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Abstract
Visibility analysis is an important application of 3D GIS data. Current approaches require 3D city models that are
often derived from detailed aerial point clouds. We present an approach to visibility analysis that does not require
a city model but works directly on the point cloud. Our approach is based on the medial axis transform, which
models the urban environment as a union of balls, which we then use to construct a depthmap that is used for point
visibility queries. As we demonstrate through our experiments on a real-world aerial LiDAR point cloud, the main
benefits of our approach are 1) it is robust to noise, irregular sampling and holes of typical aerial LiDAR datasets,
2) it gives visibility results that are significantly more accurate than the often highly generalised city models, and
3) it is a simple algorithm that is easy to parallelise.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Picture/Image
Generation—Visible line/surface algorithms I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—

1. Introduction

Visibility analysis is one of the prominent use cases of 3D
GIS data, since this provides information about spatial re-
lations and potential obstacles in the line of sight between
two points in space. For instance, such analyses have been
done in estimating the visibility of a landmark [BRKM10],
and in finding the optimal location to place a surveillance
camera [YYKK15]. An important variant of the visibility
analysis is the estimation of shadows, since the position of
the sun is variable and it is located at a practically infinite
distance [BLS16]. Shadow analysis has gained importance
in several disciplines. For instance, shadows are important
to account for the loss of the photovoltaic potential [NP12,
EMDN15], for determining solar envelopes [Kno03], for as-
sessing the value of real estate [HJMH13], and for estimat-

ing the thermal comfort [HLM11, YS94]. Shadows are also
critical in geovisualisation [Lov03].

Visibility analysis is usually performed on a 3D city
model, ie a geometric model that was reconstructed from el-
evation information, such as airborne LiDAR point clouds,
and 2D datasets (eg building footprints from a topographic
map). The analysis involves testing if a line of sight (ray)
intersect a face in the dataset, usually with algorithms de-
veloped in the computer graphics domain, eg [MT97]. How-
ever, the creation and maintenance of 3D city models of-
ten involves manual labour and typically results in a gen-
eralised version of the city that only contains the terrain
and the buildings [ASVJT09, Rot03, BLSZ14], and some-
times other man-made objects such as roads, overpasses, and
trees [OE10]. Despite the fact that many 3D city models
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are constructed from very dense points clouds which prac-
tically contain all urban features, many of these details are
lost in the final city model. One cause is that many, espe-
cially automatically generated city models are in fact 2.5D,
which means it is not possible to model truly 3D features
such as balconies and trees. And even though a number of al-
gorithms for 3D surface reconstruction have been proposed
and implemented (see for instance [ACK01], [KSO04] and
[DG06]), these have several assumptions on the input point
cloud, which usually come from close range laser-scanners
and are therefore not suitable for eg airborne LiDAR point
clouds that are sampled sparsely, have irregular sampling
density and often contain significant noise and holes. Hence,
despite the availability of highly detailed airborne point
clouds, visibility analysis on a derived city model typically
deviates significantly from reality. In this research we at-
tempt to skip the generation of a 3D city model, and con-
duct shadow analysis directly on the point cloud. Apart from
not having to first generate and store a city model, it yields
a more realistic visibility analysis that includes all scanned
objects in their true 3D appearance. As we explain in Sec-
tion 2, and demonstrate in Section 4, our approach is based
on the Medial Axis Transform (MAT), which is an alterna-
tive skeleton-like shape-descriptor that models an object as
a union of balls. We obtain these balls using a robust adap-
tation of algorithm of [MBC12] and use them to construct a
view-dependent depthmap, which is then used to efficiently
perform point visibility queries (see also Figure 1).

Because the visibility computations are performed in
raster-space our algorithm can run highly parallelised on
GPU hardware. We therefore believe that our approach could
be a simple, fast, robust and cost-effective way of perform-
ing visibility analysis.

2. Related work

[KTB07] introduced the hidden point removal operator to
determine the visible points in a point cloud as viewed from
a given viewpoint by first performing a spherical flipping on
the point cloud and then a convex hull computation. The al-
gorithm does not require point normals, and is shown to be
useful for shadow mapping and view-dependent surface re-
construction. However, unlike the algorithm that we present
in this paper, the hidden point removal operator can only de-
termine the visibility of points that are part of the point cloud
itself, which limits its potential applications. [MTSM10] ex-
tend the algorithm from [KTB07] for handling noisy point
clouds.

[PZVBG00], [SP04] and [KB04] compute visibility for
well-sampled and oriented point clouds as part of a point-
based rendering pipeline. They render points as splats; disks
that are aligned with the point normals. Using these splats a
depthmap is computed for the viewport to determine point
visibility. However, when the sampling density of the point
cloud is low and non-uniform it becomes non-trivial to

choose optimal splat radii. Another significant difference
with the approach we present in this paper is that we com-
pute a volumetric representation of the sampled surface,
whereas a splatting approach can represent only the bound-
ary of the sampled surface. Holes are therefore handled quite
differently (see also Figure 7).

[WS05] perform ray-tracing in a point cloud based on an
implicit surface representation. It works well for high quality
point clouds that are densely sampled.

Finally, [JKT12] implement a rendering pipeline that per-
forms on-screen surface reconstruction by directly rendering
interior medial balls. This is somewhat comparable to our
approach, but we focus specifically on performing efficient
visibility queries for arbitrary query points.

3. MAT-based visibiblity computation

Our algorithm involves first constructing the Medial Axis
Transform (MAT) of the point cloud, a skeleton-like struc-
ture where the volume of each object is represented as a
union of balls. We use these medial balls to ‘block’ lines-
of-sight from a user-defined viewport to a given set of query
points. Whether the line-of-sight to a query point is blocked
or not is determined by the use of a depthmap that encodes
the distances from the viewport to all visible medial balls.

For the sake of simplicity we assume an orthographic pro-
jection and consider only point visibility queries. However,
it is a straightforward task to extend our algorithm to work
with a perspective projection and more complex query ob-
jects such as triangular meshes.

3.1. Approximating the MAT of a point cloud

The Medial Axis Transform (MAT) is formally defined as
the set of maximal balls tangent to the surface of shape at
two or more points. The centers of these balls, commonly
referred to as medial balls, form a medial skeletal struc-
ture. Here we are primarily interested in the union of medial
balls, which corresponds to the volume of the shape (see Fig-
ure 1a).

We use an adapted version of the shrinking ball algorithm
introduced by [MBC12] to approximate a point approxima-
tion of the MAT from an oriented input point cloud. The
shrinking ball algorithm is illustrated in Figure 2. For each
point p a medial ball is found by iteratively shrinking a very
large ball that is centered along the point’s normal~n. At each
iteration a point q is found that is nearest to the ball’s center
and the ball is shrunk such that it touches both p and q and
remains centered along ~n. The iteration convergences when
the ball’s interior is empty and there are no closer points to
its center than p and q, which is in effect how a medial ball
is defined.

When the normals point outward, such as in Figure 2, the
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(a) Approximating MAT from point cloud (b) Computing depthmap (c) Point visibility querying

Figