Quality Interoperability Experiment 

 

 

 
Copyright © 2015 Open Geospatial Consortium. 

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/. 

Warning 

This document is not an OGC Standard. This document presents a discussion of 
technology issues considered in an initiative of the OGC Interoperability Program. 
This document does not represent an official position of the OGC. It is subject to 
change without notice and may not be referred to as an OGC Standard. However, 
the discussions in this document could very well lead to the definition of an OGC 
Standard.  

Document type:  OGC® Engineering Report 
Document subtype: NA 
Document stage:  Approved for public release 
Document language:  English 



OGC 16-064r1 

ii Copyright © 2015 Open Geospatial Consortium. 
 

License Agreement 

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, 
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property 
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, 
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to 
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual 
Property is furnished agrees to the terms of this Agreement. 

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above 
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR. 

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS 
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. 

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED 
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL 
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE 
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT 
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF 
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY 
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING 
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF 
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH 
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY. 

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all 
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as 
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user 
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual 
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, 
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license 
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or 
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party. 

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual 
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without 
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may 
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any 
LICENSOR standards or specifications. 

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United 
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this 
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable, 
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be 
construed to be a waiver of any rights or remedies available to it. 

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in 
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction 
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any 
regulations or registration procedures required by applicable law to make this license enforceable 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. iii 
 

Contents Page 

1	 Introduction ............................................................................................................. 1	
1.1	 Preface ................................................................................................................ 1	
1.2	 Scope .................................................................................................................. 1	
1.3	 Document contributor contact points ................................................................. 1	
1.4	 Revision history .................................................................................................. 2	
1.5	 Forward .............................................................................................................. 2	

2	 References ............................................................................................................... 3	

3	 Terms and definitions ............................................................................................. 3	

4	 Conventions ............................................................................................................ 4	
4.1	 Abbreviated terms .............................................................................................. 4	

5	 Report overview ...................................................................................................... 4	

6	 Validation of CityGML data ................................................................................... 5	
6.1	 Validation Process .............................................................................................. 7	
6.2	 Use cases and requirements for geometry .......................................................... 7	
6.3	 Validation framework ......................................................................................... 8	

7	 Prerequisites .......................................................................................................... 10	
7.1	 Schema Validation ........................................................................................... 10	
7.2	 Definition of a Solid according to ISO 19107 .................................................. 10	
7.3	 System for encoding of data quality requirements ........................................... 10	
7.4	 Specification of data quality requirements and requirement identifiers ........... 10	
7.5	 Error codes for geometric errors ....................................................................... 12	
7.6	 Description of geometry checks ....................................................................... 13	
7.7	 Implementation of error codes and references to existing error code 

systems in test tools .......................................................................................... 20	

8	 Unit tests ............................................................................................................... 22	
8.1	 TU Delft ........................................................................................................... 22	
8.2	 SIG3D ............................................................................................................... 23	
8.3	 HFT .................................................................................................................. 23	

9	 Experiments .......................................................................................................... 23	
9.1	 Experiment 1: Schema validation ..................................................................... 23	
9.2	 Experiment 2: Geometry validation ................................................................. 24	

9.2.1	 Modeling alternatives ................................................................................... 24	
9.2.2	 Validation results ......................................................................................... 27	
9.2.3	 Validation test conclusions .......................................................................... 33	

9.3	 Experiment 3: Semantic validation .................................................................. 34	
9.4	 Experiment 4: Validation of Conformance Requirements ............................... 36	

9.4.1	 Interpretation of conformance requirements ................................................ 39	
9.4.2	 Conformance Requirements – General findings .......................................... 41	



OGC 16-064r1 

iv Copyright © 2015 Open Geospatial Consortium. 
 

9.4.3	 Validation results ......................................................................................... 44	
9.4.4	 Process model .............................................................................................. 45	

10	 Use cases and requirements for geometry ............................................................ 47	

11	 Conclusion and Recommendations ....................................................................... 48	
11.1	 Recommendations for geometry and semantics ............................................... 48	
11.2	 General recommendations for conformance requirements ............................... 50	
11.3	 Recommendations for existing conformance requirements ............................. 50	
11.4	 Recommendations for future conformance requirements ................................ 51	
11.5	 Change requests ................................................................................................ 51	

12	 Next steps .............................................................................................................. 52	

13	 Resources .............................................................................................................. 54	

Annex A ............................................................................................................................ 55	
1  What is an ISO 19107 solid? ........................................................................................ 55	
2  Primitives in CityGML ................................................................................................. 58	
3  QIE = no cavities .......................................................................................................... 60	
4  Requirements for validity of the 3D primitives ............................................................ 60	

4.1  Rings & Polygons ................................................................................................ 60	
4.2  Planarity requirement ........................................................................................... 62	
4.3  Snapping tolerances for vertices .......................................................................... 63	
4.4  Orientation requirement ....................................................................................... 64	
4.5  Requirements for shells and solids ...................................................................... 64	
Comment on 4.5 (M.Wewetzer, D. Wagner) .............................................................. 66	

Annex B ............................................................................................................................ 68	

Karlsruhe Institut of Technology ...................................................................................... 68	

SIG 3D .............................................................................................................................. 73	

TU Delft ............................................................................................................................ 73	

University of Applied Sciences Stuttgart .......................................................................... 75	
 

Figures Page 
Figure 1: 	 Examples of individual unit-tests. Unit-tests can represent geometric, 

semantic, application specific or conformance requirement. .............................................. 8	
Figure 2 Chaining of unit-tests. ..................................................................................................... 9	
Figure 3: Architecture overview of a validation framework. Prototypically implemented in 

the virtualcity VALIDATOR. ................................................................................................ 9	
Figure 4: GE_R_SELF_INTERSECTION ................................................................................ 14	
Figure 5: GE_R_COLLAPSED_TO_LINE ............................................................................... 15	



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. v 
 

Figure 6: GE_P_INTERSECTION_RINGS .............................................................................. 15	
Figure 7: Tolerance for planarity ............................................................................................... 16	
Figure 8: GE_P_INTERIOR_DISCONNECTED ..................................................................... 16	
Figure 9: GE_P_HOLE_OUTSIDE ............................................................................................ 16	
Figure 10: GE_P_INNER_RINGS_NESTED ............................................................................ 17	
Figure 11: GE_P_ORIENTATION_RINGS_SAME ................................................................ 17	
Figure 12: GE_S_NOT_CLOSED .............................................................................................. 18	
Figure 13: GE_S_NON_MANIFOLD_VERTEX ...................................................................... 18	
Figure 14: GE_S_NON_MANIFOLD_EDGE ........................................................................... 18	
Figure 15: GE_S_MULTIPLE_CONNECTED_COMPONENTS .......................................... 19	
Figure 16: GE_S_SELF_INTERSECTION ............................................................................... 19	
Figure 17: Execution order of geometry checks in val3dity ..................................................... 29	
Figure 18: GeometryValidator transformer used to validate 2D and 3D geometries for QIE

 ................................................................................................................................................. 32	
Figure 19: Conformance Requirement 10.3.9(3) according to CityGML 2.0 ......................... 39	
Figure 20: Mapping of a definition to Schematron (adapted from van Walstijn (2015)) ...... 40	
Figure 21 Wiki page example ...................................................................................................... 41	
Figure 22: Proposed structure of a conditional sentence consisting of 4 structural elements 

for formulating conformance requirements. (adapted from van Walstijn (2015)) ......... 43	
Figure 23: Requirements Coding System ................................................................................... 44	
Figure 24: Screenshot of a test-report created by the virtualcityVALIDATOR. Input data is 

taken from the Berlin 3D download portal. (adapted from van Walstijn, (2015)) ......... 45	
Figure 25: BPMN process model for analyzing conformance requirements .......................... 46	
Figure 26: BPMN process model for analyzing general tests ................................................... 47	
Figure 27: ISO 19017 primitives. ................................................................................................ 55	
Figure 28: The red vertex is a non-manifold vertex since the neighborhood around it is not 

topologically equivalent to a plane. ...................................................................................... 56	
Figure 29: One solid which respects the international definition. It has one exterior shell 

and one interior shell (forming a cavity). ............................................................................ 57	
Figure 30: A ‘squared torus’ is modelled with one exterior boundary formed of ten surfaces. 

Notice that there is no interior boundary. .......................................................................... 58	
Figure 31: UML diagram of the CityGML geometry model. ................................................... 59	
Figure 32: 2D CityGML primitives. ........................................................................................... 59	
Figure 33: Some examples of invalid polygons. Polygon p12 has its exterior and interior 

rings defined by the same geometry. ................................................................................... 61	



OGC 16-064r1 

vi Copyright © 2015 Open Geospatial Consortium. 
 

Figure 34: All the points of the top polygon are within 1mm but the polygon cannot be 
considered planar. ................................................................................................................. 63	

Figure 35: One solid and the orientation of 3 of its polygons (different colors). .................... 64	
Figure 36: Nine solids, the number between brackets indicates which assertion(s) from the 

OGC Simple Features is/are violated. ................................................................................. 65	
Figure 37: Valid 2D polygon, which results in an extrusion body with a non-manifold edge 

(red). ....................................................................................................................................... 66	

 

Tables Page 
Table 1: Check and Error Identifiers ......................................................................................... 20	
Table 2: Modeling alternatives for a simple building in LoD 2 ............................................... 24	
Table 3: Check dependencies for geometry checks of CityDoctor ValidationTool ................ 31	
Table 4: CityServer3D Test Results (outliers only) ................................................................... 33	
Table 5: List of semantic checks. ................................................................................................. 34	
Table 6: CityGML 2.0 Conformance Requirements ................................................................. 37	

 

 



OGC® Engineering Report OGC 16-064r1 

 

Copyright © 2015 Open Geospatial Consortium. 1 
 

OGC® CityGML Quality Interoperability Experiment 

1 Introduction 

1.1 Preface 

The aim of the CityGML Quality Interoperability Experiment was to define data quality 
requirements for a general CityGML data specification, to provide recommended 
implementation guidance for 3D data, and to provide a suite of essential quality checking 
tools to carry out quality assurance on CityGML data. The data requirements and 
recommended implementation guidance were obtained by experimentation and may serve 
as input to extend and refine the CityGML standard. These requirements and guidance 
should meet the OGC Membership and community "thirst" for better implementation 
guidance for OGC standards, in this case CityGML. 
The QIE was carried out as a joint activity between OGC, SIG3D and EuroSDR.  

1.2 Scope 

This OGC Engineering Report specifies the results and findings of the CityGML Quality 
Interoperability Experiment. Guidelines were developed for the following concepts:   

 Definition of data quality; 
 Data quality requirements and their specification; 
 Quality checking process of CityGML data; and 
 Description of validation results. 

The desired outcomes of this Interoperability Experiment are to improve the 
interoperability of CityGML data by removing some ambiguities from the current 
standard and formally defining data quality requirements for a general CityGML data 
specification. Further, the results of this work provides to the community (organizations 
invested in capturing, procuring, or utilizing CityGML data) recommended 
implementation guidance for 3D data and a suite of essential quality checking tools to 
carry out quality assurance on CityGML data. 

1.3 Document contributor contact points 

All questions regarding this document should be directed to the editor or the contributors: 

Name Organization 
Carsten Rönsdorf (CR) Ordnance Survey 
Detlev Wagner (DW) University of Tehran 
Simon Thum (ST) Fraunhofer IGD 
Dean Hintz (DH) Safe Software 



OGC 16-064r1 

2 

    

Copyright © 2015 Open Geospatial Consortium. 
 

Hugo Ledoux (HL) Delft University of Technology 
Filip Biljecki (FB) Delft University of Technology 
Jantien Stoter (JS) Delft University of Technology, 

Geonovum, and EuroSDR 
Egbert Casper (EC)  SIG3D 
Joachim Benner (JB) Karlsruhe Institute for Technology 
Volker Coors (VC) Stuttgart University of Applied Sciences 
Lucas van Walstijn (LW) virtualcitysytems 

 

1.4 Revision history 

Date Release Editor 
Contributor 

Primary 
clauses 

modified 

Description 

2015-02-08  DW  Draft of report structure 
2015-04-30  HL  Draft of all parts related to the geometric 

validation part 
2015-06-01  DW  Draft version for discussion 
2015-07-27  DW  Draft version for discussion 

2015-08-10  ST 7.6, 9.2 Fraunhofer input 

2015-08-13  DH 7.6.2,9.2.3 Safe Software input 

2015-08-14  DW  Overall review 

2015-08-17  JS  Overall review and update previously self-
written parts 

2015-09-22  LW 9.4.1 Added input on conformance requirements 

2016-02-15  JS, VC, HL, 
EC, DW 

 Discussion and preparation of final version 

2016-02-18  EC, HL, DW 4, 7, 9, 10, 
11, 12 

Last additions  

2016-03-08  VC 11, 12 Final editing and change requests 

2016-05-26  LW 9.4, 6.2 Added missing information on conformance 
requirements 

2016-07-11  Scott 
Simmons 

All Preparation for final publication 

 

1.5 Forward 

Attention is drawn to the possibility that some of the elements of this document may be 
the subject of patent rights. The Open Geospatial Consortium shall not be held 
responsible for identifying any or all such patent rights. 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 3 
 

Recipients of this document are requested to submit, with their comments, notification of 
any relevant patent claims or other intellectual property rights of which they may be 
aware that might be infringed by any implementation of the standard set forth in this 
document, and to provide supporting documentation. 

2 References 

The following documents are referenced in this document. For dated references, 
subsequent amendments to, or revisions of, any of these publications do not apply. For 
undated references, the latest edition of the normative document referred to applies. 

OGC 12-019, OGC® City Geography Markup Language (CityGML) Encoding Standard 

ISO 19107:2003, Geographic information -- Spatial schema 

SIG3D Modeling Handbook, http://wiki.quality.sig3d.org 

Dutch CityGML implementation report, http://www.geonovum.nl/onderwerpen/3d-
standaarden/documenten/3d-final-report 

 
In addition to these documents, this report includes a Solid definition for GML features 
according to ISO 19197 as specified in Annex A. 

3 Terms and definitions 

For the purposes of this report, the definitions specified in Clause 4 of the CityGML 
Encoding Standard [OGC 12-019] shall apply. In addition, the following terms and 
definitions apply. 

3.1  
Validation 
Process of validating a CityGML data set against a specified set of requirements. A valid 
data set is conformant to these requirements. 

3.2  
Requirements 
Rules and restrictions to define data structure and content unambiguously. Requirements 
can be derived from the CityGML Standard document or be defined separately as 
refinement of the CityGML standard to avoid ambiguities of the standard and/or specify 
further requirements (user/application dependent). 

3.3  
Check 
Algorithmic implementation to check if a requirement is met in a validation software. 



OGC 16-064r1 

4 

    

Copyright © 2015 Open Geospatial Consortium. 
 

3.4  
Error 
Result of a check in case of non-conformance. 

3.5  
Validation Plan 
Structured list of requirements, usually depending on use case. 

4 Conventions 

4.1 Abbreviated terms 

2D    Two Dimensional  
3D SIG  3D Special Interest Group Netherlands 
3D    Three Dimensional  
CAD   Computer Aided Design  
CityGML  City Geography Markup Language 
DTM   Digital Terrain Model  
EuroSDR  European Spatial Data Research Organisation  
GML   Geography Markup Language  
IFC   Industry Foundation Classes  
ISO   International Organization for Standardisation  
LOD   Level of Detail  
OGC   Open Geospatial Consortium  
QIE   Quality Interoperability Experiment 
SIG 3D  Special Interest Group 3D of Spatial Data Infrastructure Germany 
TIN   Triangulated Irregular Network  
UML   Unified Modeling Language  
XML   Extensible Markup Language  

5 Report overview 

The report contains results and recommendations for specification of data quality 
requirements of CityGML data, validation of those data, and how to report validation 
results. 

In section 6, general issues of requirements specification are discussed to introduce a 
structured order of data quality requirements with respect to CityGML data. 

Based on that structured order, a standardized encoding system for the specification of 
these requirements is presented in section 6.3. Accordingly, validation results should be 
reported with the error codes specified in the section 7.5. Mappings of vendor-specific 
error codes of available validation tools are included. 

Section 8 describes unit tests to assure correct performance of a validation tool according 
to the requirements specified. 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 5 
 

Section 9 explains which experiments were performed in this CityGML quality 
interoperability experiment. 

A general strategy for validation for typical use cases is outlined in Section 10. 

Section 11 summarizes recommendations for conformance requirements. 

Further steps towards standardized validation of 3D city models is outlined in Section 12.  

6 Validation of CityGML data  

With the wide adoption and use of CityGML as an international standard, the volume of 
3D datasets has increased rapidly in tandem with the range of applications to which 3D is 
being applied (e.g. solar mapping, noise modeling, cadastre, etc.). The quality of the data 
being used in these forms of spatial analyses is of the utmost importance to the value of 
the outputs. However, evaluation of the quality of CityGML data has not received the 
attention it deserves in practice.  This is partly because GML---the "basis" by which 
CityGML models geometric primitives---is a generic standard and allows a certain 
freedom of implementation, and partly because practice has shown that CityGML only 
offers limited guidance on how to uniformly and unambiguously implement the standard. 
While conformance requirements do exist for CityGML, they do not cover integrity 
checking of CityGML geometries. Furthermore, implementation specifications do not 
currently exist for 3D primitives (with the exception of the modeling handbook published 
by SIG 3D’s data quality working group1 and the 3D SIG in the Netherlands2). Due to 
these ambiguities, it is likely that in the future, different interpretations of CityGML 
implementation between customer and contractor will continue to occur. 

If a CityGML document is validated with different validation software tools, it is 
essential that the validation results are consistent (i.e. they are similarly defined in each 
software): validation results from different software tools cannot be compared if this is 
not the case. Hence, a basic requirement for quality checks must be that defined 
validation rules lead to the same result in different software. Unified validation rules must 
be defined as derived from the requirements defined in the CityGML standard. 

Geometric validation of 3D city models is important to ensure that they are conformant 
with user/application requirements. The aim of this quality experiment is to give clarity 
and better guidance to allow providers and users to come to a common understanding of 
what is required for a CityGML city model and how to specify and validate these 
requirements.  A crucial point is to understand if a fundamental set of requirements which 
proves useful for most models does exist. It should be possible to validate these 
requirements to confirm that CityGML data are compliant. 

                                                

1 http://www.sig3d.org/index.php?catid=2&themaid=8777960&language=en   
2 http://www.geonovum.nl/onderwerpen/3d-standaarden/documenten/3d-final-report 



OGC 16-064r1 

6 

    

Copyright © 2015 Open Geospatial Consortium. 
 

These requirements should cover both geometric and semantic aspects of the data. As 
semantics are less strictly defined in the CityGML standard compared to geometry, the 
validation process yields results on the plausibility of semantic information rather than 
strict compliance statements. 

Different views have to be considered for the aim of validation: 

 Data capture view: make it easier to capture CityGML data and offer consistent 
data; 

 Procurement view: make it easier to procure data capture and be able to check the 
consistency of the data delivered; 

 Software view: make it easier for software to interpret, visualize, analyze and 
manipulate CityGML data; and 

 Data management view: make it easier to maintain CityGML data over time . 

Different themes of validation to test are defined, as follows: 

 XML-Schema validation; 

 Conformance based on formal and non-formal requirements in the CityGML 
standard document; 

 Referential integrity (within a CityGML document as well as to external data 
sources—the latter would need to be available for the tests as well); 

 Geometry; and 

 Semantics / attribute constraints such as deviation of attribute "measured height" 
and the height of the LoD2 geometry. 

The goals of the validation strategy designed in this experiment are to: 

 Enable a common understanding about key requirements from the four views 
outlined above; 

 Suggest elements of a best practice data specification; and 
 Suggest sensible data tests and test tools as well as an overarching test plan that 

contains: 
o a set of modular, well defined ("low level") tests; 
o a way to define a ("high level") testbed (a selection of low-level tests, 

perhaps rule-based); 
o an agreed schema to test results both for "low level" and "high level" tests; 

and 
o well known sample data. 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 7 
 

6.1 Validation Process 

Data validation requires a clearly defined rule set. This rule set may differ for different 
use cases and has to be defined by the data user, possibly in cooperation with a technical 
expert. Rules should be derived from existing standards by interpretation, as described in 
the process model for conformance requirements (cf. section 9.4.4). Derived rules must 
be unambiguous and machine processable. The set of rules defines the validation plan. 

6.2 Use cases and requirements for geometry 

During the kick-off phase of the experiment a collection of standard use-cases was 
defined.  

The specific questions to be answered were as follows. 

 Is there a universal, reasonably generic set of CityGML requirements that should 
be specified in addition to the CityGML standard? 

 What are the detailed quality requirements?  

 How can these requirements be tested to ensure that they have been adhered to? 

The generic use cases to be explored are the creation and maintenance of CityGML 
models for national and regional mapping including visualization, and analysis such as: 

 Line of sight; 

 Shading; 

 Flooding; 

 Aggregation of floorspace for buildings/sites; 

 Energy demand simulation; and 

 Scenario evaluation in urban planning. 

The initial goal to give recommendations for respective use-cases could not be reached 
within the CityGML Quality IE. The editors agree that it would be beneficial to the 
community if there were guidelines on how to validate CityGML instance documents in 
order that those instances be of appropriate data quality and structure for a certain 
standard use case. 

The task above can also be solved on a national level to allow for consideration of local 
and regional differences. 



OGC 16-064r1 

8 

    

Copyright © 2015 Open Geospatial Consortium. 
 

6.3 Validation framework 

Besides the validation of instance documents against the tests from one single 
experiment, it will be necessary to validate against any number of requirements from any 
of the domains (geometric, semantic, conformance requirements, application specific 
requirements, schema conformance). For that purpose, a validation framework can be 
used. The concepts (as well as a prototype implementation) are developed in the Masters 
Thesis “Requirements for an Integral Testing Framework of CityGML Instance 
Documents” van Walstijn (2015). This validation framework builds on the concept of the 
unit-test (an atomic, isolated test). Unit-tests can cover any kind of test (geometric, 
semantic, schema, conformance, etc.) and always evaluate to either true or false. Figure 1 
illustrates the unit-test concept. 

 

Figure 1:  Examples of individual unit-tests. Unit-tests can represent geometric, semantic, 
application specific or conformance requirement. 

 

These unit-tests can be implemented as binary code: for example, Java or C++. It is also 
possible to implement unit-tests which consist of an FME Workbench or even an XML or 
Schematron schema. Moreover, it is possible to define unit-tests based on software 
libraries such as CityDoctor or val3dity.  
These individual unit-tests can be combined and chained in a workflow-description, an 
example workflow-description can be visualized as illustrated in Figure 2. 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 9 
 

 
Figure 2 Chaining of unit-tests. 

 
By connecting input and output ports of individual unit-tests, arbitrary validation plans 
can be built. Such a validation framework could be made accessible over an OGC WPS 
Interface (see Figure 3). Typically, a client sends an (XML) based validation plan 
together with a CityGML instance document to the WPS. The WPS in turn validates the 
instance document against the specified unit-tests based on the provided validation plan. 
A standardized error report is returned to the user. More information and details on how 
such a validation framework can be realized, the WPS interface is used, and test reports 
comply with ISO 19157 Geographic Information – Data quality, can be found in van 
Walstijn (2015). 

 

Figure 3: Architecture overview of a validation framework. Prototypically implemented in the 
virtualcity VALIDATOR. 



OGC 16-064r1 

10 Copyright © 2015 Open Geospatial Consortium. 
 

7 Prerequisites 

7.1 Schema Validation 

Tools for XML Schema validation are available and give reliable results. Hence schema 
validation was not considered a major task for the CityGML QIE, although well-formed 
XML document data is required as input for most validation tools. 

Schema related problems with the CityGML structure, such as the order of elements in 
sequences, were not discussed. For example, the order of child elements is different for 
_AbstractBuilding in LOD 2 and LOD 3, A change request for the next version of 
CityGML is suggested (cf Section 11.5). 

7.2 Definition of a Solid according to ISO 19107 

ISO 19107 defines geometric primitives for geodata. A Solid definition is derived from 
this standard to describe geometric validation criteria of volumetric CityGML objects in 
detail. The full definition can be found in Annex A. 

7.3 System for encoding of data quality requirements  

Suggestions how data quality requirements should be specified in CityGML or in 
addition to CityGML were discussed and evaluated. The following approaches were 
considered. 

 Add data-quality based conformance requirements that are more prescriptive in a 
future version of the CityGML standard. 

 Give additional guidance for implementation in a particular community in 
documentation separate from the CityGML standard (profiling, adding 
constraints, documenting conventions/best practice, implementers’ agreements). 

 Add additional metadata to CityGML modeling constructs used. This could be 
implemented in a future version of the CityGML standard or as an Application 
Domain Extension. 

7.4 Specification of data quality requirements and requirement identifiers 

For clarity, a validation criteria coding system needs to be defined. Note that every single 
validation criterion is called a requirement in this document.  

The coding system uses the following structure:  

XX-namespace:YY-ZZZZ  

XX is the domain identifier. The following values are allowed:  



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 11 
 

value  description  

SC  Schema Requirements  

CO  Conformance Requirements  

GE  Geometry Requirements  

SE  Semantic Requirements  

RI  Referential Integrity  

YY is the element identifier. It defines the CityGML element upon which the requirement 
operates. The following values are allowed (NB: this is just a first step and needs to be 
extended in the future):  

value  description  

bldg:AB  Abstract Building  

bldg:BU  Building (specific to Building in addition to Abstract Building)  

bldg:BP  Building Part (specific to BuildingPart in addition to Abstract Building)  

bldg:BS  BoundarySurface  

bldg:WS  WallSurface  

bldg:GS  GroundSurface  

bldg:RS  RoofSurface  

bldg:OFS  OuterFloorSurface  

bldg:OCS  OuterCeilingSurface  

gml:SO  Solid  

gml:MS  MultiSurface  

gml:PO  Polygon  

gml:LR  Linear Ring  



OGC 16-064r1 

12 Copyright © 2015 Open Geospatial Consortium. 
 

ZZZZ is the requirement identifier for the element in the given domain. These identifiers 
need to be defined by each working group. For example, for conformance requirements, 
the identifiers could simply be the number of the conformance requirement from the 
standard. 

7.5 Error codes for geometric errors 

In accordance with the QIE naming schema for the requirements, all the geometric errors 
are in the "GE" domain. Also, since the geometric validation is performed at 3 different 
levels (based on the primitives), the requirements also contain the level:  

 Ring: R 

 Polygon: P 

 Shell: S 

Error codes follow the same system as the requirements mentioned in section 7.4. A 
violation of each respective data quality requirement should result in an error which must 
be reported with an error code according to the requirement ID. 

For each error code, extra information can (and should) be returned. For instance:  

 if a ring is not closed (GE_R_NOT_CLOSED) then the ID of the ring (e.g., its 
position [first, second..] in the polygon)  should be returned; 

 if a polygon is not planar 
(GE_P_NON_PLANAR_POLYGON_DISTANCE_PLANE) then the ID of the 
polygon and the max. deviation from the reference plane should be returned; or 

 if a shell is not 'watertight' (GE_S_NOT_CLOSED) then the location of the 
hole(s) should be returned. 

In this QIE the following requirements are defined for the three respective geometric 
levels (adopted from Ledoux (2013): 

 

RING level 

 GE_R_TOO_FEW_POINTS (<3 points) 
 GE_R_CONSECUTIVE_POINTS_SAME (2 consecutive points are the same)  
 GE_R_NOT_CLOSED (first-last points are not the same) 
 GE_R_SELF_INTERSECTION (self-intersects, i.e., a bowtie) 
 GE_R_COLLAPSED (is point or line) 

 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 13 
 

POLYGON level 

 GE_P_INTERSECTION_RINGS (2+ rings intersect) 
 GE_P_DUPLICATED_RINGS (2+ rings identical) 
 GE_P_NON_PLANAR_POLYGON_DISTANCE_PLANE (with respect to 

tolerance) 
 GE_P_NON_PLANAR_POLYGON_NORMALS_DEVIATION with respect to 

tolerance) 
 GE_P_INTERIOR_DISCONNECTED (interior is not connected) 
 GE_P_HOLE_OUTSIDE (1 or more interior rings are located outside the exterior 

ring) 
 GE_P_INNER_RINGS_NESTED (interior ring is located inside other) 
 GE_P_ORIENTATION_RINGS_SAME (exterior and interior rings have same 

orientation) 

 

SHELL level 

 GE_S_TOO_FEW_POLYGONS (<4 polygons) 
 GE_S_NOT_CLOSED (there is 1+ hole(s) on the surface) 
 GE_S_NON_MANIFOLD_VERTEX 
 GE_S_NON_MANIFOLD_EDGE 
 GE_S_MULTIPLE_CONNECTED_COMPONENTS (1+ polygons not 

connected to main shell) 
 GE_S_SELF_INTERSECTION 
 GE_S_POLYGON_WRONG_ORIENTATION (orientation of a polygon not 

correct) 
 GE_S_ALL_POLYGONS_WRONG_ORIENTATION (normals all pointing in 

wrong direction) 

 

7.6 Description of geometry checks 

RING 

GE_R_TOO_FEW_POINTS	
A	ring	should	have	at	least	3	points.	For	GML	rings,	this	error	ignores	the	fact	that	
the	first	and	the	last	point	of	a	ring	are	the	same	(see	GE_R_NOT_CLOSED),	i.e.,	a	
GML	ring	should	have	at	least	4	points.	
For instance, this ring is invalid: 

<gml:LinearRing>	
		<gml:pos>0.0	0.0	0.0</gml:pos>	
		<gml:pos>1.0	0.0	0.0</gml:pos>	



OGC 16-064r1 

14 Copyright © 2015 Open Geospatial Consortium. 
 

		<gml:pos>0.0	0.0	0.0</gml:pos>	
</gml:LinearRing>	

GE_R_CONSECUTIVE_POINTS_SAME	
Points	in	a	ring	should	not	be	repeated	(except	first-last	in	case	of	GML,	see	
GE_R_NOT_CLOSED).	This	error	is	for	the	common	error	where	2	consecutive	points	
are	at	the	same	location.	Error	GE_R_SELF_INTERSECTION	is	for	points	in	a	ring	that	
are	repeated,	but	not	consecutive.	
For instance, this ring is invalid: 

<gml:LinearRing>	
		<gml:pos>0.0	0.0	0.0</gml:pos>	
		<gml:pos>1.0	0.0	0.0</gml:pos>	
		<gml:pos>1.0	0.0	0.0</gml:pos>	
		<gml:pos>1.0	1.0	0.0</gml:pos>	
		<gml:pos>0.0	1.0	0.0</gml:pos>	
		<gml:pos>0.0	0.0	0.0</gml:pos>	
</gml:LinearRing>	

GE_R_NOT_CLOSED	
This	applies	only	to	GML	rings.	The	first	and	last	points	have	to	be	identical	(at	the	
same	location).	
For instance, this ring is invalid: 

<gml:LinearRing>	
		<gml:pos>0.0	0.0	0.0</gml:pos>	
		<gml:pos>1.0	0.0	0.0</gml:pos>	
		<gml:pos>1.0	1.0	0.0</gml:pos>	
		<gml:pos>0.0	1.0	0.0</gml:pos>	
</gml:LinearRing>	

GE_R_SELF_INTERSECTION	
A	ring	should	be	simple,	i.e.,	it	should	not	self-intersect.	The	self-intersection	can	be	
at	the	location	of	an	explicit	point,	or	not.	

 

Figure 4: GE_R_SELF_INTERSECTION 

GE_R_COLLAPSED_TO_LINE	
A	special	case	of	self-intersection	(GE_R_SELF_INTERSECTION):	the	ring	is	collapsed	



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 15 
 

to	a	line.	If	the	geometry	is	collapsed	to	a	point,	then	GE_R_TOO_FEW_POINTS	/	
GE_R_CONSECUTIVE_POINTS_SAME	should	be	used.	

 

Figure 5: GE_R_COLLAPSED_TO_LINE 

POLYGON 

GE_P_INTERSECTION_RINGS	
Two	or	more	rings	intersect,	these	can	be	either	the	exterior	ring	with	an	interior	
ring	or	only	interior	rings.	

 

Figure 6: GE_P_INTERSECTION_RINGS 

GE_P_DUPLICATED_RINGS	
Two	or	more	rings	are	identical.	
GE_P_NON_PLANAR_POLYGON_DISTANCE_PLANE	
A	polygon	must	be	planar,	i.e.,	all	of	its	points	(used	for	both	the	exterior	and	
interior	rings)	must	lie	on	a	plane.	To	verify	this,	we	must	ensure	that	the	distance	
between	every	point	and	a	plane	is	less	than	ϵ ,	a	given	tolerance	(e.g.,	1cm).	This	
plane	should	be	a	plane	fitted	with	least-square	adjustment.	
GE_P_NON_PLANAR_POLYGON_NORMALS_DEVIATION	
To	ensure	that	cases	illustrated	in	Figure	7,	below	are	detected	(the	top	polygon	is	
clearly	non-planar,	but	would	not	be	detected	with	
GE_P_NON_PLANAR_POLYGON_DISTANCE_PLANE	and	a	tolerance	of	1cm	for	
instance),	another	requirement	is	necessary:	the	distance	between	every	point	
forming	a	polygon	and	all	the	planes	defined	by	all	possible	combinations	of	3	non-
colinear	points	is	less	than	ϵ .	In	practice	this	assessment	can	be	implemented	with	
a	triangulation	of	the	polygon	(any	triangulation):	the	orientation	of	the	normal	of	
each	triangle	must	not	deviate	more	than	a	certain	user-defined	tolerance	ϵ (e.g.,		1	



OGC 16-064r1 

16 Copyright © 2015 Open Geospatial Consortium. 
 

degree).	

 

Figure 7: Tolerance for planarity 

GE_P_INTERIOR_DISCONNECTED	
The	interior	of	a	polygon	must	be	connected.	The	combination	of	different	valid	
rings	can	create	such	an	error.	

 

Figure 8: GE_P_INTERIOR_DISCONNECTED 

GE_P_HOLE_OUTSIDE	
One	or	more	interior	ring(s)	is	(are)	located	completely	outside	the	exterior	ring.	If	
the	interior	ring	intersects	the	exterior	ring,	then	error	GE_P_INTERSECTION_RINGS	
should	be	returned.	

 

Figure 9: GE_P_HOLE_OUTSIDE 

GE_P_INNER_RINGS_NESTED	
One	or	more	interior	ring(s)	is	(are)	located	completely	inside	another	interior	ring.	



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 17 
 

 

Figure 10: GE_P_INNER_RINGS_NESTED 

GE_P_ORIENTATION_RINGS_SAME	
The	interior	rings	must	have	the	opposite	direction	(clockwise	vs	counterclockwise)	
when	viewed	from	a	given	point-of-view.	When	the	polygon	is	used	as	a	bounding	
surface	of	a	shell,	then	the	rings	have	to	have	a	specified	orientation	(see	
GE_S_POLYGON_WRONG_ORIENTATION	/	
GE_S_ALL_POLYGONS_WRONG_ORIENTATION).	

 

Figure 11: GE_P_ORIENTATION_RINGS_SAME 

SHELL 

GE_S_TOO_FEW_POLYGONS	
A	shell	should	have	at	least	4	polygons	-	the	simplest	volumetric	shape	in	3D	is	a	
tetrahedron.	
GE_S_NOT_CLOSED	
The	shell	must	not	have	'holes',	i.e.,	it	must	be	'watertight'.	This	refers	only	to	the	
topology	of	the	shell,	not	to	its	geometry	(see	GE_S_SELF_INTERSECTION).	
In Figure 12, the left solid is invalid while the right one is valid (since the hole is filled 
with other polygons). 



OGC 16-064r1 

18 Copyright © 2015 Open Geospatial Consortium. 
 

 

Figure 12: GE_S_NOT_CLOSED 

GE_S_NON_MANIFOLD_VERTEX	
Each	shell	must	be	simple,	i.e.	it	must	be	a	2-manifold.	A	vertex	is	non-manifold	
when	its	incident	polygons	do	not	form	one	`umbrella.'	

 

Figure 13: GE_S_NON_MANIFOLD_VERTEX 

GE_S_NON_MANIFOLD_EDGE	
Each	edge	of	a	shell	should	have	exactly	2	incident	polygons.	

 

Figure 14: GE_S_NON_MANIFOLD_EDGE 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 19 
 

GE_S_MULTIPLE_CONNECTED_COMPONENTS	
Polygons	that	are	not	connected	to	the	shell	should	be	reported	as	an	error.	

 

Figure 15: GE_S_MULTIPLE_CONNECTED_COMPONENTS 

GE_S_SELF_INTERSECTION	
If	topology	of	the	shell	is	correct	and	the	shell	is	closed	(thus	no	error	
GE_S_TOO_FEW_POLYGONS	/	GE_S_NOT_CLOSED	/	GE_S_NON_MANIFOLD_VERTEX	
/	GE_S_NON_MANIFOLD_EDGE	/	GE_S_MULTIPLE_CONNECTED_COMPONENTS),	it	
is	possible	that	the	geometry	introduces	other	errors,	e.g.,	intersections.	For	
instance,	the	topology	of	both	shells	in	Figure	16	is	identical,	but	the	geometry	
differs.	The	left	shell	is	valid	while	the	right	one	is	invalid.	

 

Figure 16: GE_S_SELF_INTERSECTION 

GE_S_POLYGON_WRONG_ORIENTATION	
If	one	polygon	is	used	to	construct	a	shell,	its	exterior	ring	must	be	oriented	in	such	
a	way	that	when	viewed	from	outside,	the	shell	points	are	ordered	
counterclockwise.	
GE_S_ALL_POLYGONS_WRONG_ORIENTATION	
Where	all	the	polygons	have	the	wrong	orientation	(as	defined	in	
GE_S_POLYGON_WRONG_ORIENTATION),	i.e.	they	all	point	inwards.	
	



OGC 16-064r1 

20 Copyright © 2015 Open Geospatial Consortium. 
 

7.7 Implementation of error codes and references to existing error code systems 
in test tools  

Some of the existing validation tools return vendor-specific error codes. A mapping of 
these custom error codes to the error codes agreed upon in the CityGML QIE is given in 
the table below to enable comparison of validation results. 

Table 1: Check and Error Identifiers 

	 QIE	naming	convention	 CityDoctor	 FME	 val3dity	

1	 GE_R_TOO_FEW_POINTS	 CP_NUMPOINTS	 Too	few	points	 101	

2	 GE_R_CONSECUTIVE_POINTS_SAME	 CP_DUPPOINT	 Duplicate	Consecutive	Points	 102	

3	 GE_R_NOT_CLOSED	 CP_CLOSE	 Polygon	not	closed*	 103	

4	 GE_R_SELF_INTERSECTION	 CP_SELFINT	 Self-Intersections	in	2D	 104	

5	 GE_R_COLLAPSED_TO_LINE	 CP_NULLAREA	 Duplicate	Consecutive	Points	
in	3D,	Degenerate	or	Corrupt	
Geometries,	Self-
Intersections	in	2D	**	

105	

6	 GE_P_INTERSECTION_RINGS	 +	 Self-Intersections	in	2D	-		
Donut:	Overlapping	Rings	

201	

7	 GE_P_DUPLICATED_RINGS	 CS_SELFINTNATIVE	 Self-Intersections	in	2D	-	
Donut:	Duplicate	Rings,	
Donut:	Touching	Rings	

202	

8	 GE_P_NON_PLANAR_POLYGON	
_DISTANCE_PLANE	

CP_PLANNATIVE	 Non-Planar	Surfaces	 203	

9	 GE_P_NON_PLANAR_POLYGON	
_NORMALS_DEVIATION	

CP_PLANTRI	 Non-Planar	Surfaces	 204	

10	 GE_P_INTERIOR_DISCONNECTED	 +	 Self-Intersections	in	2D	-	
Donut:	Disjoint	Interior	

205	

11	 GE_P_HOLE_OUTSIDE	 +	 Self-Intersections	in	2D	-	
Donut:	Hole	Outside	Shell	

206	

12	 GE_P_INNER_RINGS_NESTED	 +	 Self-Intersections	in	2D	-	
Donut:	Nested	Hole	

207	

13	 GE_P_ORIENTATION_RINGS_SAME	 +	 Invalid	Solid	Boundaries,	
Invalid	Solid	Voids	-	Surface	
Not	Closed;	Invalid	Solid	
Boundaries	

208	

14	 GE_S_TOO_FEW_POLYGONS	 CS_NUMFACES	 Invalid	Solid	Boundaries,	
Invalid	Solid	Voids	-	
Not	Enough	Faces	

301	

15	 GE_S_NOT_CLOSED	 CS_OUTEREDGE	 Invalid	Solid	Boundaries;	
Invalid	Solid	Voids	-	
Surface	Not	Closed	

302	

16	 GE_S_NON_MANIFOLD_VERTEX	 CS_UMBRELLA	 Invalid	Solid	Boundaries,	
Invalid	Solid	Voids	-	
Dangling	Faces	

303	

17	 GE_S_NON_MANIFOLD_EDGE	 CS_OVERUSEDEDGE	 Invalid	Solid	Boundaries,	
Invalid	Solid	Voids	-	
Surface	Not	Closed	

304	

18	 GE_S_MULTIPLE_CONNECTED	
_COMPONENTS	

CS_CONCOMP	 Invalid	Solid	Boundaries,	
Invalid	Solid	Voids	-	
Free	Faces	

305	

19	 GE_S_SELF_INTERSECTION	***	 CS_SELFINT	 Invalid	Solid	Boundaries,	 306	



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 21 
 

Invalid	Solid	Voids	-	
Surface	Self	Intersects	

20	 GE_S_POLYGON_WRONG	
_ORIENTATION	

CS_FACEORIENT	 Invalid	Solid	Boundaries,	
Invalid	Solid	Voids	-	
Dangling	Faces	

307	

21	 GE_S_ALL_POLYGONS_WRONG	
_ORIENTATION	

CS_FACEOUT	 Invalid	Solid	Boundaries,	
Invalid	Solid	Voids	-	Surface	
Normals	Bad	Orientation	

308	

 

Comments 

Citydoctor3 

(1) CP_DUPPOINT detects consecutive and non-consecutive duplicate points. The later 
may be detected by other software as self-intersection (e.g., FME). 
(2) CS_SELFINTNATIVE covers different types of intersections of several polygons 
within one solid. GE_P_DUPLICATED_RINGS is just one special case. 
CS_SELFINTNATIVE will be split into several error types to reflect this in future 
versions. 
(3) Checks marked with a + sign are implemented after the CityGML QIE and will be 
available in future versions. 

FME 

*    FME’s GML reader automatically closes unclosed polygons. To detect errors such as 
‘103.gml polygon not closed,’ datasets were read with FME’s XML reader and 
searched for LinearRings to see if there are any that are not closed.  

**  Some tests were uniquely mappable using a truth table applied to the output of the 
GeometryValidator within the test FME workspace. For example, test 105 was the 
only test that produced the FME errors: ‘Duplicate Consecutive Points in 3D, 
Degenerate or Corrupt Geometries, Self-Intersections in 2D’ which was detected and 
uniquely mapped to ‘Ring collapsed into a line.’ This could be more conclusively 
characterized by an FME workspace that detects ring features that have length but no 
area. 

*** A number of the tests datasets (cf. Section 8) provided had more than one variant per 
unit test. Consequently, results varied depending on which variant was tested. For 
example, test 306 had 4 variants. Variant i306_3.gml was ‘unit cube with one extra 
face inside another face’ and yielded the FME error: ‘Invalid Solid Boundaries, 
Invalid Solid Voids;’ Detail: ‘Free Faces.’ Variant i306_4.gml was ‘torus where the 
hole in the top/bottom faces touches the side surfaces’ and yielded an FME Error: 
‘Self-Intersections in 2D’ Detail: ‘Donut: Self-Intersection Error.’ The 306 unit test 
used in the above table was the result from testing i306_1.gml ‘house with tip below 
the ground.’ 

                                                

3 Wagner, D., Alam, N., Wewetzer, M., Pries, M., & Coors, V. (2015). METHODS FOR GEOMETRIC DATA 
VALIDATION OF 3D CITY MODELS. The International Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 40(1), 729. 



OGC 16-064r1 

22 Copyright © 2015 Open Geospatial Consortium. 
 

CityServer3D 

CityServer3D utilizes the CityDoctor library to implement geometric validity checks as 
part of a rule-based system. Accordingly, the CityDoctor error codes are used to report 
errors to the user, and CityDoctor restrictions apply. 

val3dity 

val3dity4 returns both the number and the QIE string. For this, the "--qie" flag must be 
used. 

8 Unit tests  

All test models are listed in Annex B. 

8.1 TU Delft 

Unit tests were developed for geometric errors by 3D GeoInformation Group, TU Delft. 
Each GML file contains one and only one solid, and (ideally) a maximum of 1 error. A 
brief description is provided for each file: 

 i101_1.gml;cube with top face having only 2 points; and 

 i102_1.gml;cube with one duplicate vertex (repeated in a ring). 

There are 3 "types" of files: 

1. vXXX.gml: solid is valid; 

2. iXXX_Y.gml: solid is invalid, the reason is "XXX" (see below for the codes); and 

3. tXXX_Y.gml: validity is based on a tolerance; 1E-Y is the amount by which one 
vertex is moved, thus for t203_1.gml one vertex was moved by 10cm. 

The codes for the errors are in accordance with the QIE naming schema for the 
requirements. For each error code, extra information can (and should) be returned. For 
instance: 

 if a ring is not closed (GE_R_NOT_CLOSED) then the ID of the ring (e.g., its 
position [first, second..] in the polygon); 

 if a polygon is not planar 
(GE_P_NON_PLANAR_POLYGON_DISTANCE_PLANE) then the ID of the 
polygon should be returned; or 

                                                

4 http://geovalidation.bk.tudelft.nl/val3dity/ and https://github.com/tudelft3d/val3dity 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 23 
 

 if a shell is not 'watertight' (GE_S_NOT_CLOSED) then the location of the hole(s) 
should be returned. 

The test data is available on https://github.com/tudelft3d/CityGML-QIE-3Dvalidation. 

8.2 SIG3D 

Five test data sets for three different cases are provided:  

1) Test Case "Addresses;" 

2) Test Case "Generic Attributes;" and 
3) Test Case "Geometry." 

Data available from 
http://en.wiki.quality.sig3d.org/index.php/CityGML_2.0_Examples_and_Test_Data 

8.3 HFT 

15 models with geometric errors plus 15 models with non-geometric errors are provided 
by HFT Stuttgart. 

Data is available here: 

http://citydoctor.hft-stuttgart.de/pwiki/index.php/Specification_of_Test_Data 

9 Experiments 

The IE addressed the following experiments: 

 Experiment #1: Schema validation ; 

 Experiment #2: 3D geometry validation: test tools and ability to visualize/analyze in a 
number of clients; 

 Experiment #3: Semantic and attribute consistency testing: test tools and ability to 
visualize/analyze in a number of clients ; and 

 Experiment #4: Conformance requirements testing: test tools and ability to validate the 
conformance requirements that are within the test capability of the test tools. 
9.1 Experiment 1: Schema validation 

A valid CityGML document is expected to adhere to the XML Schema as defined by the 
standard. Thus, a valid XML structure is a prerequisite before any other validation step 
should be performed. Commercial tools and web-based services for schema validation are 
available (Oxygen, XML-Spy etc.). They are well suited to perform this step of the 
validation process, hence there is no need for detailed investigation of schema validation 
within the frame of the CityGML QIE. 



OGC 16-064r1 

24 Copyright © 2015 Open Geospatial Consortium. 
 

9.2 Experiment 2: Geometry validation 

Geometry for CityGML features must comply with the underlying geometry model of 
GML. The general use of geometry features is further restricted by the CityGML 
standard, where additional rules and recommendations for correct deployment are given. 
Nevertheless, the same physical geometry can be modeled in different ways and still be 
valid according to the open formulations in the standard. Thus, it might be necessary for 
the user to restrict these possibilities to one or more valid alternatives. The next section 
shows one simple building geometry which is modeled in alternative ways. 

9.2.1 Modeling alternatives 

Geometry can be modeled in different ways (e.g., Solid or MultiSurface, xLinks etc.). 
There are at least 10 different ways to structure a simple building in LOD 2, see Table 2. 

Table 2: Modeling alternatives for a simple building in LoD 2 

Image Name Description 

 

SimpleSolid_SBS A simple building modeled in CityGML as 
Solid geometry with the Boundary Surfaces 
exposing MultiSurface geometry (conflict 
with building conformance requirement 
10.3.9.4 (see CityGML 2.0 spec, 10.3.9, 
page 78)) 

 

SimpleSolid_SBSx A simple building modeled in CityGML as 
Solid geometry with the Boundary Surface 
tags existing but with empty geometry 

 

SimpleSolid_Sx A simple building modeled in CityGML as 
Solid geometry without Boundary Surfaces 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 25 
 

 

SimpleSolid_SBSref A simple building modeled in CityGML as 
Solid geometry with the Boundary Surfaces 
referencing via xlinks the Solid geometry 
(conflict with building conformance 
requirement 10.3.9.4 (see CityGML 2.0 
spec, 10.3.9, page 78)) 

 

SimpleSolid_SrefBS A simple building modeled in CityGML as 
Solid geometry which references via xlinks 
the MultiSurface geometry of the Boundary 
Surfaces 

 

SimpleSolid_xBS A simple building modeled in CityGML 
using only Boundary Surfaces 

 

SimpleSolid_MSBS A simple building modeled in CityGML as 
MultiSurface geometry with the Boundary 
Surfaces exposing MultiSurface geometry 
also (conflict with building conformance 
requirement 10.3.9.4 (see CityGML 2.0 
spec, 10.3.9, page 78)) 

 

SimpleSolid_MSBSref A simple building modeled in CityGML as 
MultiSurface geometry with the Boundary 
Surfaces referencing via xlinks the 
MultiSurface geometry (conflict with 
building conformance requirement 10.3.9.4 
(see CityGML 2.0 spec, 10.3.9, page 78)) 

 

SimpleSolid_MSrefBS A simple building modeled in CityGML as 
MultiSurface geometry which references via 
xlinks the MultiSurface geometry of the 
Boundary Surfaces 



OGC 16-064r1 

26 Copyright © 2015 Open Geospatial Consortium. 
 

 

SimpleSolid_MSx A simple building modeled in CityGML as 
MultiSurface geometry without Boundary 
Surfaces 

 

SimpleSolidOverhangs
_SrefBS 

A simple building with overhangs modeled 
in CityGML as Solid geometry which 
references via xlinks the MultiSurface 
geometry of the Boundary Surfaces 
(geometric error as the geometry is in fact 
not a solid geometry: overused edges) 

 

SimpleSolidOverhangs
_MSrefBS 

A simple building with overhangs modeled 
in CityGML as MultiSurface geometry 
which references via xlinks the MultiSurface 
geometry of the Boundary Surfaces 

 

SimpleSolidOverhangs
_SMSrefBS 

A simple building with overhangs modeled 
in CityGML as Solid (includes only the 
faces that can form a solid) and 
MultiSurface (includes only the overhangs) 
geometry which references via xlinks the 
MultiSurface geometry of the Boundary 
Surfaces 

 

All variants are conformant to the CityGML 1.0 and CityGML 2.0 schema. Some 
validate the conformance requirements given in the standard document. The models can 
be downloaded from here: 
http://citydoctor.hft-stuttgart.de/pwiki/index.php/Specification_of_Test_Data 

SIG3D has discussed variations in geometry modeling previously, which led to the 
publication of a modeling handbook with focus on German needs. This handbook 
considers the most common modeling alternatives and makes recommendations for 
deployment. The modeling handbook is available from the website of SIG3D: 

Part 1: Basics (Rules for Validating GML Geometries in CityGML): 
http://files.sig3d.org/file/ag-
qualitaet/201311_SIG3D_Modeling_Guide_for_3D_Objects_Part_1.pdf 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 27 
 

Part 2: Modeling of Buildings (LoD1, LoD2, LoD3): 
http://files.sig3d.org/file/ag-
qualitaet/201311_SIG3D_Modeling_Guide_for_3D_Objects_Part_2.pdf 
 
Recommendation:  

Buildings should be modeled as Solid elements, only roof overhangs as Multisurface 
elements. In addition, BoundarySurfaces should contain the actual geometry, which is 
then referenced by the Solid element. 

9.2.2 Validation results 

The results of validation reports of the unit tests, where provided by specific software 
tools, are available at https://github.com/tudelft3d/CityGML-QIE-
3Dvalidation/tree/master/results.  

A. val3dity (TU Delft) 

The tool developed by TU Delft, called val3dity, is freely available under an open-source 
license (GPL v3). The code can be obtained at https://github.com/tudelft3d/val3dity but it 
is easier to use web interface at http://geovalidation.bk.tudelft.nl/val3dity as there is 
nothing to install: just upload a CityGML file and get back a detailed report. 

The validation of the solids is performed according to the international standard ISO 
19107, and the tool is compliant to this standard. 

Results: All the valid unit tests are validated as such, and all the ones containing errors 
are also reported as invalid.  

However, sometimes a different error is reported. For instance, val3dity cannot report 
error 105--GE_R_COLLAPSED and instead reports 104--
GE_R_SELF_INTERSECTION, which is correct but less accurate (collapsing implies 
self-intersection). Also, errors 303--GE_S_NON_MANIFOLD_VERTEX and 304--
GE_S_NON_MANIFOLD_EDGE cannot be differentiated and thus only 303 is reported. 
Also, when tolerances are involved, the errors returned can differ since a fixed tolerance 
was used for the testing. 

Test Order: 

DANGLING_FACES 
VERTICES_NOT_USED 
FREE_FACES 
SURFACE_SELF_INTERSECTS 
SURFACE_NOT_CLOSED 
This means that if a ‘DANGLING_FACES’ error is encountered, that error code is 
returned and testing is terminated. So subsequent checks for VERTICES_NOT_USED 
and FREE_FACES will not be performed. Thus test order determines the error reported. 
As the test order is somewhat arbitrary, as long as the results are specific enough to 



OGC 16-064r1 

28 Copyright © 2015 Open Geospatial Consortium. 
 

explain the problem with the source data, they should be considered valid. A general 
overview about the order of checks is given in Figure 17. 

  



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 29 
 

 

Figure 17: Execution order of geometry checks in val3dity 

The above problem can be mitigated by chaining successive GeometryValidators in a 
workspace. This allows each GeometryValidator to focus on a specific test. For this 



OGC 16-064r1 

30 Copyright © 2015 Open Geospatial Consortium. 
 

project, one GeometryValidator was used for each major group of tests (one for 100 
level, one for 200 level etc.). 

For any checks that the GeometryValidator cannot yet handle, there are typically 
approaches using other FME transformers that suffice. A separate process was used to 
encode checks for too few points for the ring test (101.gml) and to compute zero volume. 
It should be noted that FME contains many tools for geometry and schema manipulation 
and validation besides GeometryValidator.  

Many readers tend to do a certain amount of data cleaning or interpretation which can 
make error detection difficult. FME’s GML reader automatically closes unclosed 
polygons. To detect errors such as ‘103.gml polygon not closed,’ datasets were read with 
FME’s XML reader and searched for LinearRings to see if there are any that are not 
closed.  

There are a wide range of bad geometries that are not present in the unit tests provided 
for the QIE. In other contexts, datasets have been observed that contain null sub 
elements, such as solids with null faces, or coordinate lists with NaN values etc. All the 
unit tests here were in an arbitrary x/y/z Cartesian space. There are problems that can 
arise during validation with datasets that are in geographic coordinates such as LL-
WGS84 etc., and during conversion between spherical and projected coordinates. Also, 
the unit test datasets provided did contain geometry instances, including invalid or 
missing links to reference geometries. Finally, most datasets were contrived for tests 
composed of a single or a few small features designed to focus on one issue. More testing 
needs to be done on production scale datasets with more complex geometries and 
textures. 

B. CityDoctor 

CityDoctor was developed at HFT Stuttgart as result of a research project from 2010 to 
2013. Results of the project can be found at http://citydoctor.hft-stuttgart.de. The 
geometry checks are described in (Wagner, Alam, Wewetzer, Pries, & Coors, 2015). 

The tool transforms CityGML data sets into an internal data model which did not 
consider inner rings at that time (future versions have this included to be conformant with 
ISO 19107). 

CityDoctor is continuously improved and maintained and will be available from 
http://www.citydoctor.eu. 

Results: As the current implementation did not support inner rings, some errors returned 
are false positives, or, not detected. There’s a “cascading effect” that causes solids 
containing polygons with inner rings to be returned as invalid although they are valid 
according to the definition in section 7.2. The tolerance used for the validation of 
planarity is 0.01 m and 0.01 rad resp. 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 31 
 

The checks are performed in a hierarchical order (which is roughly reflected in the 
requirements section 7.4). This means that for certain checks to be executed, other lower-
level checks must be passed as a prerequisite. A solid is only considered valid if all 
required checks are passed. The dependencies are listed in Table 4. 

Table 3: Check dependencies for geometry checks of CityDoctor ValidationTool 

 R1 R2 R3 R4 R5 P1/2 S1 S2 S3 
R1 CP_NUMPOINTS          
R2 CP_CLOSE          
R3CP_DUPPOINT	 X X        
R4 CP_NULLAREA X X X       
R5 CP_SELFINT X X X X      
P1 CP_PLANNATIVE X X X X      
P2 CP_PLANTRI X X X X      
P3 GE_P_INTERSECTION_RINGS          
P4 GE_P_INTERIOR_DISCONNECTED          
P5 GE_P_HOLE_OUTSIDE          
P6 GE_P_INNER_RINGS_NESTED          
P7 GE_P_ORIENTATION_RINGS_SAME          
P8 GE_P_DUPLICATED_RINGS*          
S1 CS_NUMFACES X X X X X     
S2 CS_SELFINT X X X X X X X   
S3CS_OUTEREDGE X X X X X     
S4 CS_OVERUSEDEDGE X X X X X     
S5 CS_FACEORIENT X X X X    X  
S6 CS_FACEOUT X X X X  X X X X 
S7 CS_CONCOMP X X X X    X  
S8 CS_UMBRELLA  X X X X    X  

 
Checks in italics were not part of CityDoctor Validation tool at time of QIE. Will be implemented with the next version. 
* GE_P_DUPLICATED_RINGS	is	integrated	as	part	of	CS_SELFINT 

 

C. Safe FME 

Safe Software produces FME – Feature Manipulation Engine – a toolset for supporting 
spatial data integration and harmonization. For this project, Safe provided FME to 
validate the 3D geometry unit tests. Most validation was conducted with the tools built 
into the GeometryValidator transformer. The diagnostic report on all the unit datasets 
was auto-generated as an Excel spreadsheet using an FME workspace. The code used is 
based on val3dity for the 3D part. The validation of the 2D primitives (of the planes 
forming a solid for instance) is done using other FME methods. 



OGC 16-064r1 

32 Copyright © 2015 Open Geospatial Consortium. 
 

 

Figure 18: GeometryValidator transformer used to validate 2D and 3D geometries for QIE 

Significant improvements were made to GeometryValidator over the course of the 
project, to provide more granular results and add new tests where needed. Before, FME 
would only generate a general error message such as 'degenerate geometry', or 'self 
intersection' for each error feature. Now supplementary_info items are added such as ‘too 
few points’. The error features have x,y,z coordinates so that the exact location of the 
error can be tracked. 

Many new tests added to FME relate to the 200 level polygon and shell unit tests. 
Additional tests have been added for solids, with work ongoing. Several solid problems 
are reported as invalid solids, but unit tests 303, 304 and 307 did not produce results 
directly relatable to the QIE descriptions. For 303, 304, while FME did correctly flag 
these features as invalid, FME not identify the specific errors related to manifold edges or 
vertices. For 307, FME did not identify the face orientation problem, but generated the 
error ‘Invalid Solid Boundaries - Dangling Faces’ instead. Also, 204 produced the same 
error as 203 and so is not readily distinguishable.  

In all, about 90% of the test results produced messages equivalent to QIE descriptions. 
Overall, FME was able to detect geometry problems in 100% of the unit tests provided, 
whether or not the actual error messages exactly matched the QIE descriptions. 

In some cases, validity depended on tolerances. Tolerances used include absolute 
distance of 0.0005 units, and angular tolerance of 5 degrees. These were applied 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 33 
 

primarily to the planarity checks (thickness and surface normal respectively). The 
distance tolerance was also used to assess endpoint accuracy for degenerate geometries. 

One of the challenges is the order the tests are performed. In FME, when a specific test 
fails, often further tests are ignored.  

D. CityServer3D 

The Department for Spatial Information Management at Fraunhofer IGD produces the 
CityServer3D package, a 3D geospatial database with CityGML support. CityServer3D is 
capable of executing rules against spatial data stored in the server or loaded into its 
supporting “AdminTool” (the main client). In this fashion, a large amount of spatial data 
(e.g., from a city) can be checked in one run. 

The execution of rules on the database has been used to perform CityDoctor checks on 
the QIE unit-tests. The results deviate from CityDoctor as CityServer3D is missing inner 
ring support in faces and generally imposes internal validity constraints up front. 

There are currently a few outliers, as given in the following table. 

Table 4: CityServer3D Test Results (outliers only) 

Test case(s) Expected result Actual result 

i204_*, i308_* Invalid 204/308 valid 

I201, i202, i205, i206, i207, 
i208 

Invalid polygon (2xx) Invalid ring (101) 

I305_2 Invalid Valid 

I303_1, i303_2 Invalid (303) Invalid (302) 

I306, i305_1, i304, Invalid (with certain error) Invalid (different errors) 

V005 Valid Invalid (102) 

V011, v013 Valid Invalid (302) 

V012, v014 Valid Invalid (101) 

 

9.2.3 Validation test conclusions 

In summary, the results show that there is not yet consistent error handling amongst 
validation tools. In general, basic validity scores much better than precision of the 
error(s) reported. This could be addressed by clearly specifying which errors are more 



OGC 16-064r1 

34 Copyright © 2015 Open Geospatial Consortium. 
 

accurate than others, so a report could demote less accurate errors if more accurate ones 
exist on the primitive. 

The CityServer’s approach to combining checks in a rule-based system has worked well 
and will probably continue to do so when more parameterization, e.g., the thresholds 
required for some checks, are available in the CityDoctor API. 

 

9.3 Experiment 3: Semantic validation 

CityGML contains an independent semantic model, which usually references geometric 
elements accordingly. CityDoctor is the only tool in the context of CityGML QIE that 
provides semantic checks. Table 5 lists available checks which have been tested during 
the QIE. 

Validation of semantics can be described in different ways, as follows. 

 Sole validation of the semantic model against a rule set which has to be derived 
from the referenced thematic model. This would include tests for pure semantic 
elements, for example if a BuildingPart is always a child element of a Building. 
Checks to validate the relationship of Building and BuidingPart elements are 
proposed for CityDoctor5.This is not part of this QIE, as there currently are no 
implementations of this concept. 

 Semantic validation in the context of 3D city models using additional information 
(e.g., from cadastre) or limited to plausibility checks of semantic entities with 
relation to geometry. Results of the latter are considered plausible if they are 
coherent with the geometry (Stadler 2007). This type of semantic validation is 
discussed in the following paragraphs. 

 Semantic validation in the context of 3D city models using additional information 
(e.g., from cadastre) or limited to plausibility checks of semantic attributes with 
relation to geometry. These checks can often be substituted by schema validation 
using proper rule sets. Checks for mandatory attributes and the valid range of 
attribute values will be available in the next version of CityDoctor. Rule sets can 
in many cases be defined with concepts such as Schematron or GeoSparQL. 

Table 5: List of semantic checks. 

BoundarySurface	
SE-bldg:RS-FN (Orientation of RoofSurface) 
SE-bldg:WS-FN (Orientation of WallSurface) 

                                                

5 http://citydoctor.hft-stuttgart.de/pwiki/index.php/Building-Pr%C3%BCfungen 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 35 
 

SE-bldg:GS-FN (Orientation of GroundSurface) 
SE-bldg:OFS-FN (Orientation of OuterFloorSurface) 
SE-bldg:OCS-FN (Orientation of OuterCeilingSurface) 
	
_AbstractBuilding	
SE-bldg:AB-ASA 		(Comparison	sum	of	story	heights	with	height	of	building	geometry)	
SE-bldg:AB-AMH  (Comparison	attribute	value	with	height	of	building	geometry)	
	
Building	structure	
SE-bldg:WS-PL (WallSurface contains connected  polygons with similar normal 
vectors)	
SE-bldg:RS-PL (RoofSurface contains connected  polygons with similar normal 
vectors)	
SE-bldg:GS-PL (GroundSurface contains connected  polygons with similar normal 
vectors)	
 

Description of checks 

SE-bldg:RS-FN	
The	face	normal	of	a	RoofSurface	has	a	positive	z-direction.	
 

SE-bldg:WS-FN	
The	face	normal	of	a	WallSurface	has	a	zero	z-coordinate	(within	a	tolerance).	
 

SE-bldg:GS-FN	
The	face	normal	of	a	GroundSurface	has	a	negative	z-direction.	
 

SE-bldg:OFS-FN	
The	face	normal	of	an	OuterFloorSurface	has	a	positive	z-direction.	
 

SE-bldg:OCS-FN	
The	face	normal	of	an	OuterCeilingSurface	has	a	negative	z-direction.	
 

SE-bldg:AB-ASA	
The	sum	of	all	storey	heights	of	the	attribute	storeyHeightsAboveGround	is	equal	to	
the	total	height	of	the	building	geometry	(within	a	tolerance).	



OGC 16-064r1 

36 Copyright © 2015 Open Geospatial Consortium. 
 

 

SE-bldg:AB-AMH	
The	attribute	value	of	measuredHeight	is	equal	to	the	total	height	of	the	building	
geometry	(within	a	tolerance).	
 

SE-bldg:WS-PL	
A	WallSurface	is	composed	of	several	connected	polygons	with	the	same	face	normal	
direction	(within	a	tolerance).	
 

SE-bldg:RS-PL	
A	RoofSurface	is	composed	of	several	connected	polygons	with	the	same	face	normal	
direction	(within	a	tolerance).	
 

SE-bldg:GS-PL	
A	GroundSurface	is	composed	of	several	connected	polygons	with	the	same	face	
normal	direction	(within	a	tolerance).	
 

A synthetic model with randomly assigned BoundarySurface types6 was useful to 
validate the applicability of this approach. 1795 BoundarySurface elements which are not 
coherent with the geometry, i.e., their face normal direction, were found in 394 out of 900 
buildings of the LOD2 model. As the total number of errors in this model is not exactly 
known, further research concerning the stability of the algorithms is necessary.  

This strategy could also be used for the implementation of certain checks for 
Conformance Requirements (cf. Experiment 4, section 9.4). 

 
9.4 Experiment 4: Validation of Conformance Requirements  

Conformance requirements (CRs) are defined in the CityGML standard for a number of 
topics. They describe necessary conditions or restrictions for rules of standard definitions 
and are present in many parts of the CityGML Standard document. From these editors’ 
point of view, the importance of testing conformance requirements follows in importance 

                                                

6 Biljecki, F., Ledoux, H., & Stoter, J. (2014). Error propagation in the computation of volumes in 3D city models with 
the Monte Carlo method. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-2, 31–39. 
http://doi.org/10.5194/isprsannals-II-2-31-2014 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 37 
 

just behind checking the syntax of a model. Only now is there a formal way to check a 
CityGML document’s compliance. 

The aim of Experiment 4 of the QIE was to analyze the conformance requirements in the 
standards document and to find an automatic and formal correction mechanism for testing 
data against the conformance requirements of CityGML. 

The strategy for this experiment can be described as follows. First, all conformance 
requirements of the standard were collected and classified according to the agreed 
common coding system. To facilitate the discussion on the transformation of 
conformance requirements into testable statements and keep formal track of the 
discussion during the QIE meetings, a workflow was developed. 

 The conformance requirement is split into several citations. This is necessary 
because conformance requirements are generally multiple sentences long and 
make various logical statements which need to be considered separately. 

 Next, individual citations are analyzed and interpretations made. These 
interpretations do not need to be mutually consistent and are used as input for the 
discussion. Interpretations are the first non-trivial step towards formalizing the 
conformance requirements. This step has proven to be important because it made 
the differences in the understanding of the citations very clear and showed the 
conflicts between different interpretations. 

 Based on the discussion of the interpretations, definitions are formed. Each 
definition should be fully unambiguous and follow the line of the interpretation 
from which it came. 

 Finally, each definition should ideally be accompanied by a formalization. These 
formalizations contain the same information as the definitions, however they are 
expressed in a formal language. 

This exercise collected 128 conformance requirements from the standard, which can be 
broken down as shown in Table 6. 

Table 6: CityGML 2.0 Conformance Requirements 

# of 
CR’s 

Module of CityGML 2.0 Conformance Requirements in Detail 

9 CityGML Core module CO-core:Core-001 (CityModel Containment) 
CO-core:Core-002 (external References) 
CO-core:Core-003 (addresses) 
CO-core:Core-004 (implicit geometry part of Core module)  
CO-core:Core-005 (Xlink for city objects) 
CO-core:Core-006 (Xlink for addresses)  
CO-core:Core-007 (implicit geometries used in extensions) 
CO-core:Core-008 (MIME Type) 
CO-core:Core-009 (Xlink for implicit geometry) 



OGC 16-064r1 

38 Copyright © 2015 Open Geospatial Consortium. 
 

12 Appearance module not part of QIE 

32 Bridge module not part of QIE 

28 Building module CO-bldg:BU-001 (Building --- BuildingPart) 
CO-bldg:BU-002 (lod0FootPrint and lod0RoofEdge) 
CO-bldg:BU-003 (lodXSolid and lodXMultiSurface) 
CO-bldg:BU-004 (boundedBy) 
CO-bldg:BU-005 (lodXMultiCurve) 
CO-bldg:BU-006 (outerBuildingInstallation) 
CO-bldg:BU-007 (outerBuildingInstallation - boundedBy) 
CO-bldg:BU-008 (opening)  
CO-bldg:BU-009 (interiorRoom) 
CO-bldg:BU-010 (interiorBuildingInstallation) 
CO-bldg:BU-011 (interiorBuildingInstallation - boundedBy)  
CO-bldg:BU-012 
CO-bldg:BU-013 
CO-bldg:BU-014 
CO-bldg:BU-015 
CO-bldg:BU-016 
CO-bldg:BU-017 
CO-bldg:BU-018 
CO-bldg:BU-019 
CO-bldg:BU-020 
CO-bldg:BU-021 
CO-bldg:BU-022 
CO-bldg:BU-023 
CO-bldg:BU-024 
CO-bldg:BU-025 
CO-bldg:BU-026 
CO-bldg:BU-027 
CO-bldg:BU-028 

Note: Conformance requirement 9 - 11 deal with LoD4 and are not 
part of the QIE 

1 CityFurniture module not part of QIE 

3 CityObjectGroup 
module 

not part of QIE 

3 Generics module not part of QIE 

1 LandUse module not part of QIE 

4 Relief module not part of QIE 

4 Transportation module not part of QIE 

25 Tunnel module not part of QIE 

1 Vegetation module not part of QIE 

5 WaterBody module not part of QIE 

 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 39 
 

QIE Experiment 4 was limited to the Core and Building modules. The remaining modules 
will be completed within the SIG3D Quality Working Group. The complete results will 
be published by the SIG3D after completion.  

9.4.1 Interpretation of conformance requirements  

Initially, a requirement was analyzed if it was correctly applicable to the domain of this 
experiment. In case of missing application domains like a geometry-oriented CR, this CR 
should be defined in the geometry test experiment instead of another CR experiment to 
ensure that each rule is only tested once. 

In an attempt to find an exact formulation for testing, a standardized test documentation 
was created for each CR which consists of: 

 a complete citation and decomposition of the CR by splitting up complex 
formulations into small isolated pieces; 

 an analysis of the created isolated pieces and, if necessary, a further 
decomposition until basic, but exact formulations are found; 

 an interpretion and classification of basic rules into 
mandatory/optional/obsolete; 

 the transformation of basic rules into a formal language: Schematron was chosen 
as an appropriate language for this purpose; 

 validation of CR; and 

 creation of test data for CR. 

As an example of this process, consider the conformance requirement CO-bldg:BU-003 
found in the CityGML 2.0 document on page 78 section 10.3.9(3) dealing with the use of 
lodXSolid and lodXMultiSurface in buildings: 

 

Figure 19: Conformance Requirement 10.3.9(3) according to CityGML 2.0 

This conformance requirement is split into the following citations: 

A. The lodXSolid and lodXMultiSurface, X ∈ [1..4], properties 
(gml:SolidPropertyTyperesp. gml:MultiSurfacePropertyType) of AbstractBuilding may 
be used to geometrically represent the exterior shell of a building (as volume or surface 
model) within each LOD. 

B. For LOD1, either lod1Solid or lod1MultiSurface must be used, but not both. 



OGC 16-064r1 

40 Copyright © 2015 Open Geospatial Consortium. 
 

C. Starting from LOD2, both properties may be modelled individually and com-
plementary 

These citations lead us to the following interpretations. 

[I.1] Citation A is already part of the schema and does not declare anything new. 

[I.2] Citation B: if lod1Solid is used in a building, lod1Multisurface cannot be used or 
vice versa. 

[I.3] Citation C: For LoDx, x ∈ [2..4], either one of the geometry representations (solid | 
multisurface) may be used, or both. This is already part of the schema. So it forms no 
additional requirement. 

Therefore, the only remaining rule (I.2) leads us to the following definition: 

[D.1] From [I.2] : a Building or BuildingPart element shall not consist of both an 
lod1Solid property and an lod1MultiSurface property. 

This can be transformed as follows to Schematron: 

 

Figure 20: Mapping of a definition to Schematron (adapted from van Walstijn (2015)) 

All other rules of the CityGML Core and Building module are analyzed in a similar way. 
The resulting documents can be found in the Wiki page for this experiment or in the 
annex of this document. 
Test data and examples are provided or will be provided later on the Wiki page of this 
experiment.  



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 41 
 

 

Figure 21 Wiki page example 

 

9.4.2 Conformance Requirements – General findings 

Some of the conformance requirements have not been described exactly in a formal 
language, but are formulated colloquially. This causes the following problems. 

 Undefined terminology 
Several CRs use terminology that is not properly defined. For example, the base 
requirement makes a distinction between buildings consisting of one 
homogeneous part and buildings consisting of individual structural segments. 
However, a clear, unambiguous explanation which formally distinguishes both 
cases from another is missing. Therefore, it is impossible to formally validate this 
requirement. Another example is the use of the expression LoD in the CRs. In 
many requirements, formulations like "From LoD X, ..." or "This element should 
not be used for LoD X" are used. This can at least be interpreted in three different 
ways. Besides an intuitive overview of what each LoD consists of, there is no 
formal description what constitutes exactly an LoD. This makes it rather difficult 
to formalize and validate CRs which depend on such a vocabulary. Because the 
main purpose of CRs is to express testable statements to which the data should 



OGC 16-064r1 

42 Copyright © 2015 Open Geospatial Consortium. 
 

conform, all terminology used in the formulation of a CR should be unambiguous 
and precisely defined. 

 Modeling guidelines. 
Closely related to the previous category is the problem that a number of CRs 
consist of modeling guidelines. An example from BU-006: “BuildingInstallation 
elements shall only be used to represent outer characteristics of a building which 
do not have the significance of building parts.” Such statements are very difficult 
to test, because “significance” is not formally defined. Another example is 
citation D of BU-008 which states that the embrasure surface of windows or doors 
shall belong to the BoundarySurface element and not the Opening element. Such 
statements specify how reality should be mapped to CityGML elements, which 
can never be validated incontestably and are of the type: “bridges should not be 
modeled as Building element.” Such modeling guidelines can only be inspected 
manually because there is no objective way of checking that the contents of a 
Building element, is in fact a building. Such guidelines could be formulated in a 
best practice document which describe how adopted OGC documents shall be 
used or implemented. 

 Incomplete formulation 
Some CRs appear not be to complete. An example is the CR concerned with the 
Room element. BU-009 states that the Room element should only be used from 
LoD4. Accordingly, the Room element only consists of lod4Solid and 
lod4MultiSurface properties to reference geometry. Besides these direct 
properties, the Room element can also reference boundary surface elements to 
semantically classify the walls of the room. This boundary surface element has 
also an lod2MultiSurface- and lod3MultiSurface property besides the 
lod4MultiSurface property. It seems logical to exclude the use of LoD2 and LoD3 
property elements although it is not explicitly stated in the CR. A similar situation 
has been observed for BU-005. 

 Redundancy 
Quite a number of CRs contain an introductory statement which is obvious from 
the text in the thematic module itself and the UML diagram. Also, some CRs 
contain redundant information. That is, they contain information that is already 
formulated in another CR. To reduce any ambiguities about the content of CRs, 
redundancy should be avoided. 

This discussion shows that when the above mentioned points are not considered, it is 
difficult to create validation tests from the CRs. This is problematic since CRs have the 
purpose to be used as a test of the validity of instance documents. In fact, a CR is defined 
by the OGC as an "expression in the content of a document conveying criteria to be 
fulfilled if compliance with the document is to be claimed and from which no deviation is 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 43 
 

permitted". Furthermore, it is noted that: "Anything without a defined test is a priori not 
testable and thus would be better expressed as a recommendation." 7 

For that purpose, it is suggested that each CR should be stated as a logical material 
condition with a structure as shown in the following figure. 

 

 

Figure 22: Proposed structure of a conditional sentence consisting of 4 structural elements for 
formulating conformance requirements. (adapted from van Walstijn (2015)) 

 

 The protasis consists of a condition on a subject and formulates unambiguously the 
situation in which the CR should apply. The apodosis or consequence consists of a 
combination of object, modal and predicate. The modal is used to express the level of 
strictness between the object and the predicate and takes the form of a modal verb. 
Naturally the exact meaning of these modal verbs should be defined. In fact, The OGC 
has defined the following modal verbs to be used for OGC standards.  

 Shall verb form used to indicate a requirement to be strictly followed to conform 
to this standard, from which no deviation is permitted. 

 Must equivalent to shall.  

 Should verb form used to indicate desirable ability or use, without mentioning or 
excluding other possibilities. 

 May verb form used to indicate an action permissible within the limits of this 
standard. 

 Can verb form used for statements of possibility. 

Furthermore, whenever subject and object are not one and the same, the relation between 
them should be made explicit. With this structure, it should be possible to formulate CRs 
that are free from any ambiguity. Nonetheless each CR should be always checked to 
ensure that all vocabulary in either the condition, the predicate, or specification of object 
or predicate is fully unambiguous and leaves no room for interpretation. During the 
specification of CRs, it should always be considered that a software implementation of 
the CR needs to have a boolean domain. So the evaluation of a CR on test data shall 
always result in either true or false. 

                                                

7 C Reed. Policy Directives for Writing and Publishing OGC Standards: TC Decisions. OGC Doc 06-135r11 



OGC 16-064r1 

44 Copyright © 2015 Open Geospatial Consortium. 
 

Also, it is possible to specify the CRs as a Schematron schema. Such schemas could then 
be accompanied by natural language to clarify the rule. By making these Schematron 
schemas leading or normative, all ambiguity would be removed from the CRs. 

All CRs are identified by the common coding system agreed in the QIE as CO-
namespace:YY-ZZZZ, e.g. CO-bldg:BU-004 for the fourth CR regarding buildings in the 
building namespace.  

The editors recommend a return coding and classification system for testing CRs which is 
directly linked to the underlying test as RET-CO-namespace:YY-ZZZZ, classes 
Error/Warning, e.g. RET-CO-bldg:BU-002 class Error  

 

Figure 23: Requirements Coding System 

9.4.3 Validation results 

virtualcityVALIDATOR 

As part of the Master thesis “Requirements for an Integral Testing Framework of 
CityGML Instance Documents” by Lucas van Walstijn (2015), a validation framework 
has been prototypically implemented which is based on the concepts of the validation 
framework described in chapter 6.1 Validation framework. This Web Processing Service 
(WPS) based tool has been used to validate CityGML instance documents against all the 
QIE developed Schematron schemas. This prototype formed the basis for the 
virtualcityVALIDATOR, a product of virtualcitySYSTEMS GmbH. 

 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 45 
 

 

Figure 24: Screenshot of a test-report created by the virtualcityVALIDATOR. Input data is taken 
from the Berlin 3D download portal. (adapted from van Walstijn, (2015)) 

 

9.4.4 Process model 

All tasks based on the previous explanations of the formulation of test conditions for CRs 
can be formalized and described as a standardized process, which contains the elements 
in Figure 25. 



OGC 16-064r1 

46 Copyright © 2015 Open Geospatial Consortium. 
 

 

Figure 25: BPMN process model for analyzing conformance requirements 

The following steps have to be performed: 

1. Identify and extract CRs in a given document (in this case the CityGML 2.0 
specification); 

2. Split up complex formulations into small isolated pieces; 

3. Analyze isolated pieces and split up further parts until basic but exact 
formulations are found; 

4. Rate and classify testing formulations (mandatory / optional / obsolete); 

5. Transform testing formulations into a formal language; and 

6. Create a document containing at least all steps of transformation. 

Upon closer inspection of the figure above, one will notice that this process model can be 
generalized for all kinds of tests in content of CityGML, e.g., geometry tests or semantic 
tests and a generalized process model can be denoted as shown in Figure 26. 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 47 
 

 

Figure 26: BPMN process model for analyzing general tests 

 

One lesson learned in experiment 4 of the QIE is that CRs can actually be formalized and 
thus tested.  

As a consequence of this experiment, for future versions of CityGML, it is recommended 
that a much more precise formulation of the CRs be made. Furthermore all elementary 
definitions of CityGML should be defined explicitly, so that no interpretation is needed: 
e.g., what is a building and what is a buildingPart? 

10 Use cases and requirements for geometry 

During the kick-off phase of the experiment, a collection of standard use-cases was 
defined.  

The specific questions to be answered were: 

 Is there a universal, reasonably generic set of CityGML requirements that should 
be specified in addition to the CityGML standard; 

 What are the detailed quality requirements to be specified; and 

 How can these requirements be tested to ensure that they have been adhered to? 

The generic use cases to be explored are the creation and maintenance of CityGML 
models for national and regional mapping including visualization and analysis such as: 

 Line of sight; 



OGC 16-064r1 

48 Copyright © 2015 Open Geospatial Consortium. 
 

 Shading; 

 Flooding; 

 Aggregation of floorspace for buildings/sites; 

 Energy demand simulation; and 

 Scenario evaluation in urban planning. 

The initial goal to give recommendations for respective use-cases could not be reached 
within the CityGML Quality IE. The project participants agreed that it would be 
beneficial to the community if there were guidelines on how to validate CityGML 
instance documents in order to be of appropriate data quality and structure for a certain 
standard use case. 

This task can also be solved on a national level to allow for consideration of local and 
regional differences. 

11 Conclusion and Recommendations 

This project has come a long way towards refining both testing methods and unit test 
datasets in the area of both CityGML, specifically and 3D geospatial data, in general.  

The QIE team made great strides in bringing together a wide range of users from a 
variety of 3D communities to promote collaboration in the area of validating CityGML 
and 3D data. This is in itself a great accomplishment, since work in the area of 
developing common standards around validation, specifically as related to CityGML, has 
been lacking. More work needs to be done to refine the unit tests and better document 
those tests in terms of validity status, error type, error priority, etc. Even basic graphical 
depictions of what the error actually looks like, developed in the course of the project, 
were very helpful to promote discussion and common understanding of the issues at play. 

11.1 Recommendations for geometry and semantics  

CityGML as an open standard allows many different modeling alternatives of one and the 
same geometric structure (cf. Section 9.2.1). Validation of a given geometry is not 
possible without clear specification of the requirement, e.g. whether a Solid geometry or 
MultiSurface geometry is considered valid, or even both. In a validation plan, all aspects 
which are not restricted in an unambiguous way by the CityGML standard must be 
clearly specified with sufficient details. 

This report recommends introducing the concept of tolerance for the geometric validation 
of objects. Neither ISO19107 nor OGC GML address this issue, but this experiment 
suggests that validation can only be performed when a tolerance is defined. 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 49 
 

This is especially true for polygon planarity (i.e., all the points of a polygon forming a 
surface of a solid must lie on a plane), which is a requirement.  

This reports proposes three requirements for tolerance. 

1. The distance between every point forming a polygon and a plane is less than a 
given tolerance e_1 (eg 1mm). This plane should be a plane fitted with least-
square adjustment. 

2. The distance between every point forming a polygon and all the planes defined by 
all possible combinations of 3 non-collinear points is less than e_1. This is to 
ensure that surfaces having a very small 'fold' are detected. 

3. A tolerance for the snapping of input vertices should be defined. Solids stored in 
GML are modelled with very little topological relationships. For instance, all six 
surfaces of a cube are stored independently, and thus the coordinates ($x,y,z$) of 
a single point (where 3 surfaces 'meet') is stored 3 times. For the validation, one 
needs to identify that these 3 points are the same, and thus a tolerance should be 
used. 

Most important is the method for modeling geometric features. The editors recommend 
that buildings should be modeled as Solid elements, only roof overhangs should be 
Multisurface elements. In addition, BoundarySurfaces should contain their actual 
geometry, which is then referenced by the Solid element. 

To enable comparison of validation results from different tools, it is necessary to define 
check algorithms in a consistent and comparable way. Furthermore, the order of 
execution of interdependent geometric checks can influence the validation result. It is 
thus required to execute the checks in a standardized order. Recommendations for this 
order are given in section 9.2.2. 

Semantics are an important design concept of CityGML. Semantics and geometry must 
be coherent. Semantic validation is thus focused on the relationship of semantics and 
geometry. For example, a RoofSurface element has a face normal which is directed 
“upwards.” This example shows that the validation criteria is rather imprecise: the 
validation result can be regarded as the plausibility of a geometric feature having certain 
well defined semantics. Exceptions might occur, and the angular range of “upwards” 
must be set according to users’ needs. 

Another aspect of semantic validation is be the plausibility check of attributes with 
relation to geometry, such as measuredHeight. For the validation results, the same 
considerations have to be made as stated above. 

In some cases, it is difficult to separate semantics from conformance requirements. 
However, the same approach as described in Section 9.3 can be used to derive semantic 
restrictions from the CityGML standard, which might be useful for further development. 



OGC 16-064r1 

50 Copyright © 2015 Open Geospatial Consortium. 
 

CityDoctor was the only tool which provided semantic validation during the QIE. The 
current implementation considered checks of BoundarySurface orientation and attributes 
with relation to geometry. Within a tolerance, these semantic elements can be validated 
against their geometry. It is important to define a suitable tolerance and keep in mind that 
exceptional cases can still cause a validation error, although the geometric-semantic 
coherency was not violated. These cases have to be inspected manually. 

11.2 General recommendations for conformance requirements  

 Each CR should be verified through the CR process model as described in Figure 
25. Reaching the “ignore” exit leads to an invalid CR which may be ignored.  

 Each CR should be formulated precisely. Colloquial formulations should be 
avoided, otherwise a translation or transformation into a set of exact formulations 
is needed. 

 Each CR should be uniquely associated to a module or domain (for example 
building) and should not span across domains (neither technically, 
geometrically, semantically, nor schematically). 

 If a basic definition used in a CR is ambiguous, it must be defined in a dictionary. 
This basic definition should be used consistently in all CRs. 

 These recommendations should be applied to existing, future and additional CRs. 

11.3 Recommendations for existing conformance requirements  

The following CRs or parts of a CR of the CityGML 2.0 building module are classified 
against the general recommendations. 

 

Conformance Requirement Deals with Sentences Status Basic 
Requirement 

Classification 

CO-bldg:BU-001 Building - BuildingPart (A) 
(B) 
(C) 

valid 
valid 
valid 

(D1) 
(D2) 
(D3) 

mandatory 
optional 
mandatory 

CO-bldg:BU-002 lod0FootPrint and 
lod0RoofEdge 

(A) 
(B) 

valid 
valid 

(D1) 
(D2) 
(D3) 

mandatory 
mandatory 
mandatory 

CO-bldg:BU-003 lodXSolid and 
lodXMultiSurface 

(A) 
(B) 
(C) 

invalid 
valid 
invalid 

(D1) 
 

mandatory 

CO-bldg:BU-004 boundedBy (A) 
(B) 
(C) 

valid 
invalid 
valid 

(D1) 
(D2) 

mandatory 
(D2) difficult to 
translate into 
schematron 



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 51 
 

CO-bldg:BU-005 lodXMultiCurve (A) 
(B) 

valid 
invalid 

(D1) optional 

CO-bldg:BU-006 outerBuildingInstallation (A) 
(B) 
(C) 

valid 
invalid 
invalid 

(D1) optional 

CO-bldg:BU-007 outerBuildingInstallation - 
boundedBy 

(A) 
(B) 

invalid 
valid 

(D1) mandatory 

CO-bldg:BU-008 opening (A) 
(B) 
(C) 
(D) 

valid 
invalid 
invalid 
invalid 

(D1) optional 

 

Hence, the invalid parts are recommended as to be treated as obsolete. 

It is recommended that an official change request should be submitted if either a CR is 
classified as invalid but meaningful or desirable or optional but necessary. 

11.4 Recommendations for future conformance requirements  

It is recommended for the development of CityGML 3.0 that each CR should be built in 
accordance with the general recommendations for CRs as described in chapter 10.2. 

11.5 Change requests 

 The order of child elements is different for _AbstractBuilding in LOD 2 and LOD 
3. For a building the sequence <lod2Solid> … </lod2Solid> followed by 
<boundedBy> …</boundedBy> is correct, while <lod3Solid> … </lod3Solid> 
followed by <boundedBy> …</boundedBy> is invalid. The sequence has to be 
the other way around in this case (<boundedBy> …</boundedBy> followed by 
<lod3Solid> … </lod3Solid>) due to the definition in the schema. This is 
confusing and also often not taken into account by the software generating the 
models. As a consequence, most LOD3 building models do not validate against 
the schema as the order of elements is wrong. This report recommends to change 
the order of elements: put the <boundedBy> element either before the 
<lod0FootPrint> element or before the <consistsOfBuildingPart> element.  

 The editors recommend introducing the concept of tolerance for the geometric 
validation of objects. Neither ISO19107 nor OGC GML address this 
issue, but this experiment suggests that validation can only be performed when a 
tolerance is defined. 

 Tolrance is especially important for polygon planarity (i.e., all the points of a 
polygon forming a surface of a solid must lie on a plane) which is a 
requirement in CityGML (for details, see section 11.1). 

 Though there are some ways to model a CityGML building by using Solids or 
MultiSurfaces, a volume model of a building should be modeled solely using 



OGC 16-064r1 

52 Copyright © 2015 Open Geospatial Consortium. 
 

gml:Solid geometry elements and should meet the requirements of a solid 
geometry.  

 If BoundarySurfaces are defined in the model, they contain the actual geometry as 
defined in CR 10.3.9-4 of the CityGML 2.0 standard document. In addition, it is 
strongly recommended that the building geometry as Solid element referencing 
the Boundary Surface geometry must be mandatory. 

 Change CR 10.3.9-1 as “main part” of a building is very difficult to validate. A 
building with buildingParts containing the entire geometry shall be valid. 

12 Next steps 

Further improvement of the validation process is required. Tools available to date do not 
deliver the identical validation results when seemingly deploying the same checks. 
Differences in implementation, algorithms, and tolerances or the order of check execution 
can cause this divergence. Stronger definitions of checks could help to solve this 
problem. However, there is a general need to certify/validate the validation tools. 
Strategies to guarantee unified and certified validation results should be worked out in 
future. This process should include a discussion of numeric accuracy in order to avoid 
instable computations and/or random results to floating point errors. Specific future work 
should include: 

- Unification of workflows; 

- Harmonization of specification of validation plans; 

- Harmonization of error codes (concept is in the report, but just as a 
recommendation); 

- Define profiles / restrictions for specific applications; 

- Focus on buildings from the QIE, then extend to other features; 

- Interaction with different features; and 

- Repair / healing. 

It should be noted that GeometryValidator as well as CityDoctor have a repair mode, and 
that many problems can be repaired. While repairs can themselves introduce new 
problems, the results of automated repairs can be revalidated. This can be helpful for 
managing large volumes of 3D data. 

Another area worth exploring is deploying validation and repair as a web service such as 
via REST, WFS-T or WPS. With FMEServer, any workspace that accepts or produces 
XML/GML/CityGML can be deployed as a data streaming service.  



OGC 16-064r1 

Copyright © 2015 Open Geospatial Consortium. 53 
 

More work needs to be done to refine unit tests and better document those tests in terms 
of validity status, error type, and error priority. For example, basic graphical depictions of 
the errors (see 7.5) were very helpful to promote discussion and common understanding 
of the issues at play. 



OGC 16-064r1 

54 Copyright © 2015 Open Geospatial Consortium. 
 

13 Resources 

City Doctor (Deutsch): Methoden und Metriken zum Qualitätsmanagement virtueller 
Stadtmodelle  
City Doctor (English): Methods and metrics for quality management of virtual city 
models (Access information from Volker Coors)  
CityGML_QIE_Master_Contact_List.docx: CityGML QIE Contact List  
CityGML_QualityIE_Activity_Plan_v0.4.5.docx: Latest activity plan  
Kick-off meeting resources  
TU Delft Github Site: Repository for the test datasets for the CityGML QIE Geometric 
Validation  
Random3Dcity - synthetic multi-LOD CityGML data, with several versions of datasets 
that contain intentional errors of multiple classes (topology, semantics, ...)  
SIG3D Modeling Guide (English): Modeling guide of the SIG3D for 3D objects - Rules 
for validating GML geometries in CityGML (part 1) and rules for modeling buildings 
(part 2)  
SIG3D Quality Working Group Wiki (Access information form Egbert Casper)  
SIG3D Test Cases  
van Walstijn, Lucas (2015). Requirements for an Integral Testing Framework of 
CityGML Instance Documents (Unpublished master thesis). TU Berlin, Germany.8

                                                

8 For information: lvanwalstijn@virtualcitySYSTEMS.de 



OGC 16-064r1 

55 

Annex A 

Three-dimensional primitives in the context of the CityGML QIE 
1  What is an ISO 19107 solid?  

ISO 19107 defines different geometric primitives9: 0D is a GM_Point, 1D is a GM_Curve, 2D is 
a GM_Surface, and 3D is a GM_Solid. A primitive is built with lower-dimensional primitives, 
e.g., in Figure 27 the GM_Surface is composed of 2 (closed) GM_Curves, which are composed 
of several GM_Points.  

 

  
Figure 27: ISO 19017 primitives. 

Observe that primitives do not need to be linear or planar, i.e., curves defined by mathematical 
functions are allowed. 

In our context, the following three definitions from ISO (2003) are relevant:  

Definition 1 A GM_Solid is the basis for 3-dimensional geometry. The extent of a solid is defined by the boundary 
surfaces. The boundaries of GM_Solids shall be represented as GM_SolidBoundary. […] The 
GM_OrientablesSurfaces that bound a solid shall be oriented outward.  

Definition 2 A GM_Shell is used to represent a single connected component of a GM_SolidBoundary. It consists of 
a number of references to GM_OrientableSurfaces connected in a topological cycle (an object whose boundary is 
empty). […] Like GM_Rings, GM_Shells are simple.  

Definition 3 A GM_Object is simple if it has no interior point of self-intersection or self-tangency. In mathematical 
formalisms, this means that every point in the interior of the object must have a metric neighbourhood whose 
intersection with the object is isomorphic to an n-sphere, where n is the dimension of this GM_Object.  

The bounding surfaces of a shell thus form a closed and orientable two-dimensional manifold 
(or 2-manifold for short). A 2-manifold is a space that is topologically equivalent to R2, the 2D 
                                                

9 All the geometric primitive have the prefix ‘GM_’ 

0D

GM Point

1D

GM Curve

2D

GM Surface

3D

GM Solid



OGC 16-064r1 

56 Copyright © 2015 Open Geospatial Consortium. 
 

Euclidean space. An obvious example is the surface of the Earth, on which near any point the 
surrounding area is topologically equivalent to a plane. If a shell is stored in a data structure, it 
implies that each edge is guaranteed to have a maximum of two incident faces, and that around 
each vertex the incident faces form one ‘umbrella,’ as Figure 28 shows.  

 

  
Figure 28: The red vertex is a non-manifold vertex since the neighborhood around it is not topologically 
equivalent to a plane. 

To be valid shell, the 2-manifold should be closed, i.e., there should not be ‘holes’ in the surface 
(in other words, it should be watertight). 

Figure 29 shows a solid that respects the definition above.  

 



OGC 16-064r1 

57 

  
Figure 29: One solid which respects the international definition. It has one exterior shell and one interior 
shell (forming a cavity). 

First, observe that the solid is composed of two shells (both forming boundaries), one being the 
exterior and one being the interior shell. The exterior shell has eleven surfaces, and the interior 
one six. An interior shell creates a cavity in the solid—cavities are also referred to as “voids” or 
holes in a solid. A solid can have no inner shells, or several. Observe that a cavity is not the 
same as a hole in a torus (a donut) such as that in Figure 30: it can be represented with one 
exterior shell having a genus of 1 and no interior shell.  

 



OGC 16-064r1 

58 Copyright © 2015 Open Geospatial Consortium. 
 

  
Figure 30: A ‘squared torus’ is modelled with one exterior boundary formed of ten surfaces. Notice that 
there is no interior boundary. 

2  Primitives in CityGML 

CityGML uses the ISO 19107 geometric primitives for representing the geometry of its objects. 
However, as shown in Figure 31 

 



OGC 16-064r1 

59 

  
Figure 31: UML diagram of the CityGML geometry model. 

only a subset is used, with the following two restrictions: (1) GM_Curves can only be linear 
(thus only LineStrings and LinearRings are used); (2) GM_Surfaces can only be planar (thus 
Polygons are used). The primitives for constructing Shells and Solids are shown in Figure 32.  

 

  
Figure 32: 2D CityGML primitives. 

Definition 4 A LineString is a Curve with linear interpolation between each Point; each two consecutive Points 
defines a line segment. A LinearRing is a LineString that is both closed and simple.  

Definition 5 A Polygon is a surface patch that is defined by a set of boundary curves and an underlying surface to 
which these curves adhere. The default is that the curves are coplanar and the polygon uses planar interpolation in 
its interior.  

    

       
 

   

                                               
                                               

                 
                  

                                         
                  

   

                
                

                
                   

                    
                 

            

 
                                            

                
               

                
                 

                     
                   

                
               

<<Geometry>>
gml::_GeometricPrimitive

<<Geometry>>
gml::_Solid

<<Geometry>>
gml::_Surface

<<Geometry>>
gml::_Curve

+position : gml::DirectPosition [1]

<<Geometry>>
gml::Point

<<Geometry>>
gml::CompositeSolid

<<Geometry>>
gml::Solid

<<Geometry>>
gml::CompositeSurface

<<Geometry>>
gml::TriangulatedSurface

<<Geometry>>
gml::Triangle+stopLines : gml::LineStringSegment [0..*]

+breakLines : gml::LineStringSegment [0..*]
+maxLength : gml::LengthType [1]
+controlPoint : gml::posList [1]

<<Geometry>>
gml::TIN

<<Geometry>>
gml::Polygon

+orientation : gml::SignType [0..1]

<<Geometry>>
gml::OrientableSurface

<<Geometry>>
gml::CompositeCurve

+position : gml::DirectPosition [2..*]

<<Geometry>>
gml::LineString

<<Geometry>>
gml::_Ring

+position : gml::DirectPosition [4..*]

<<Geometry>>
gml::LinearRing

<<Geometry>>
gml::Surface

<<Geometry>>
gml::_SurfacePatch

<<Geometry>>
gml::_Geometry

<<Geometry>>
gml::Rectangle

0..*

0..1

interior

*

*

1..*

*

solidMember

1

*

*

1

trianglePatches

0..2

1

baseSurface

1

*

1..*

*

curveMember

1

0..1

exterior

1..*

1

patches

1

*

exterior

1..*

*

surfaceMember

interior

exterior

exterior

       

LinearRing PolygonLineString



OGC 16-064r1 

60 Copyright © 2015 Open Geospatial Consortium. 
 

Each shell of a solid is thus composed of Polygons, and these can have inner rings (which are 
often referred to as holes). Observe that the top polygon of the solid in Figure 29 has one inner 
ring, but that other polygons “fill” that hole so that the exterior shell is “watertight” (i.e., it has 
no holes and is thus closed). 

3  QIE = no cavities 

It should be noticed that during the QIE, only buildings in LOD1, LOD2, and LOD3 were 
considered, and, as a consequence, cavities in solids are ignored. 

This implies that a solid has exactly one shell representing its exterior boundary. However, 
this does not mean that inner rings in the boundary surfaces are excluded, because simple LOD1 
buildings having for instance, an inner yard, require inner rings, as Figure 30 shows; an 
alternative to representing inner rings is to decompose the face into several polygons, e.g., to 
triangulate the face. 

4  Requirements for validity of the 3D primitives 

Each primitive used to construct a higher-dimensional primitive should be valid. This means 
that in order to validate a solid, one must also ensure that each ring and polygon used is valid. 
For rings and polygons, observe that these will be embedded in 3D (i.e., the points used to 
construct rings will have (x,y,z) coordinates). 

4.1  Rings & Polygons 

According to the ISO 19107 abstract specification, the different boundaries of a polygon are 
allowed to interact with each other, but only under certain circumstances. The implementation 
specifications defined by the OGC (OGC, 2006) gives clear requirements:  

1. Polygons are topologically closed;  
2. The boundary of a Polygon consists of a set of LinearRings that make up its exterior and 

interior boundaries;  
3. No two Rings in the boundary cross and the Rings in the boundary of a Polygon may 

intersect at a Point but only as a tangent, e.g.,   

 P Polygon, c1,c2 P.Boundary(),c1≠c2, 

 p,q Point,p,q c1,p≠q,[p c2 q c2]; 
4. A Polygon may not have cut lines, spikes or punctures e.g.:  

 P Polygon,P=P.Interior.Closure; 
5. The interior of every Polygon is a connected point set; and 



OGC 16-064r1 

61 

6. The exterior of a Polygon with 1 or more holes is not connected. Each hole defines a 
connected component of the exterior.  

Some concrete examples of invalid polygons are shown in Figure 33.  

 

  
Figure 33: Some examples of invalid polygons. Polygon p12 has its exterior and interior rings defined by the 
same geometry. 

Below are explanations for some of the polygons in Figure 33. 
1. Each ring should be closed (p11): its first and its last points should be the same.  

2. Each ring defining the exterior and interior boundaries should be simple, i.e., non-self-
intersecting (p1 and p10). Notice that this prevents the existence of rings with zero-area (p6
), and of rings having two consecutive points at the same location. It should be observed 

p2

p4 p5 p6

p7 p8 p9

p3

p12p11p10

p1

exterior

boundary

interior

boundary



OGC 16-064r1 

62 Copyright © 2015 Open Geospatial Consortium. 
 

that the polygon p1 is not allowed (in a valid representation of the polygon, the triangle 
should be represented as an interior boundary touching the exterior boundary).  

3. The rings of a polygon should not cross (p3, p7, p8 and p12) but may intersect at one 
tangent point (the interior ring of p2 is a valid case, although p2 as a whole is not since the 
other interior ring is located outside the interior one). More than one tangent point is 
allowed, as long as the interior of the polygon stays connected (see below).  

4. A polygon may not have cut lines, spikes or punctures (p5 or p6); removing these is known 
as the regularization of a polygon (a standard point-set topology operation).  

5. The interior of every polygon is a connected point set (p4).  

6. Each interior ring creates a new area that is disconnected from the exterior. Thus, an 
interior ring cannot be located outside the exterior ring (p2) or inside other interior rings 
(p9).  

4.2  Planarity requirement 

A polygon must be planar, i.e., all its points (used for both the exterior and interior rings) must 
lie on a plane. Interestingly, the concept of tolerance is not mentioned in the standards by ISO 
and OGC. 

For the QIE, two requirements are proposed:  

1. the distance between every point forming a polygon and a plane is less than ε1, a given 
tolerance (e.g., 1mm). This plane should be a plane fitted with least-square adjustment; 
and  

2. the distance between every point forming a polygon and all the planes defined by all 
possible combinations of 3 non-collinear points is less than ε1.  

The second requirement is to ensure that cases such as that in Figure 34 are detected.  

 



OGC 16-064r1 

63 

 

 
Figure 34: All the points of the top polygon are within 1mm but the polygon cannot be considered planar. 

From algorithmic point of view, the definition is not very efficient, but in practice it can be 
implemented with a triangulation of the polygon (any triangulation): the orientation of the 
normal of each triangle must not deviate more than a certain user-defined tolerance ε2 (e.g., 1 
degree). 

4.3  Snapping tolerances for vertices 

Geometries modeled in CityGML, and in GML in general, store amazingly very little 
topological relationships. For instance, all six surfaces of a cube are stored independently. This 
means that the coordinates (x,y,z) of a single point (where 3 polygons “meet”) is stored 3 times. 
It is possible that these 3 vertices are not exactly at the same location, e.g., (0.01, 0.5, 1.0), 
(0.011, 0.49999, 1.00004) and (0.01002, 0.5002, 1.0007), and that would create problems when 
validating since there would be tiny cracks/overlaps in the cube. The snap tolerance basically 
gives a threshold that says: “if 2 points are closer then ε3, then we assume that they are the 
same.” This value should be defined by the user. 

 

             
       

1mm    



OGC 16-064r1 

64 Copyright © 2015 Open Geospatial Consortium. 
 

4.4  Orientation requirement 

For a polygon embedded in the 2D plane, the orientation of its exterior ring must be the opposite 
of that of its interior rings (e.g., clockwise versus counterclockwise). 

If one polygon is used to construct a shell, its exterior ring must be oriented in such a way that 
when viewed from outside the shell the points are ordered counterclockwise. Figure 35 shows an 
example.  

 

  
Figure 35: One solid and the orientation of 3 of its polygons (different colors). 

In other words, the normal of the surface must point outwards if a right-hand system is used, i.e., 
when the ordering of points follows the direction of rotation of the curled fingers of the right 
hand, then the thumb points towards the outside. If the polygon has interior rings, then these 
must be ordered clockwise. 

If the polygon is part of a MultiSurface, then there is no prescribed orientation other than the 
outer ring must have a different orientation than the inner ring(s). 

4.5  Requirements for shells and solids 

To understand the requirements for shells and solids, we can simply generalize the following 
assertions: polygons become solids, rings become shells, and holes become cavities. 

Figure 36 shows 9 solids, some of them valid some not.  



OGC 16-064r1 

65 

 

  
Figure 36: Nine solids, the number between brackets indicates which assertion(s) from the OGC Simple 
Features is/are violated. 

The first assertion means that a solid must be closed, or ‘watertight’. The solid s1 is thus not 
valid but s2 is since the hole in the top surface is ‘filled’ with other faces. 

The second assertion implies that each shell must be simple, i.e., that it is a 2-manifold. s5 and s8 
are thus invalid. 

The fourth assertion states that a shell is a 2-manifold and that no dangling pieces can exist 
(such as that of s3); it is equivalent to the regularization of a point-set in R3. 

The other assertions refer to solids having interior shells, which are out of scope for the QIE. 
These are thus ignored. 

 

s1 s2

invalid (1)

valid

s6

s7 s8

invalid (3 in 2D)

invalid (2)

valid

s3

s4 s5

invalid (2)

invalid (4)

valid



OGC 16-064r1 

66 Copyright © 2015 Open Geospatial Consortium. 
 

Comment on 4.5 (M.Wewetzer, D. Wagner) 

By simply projecting assertions for 2D polygons to 3D shells, certain configurations can be 
problematic. 

ISO 19107 allows tangent points for interaction of different rings of one polygon. By extruding 
such a polygon, e.g., to create an LoD 1 Building with Solid geometry, a non-manifold edge will 
be part of the structure (Figure 37). Validation will fail at least for the checks 
GE_S_NON_MANIFOLD_VERTEX and GE_S_NON_MANIFOLD_EDGE. Depending on 
the implementation, there might be a GE_S_SELF_INTERSECTION error in addition.  

 

 

Figure 37: Valid 2D polygon, which results in an extrusion body with a non-manifold edge (red). 

The definition for a GM_Ring in ISO 19107 states: “Even though each GM_Ring is simple, the 
boundary need not be simple. The easiest case of this is where one of the interior rings of a 
surface is tangent to its exterior ring” (ISO 2003). However, this statement can be overridden: 
“Implementations may enforce stronger restrictions on the interaction of boundary elements” 
(ibid). 

In the domain of CAD data quality this kind of interaction is neither permitted nor should the 
distance between two boundary curves fall below a certain threshold. 



OGC 16-064r1 

67 

Considering this, a recommendation to avoid tangent interactions between linear rings of one 
polygon and thus within the shell of a solid can be justifiable, as we can see no urgent need for 
their presence. 

At least, we should not recommend or enforce non-manifold solid geometries as basic geometric 
primitives.  

References 
ISO (2003). ISO 19107:2003: Geographic information—Spatial schema. International 
Organization for Standardization. 

OGC (2006). OpenGIS implementation specification for geographic information—simple 
feature access. Open Geospatial Consortium inc. Document 06-103r3. 



OGC 16-064r1 

68 Copyright © 2015 Open Geospatial Consortium. 
 

Annex B 

Test data sets of the CityGML QIE 

Karlsruhe Institut of Technology 

name	 	 is_valid	

Cube-01.gml	

	

	

	

yes	

Cube-02.gml	

	

yes	

Cube-03.gml	

	

yes	



OGC 16-064r1 

69 

Cube-04.gml	

	

yes	

Cube-05.gml	

	

no	

Cube-06.gml	

	

yes	

Cube-07.gml	

	

yes	



OGC 16-064r1 

70 Copyright © 2015 Open Geospatial Consortium. 
 

Cube-08.gml	

	

yes	

Cube-09.gml	

	

no	

Cube-10.gml	

	

no	

Cube-11.gml	

	

no	



OGC 16-064r1 

71 

Cube-12.gml	

		

Cube-13.gml	

	

yes	

Cube-14.gml	

	

		

Cube-15.gml	

	

no	



OGC 16-064r1 

72 Copyright © 2015 Open Geospatial Consortium. 
 

Cube-16.gml	

	

no	

Cube-17.gml	

	

yes	

Cube-18.gml	

	

yes	

Cube-19.gml	

	

no	



OGC 16-064r1 

73 

Cube-20.gml	

	

yes	
 

SIG 3D 

1) Test Case "Addresses" 
 Building LoD 1 with 2 Addresses 
 Building LoD 3 with 2 Doors with one Address each 

2) Test Case "Generic Attributes" 

  Building LOD 1 with different generic Attributes and one Attribute Set 
 Building LOD 2 with generic Attributes for Boundary Surfaces 

3) Test Case "Geometry" 
 Building LoD 2 with 3 Balconies (BuildingInstallation) with implicit Geometry 

 

TU Delft 

i101_1.gml;cube with top face having only 2 points 
i102_1.gml;cube with one duplicate vertex (repeated in a ring) 
i104_1.gml;cube where top face has a bow tie 
i104_2.gml;unit cube with top face having a self-intersecting surface (2D invalid) 
i105_1.gml;cube3 where inner ring is collapsed to a line 
i201_1.gml;unit cube with a intersecting rings in top face 
i202_1.gml;unit cube with a duplicate inner ring top face 
i203_1.gml;surface #12 isn't planar 
t203_1.gml;planarity: cube with one point of top surface moved upward by 1e-? units 
t203_2.gml;? depends on tolerance 
t203_3.gml;? depends on tolerance 
t203_4.gml;? depends on tolerance 
i204_1.gml;cube with an almost vertical fold in the top surface 
i204_2.gml;same shift but vertical 
i205_1.gml;unit cube with a polygon with interior disconnected in top face 
i206_1.gml;unit cube with a hole in top face located outside 



OGC 16-064r1 

74 Copyright © 2015 Open Geospatial Consortium. 
 

i207_1.gml;unit cube with a polygon with nested rings in top face 
i208_1.gml;unit cube with a hole (inner ring) in the top face having same orientation as outer ring 
i301_1.gml;volume with only 3 surfaces 
i301_2.gml;flat cube 
i302_1.gml;unit cube with one face missing (bottom one) 
t302_1.gml;snap: cube with top surface having one vertex moved a bit (10cm) 
t302_2.gml;snap: cube with top surface having one vertex moved a bit (1cm) 
t302_3.gml;snap: cube with top surface having one vertex moved a bit (1mm) 
i302_2.gml;unit cube with a hole (inner ring) in the top face 
i303_1.gml;unit cube with one dangling face touching the cube at one point only 
i303_2.gml;cube with one dangling face 
i303_3.gml;2 unit cubes touching at one vertex 
i304_1.gml;unit cube with an extra vertex on an edge. Only one of the 2 incident faces has it 
explicitly. 
i304_2.gml;unit cube with one extra face in the middle 
i305_1.gml;cube with one extra face "floating" in the air 
i305_2.gml;2 unit cubes not touching at all 
i306_1.gml;house with tip below the ground 
i306_2.gml;house with tip touching the bottom face 
i306_3.gml;unit cube with one extra face inside another face 
i306_4.gml;torus where the hole in the top/bottom faces touches the side surfaces 
i307_1.gml;unit cube with one face (face #1) with opposite orientation 
i308_1.gml;axis-aligned cube with normals all pointing inwards 
i308_2.gml;not axis-aligned cube with normals all pointing inwards 
v001.gml;unit cube 
v002.gml;not axis-aligned cube with normals all pointing outwards 
v003.gml;unit cube with top face having 3 triangles forming the square 
v004.gml;cube translated by (99999990 
v005.gml;cube translated by (3333399999990 
v006.gml;cube with -100.0 as z-coordinates 
v007.gml;a real-life building from Munich 
v008.gml;non-convex shape 
v009.gml;cube with a pyramidal roof 
v010.gml;Stanford bunny: valid 
v011.gml;cube3 where there are extra faces that fill the hole on top face 
v012.gml;cube5 where hole (inner ring) is touching the outer ring of a face 
v013.gml;cube3 with one surface filling the hole 
v014.gml;a "squared donut" 
i103_1.gml;first polygon is not closed 
 



OGC 16-064r1 

75 

University of Applied Sciences Stuttgart 

name	 		 is_valid	

Solid-010-CP-NUMPOINTS.xml	

	

no	

Solid-020-CP-CLOSE.xml	

	

no	

Solid-030-CP-DUPPOINT.xml	

	

no	

Solid-040-CP-SELFINT.xml	

	

no	



OGC 16-064r1 

76 Copyright © 2015 Open Geospatial Consortium. 
 

Solid-050-CP-PLAN.xml	

	

no	

Solid-051-CP-PLAN.xml	

	

no	

Solid-060-CS-NUMFACES.xml	

	

no	

Solid-070-CS-SELFINT.xml	

	

no	



OGC 16-064r1 

77 

Solid-071-CS-SELFINT.xml	

	

no	

Solid-080-CS-2POLYPEREDGE.xml	

	

no	

Solid-090-CS-FACEORIENT.xml	

	

no	

Solid-100-CS-FACEOUT.xml	

	

no	



OGC 16-064r1 

78 Copyright © 2015 Open Geospatial Consortium. 
 

Solid-110-CS-CONCOMP.xml	

	

yes	

Solid-111-CS-CONCOMP.xml	

	

yes	

Solid-112-CS-CONCOMP.xml	

	

no	

Solid-120-CS-UMBRELLA.xml	

	

no	



OGC 16-064r1 

79 

Solid-BS_COPLANAR_SURFACE.xml	

	

yes	

Solid-SimpleBldg.xml	

	

yes	
 


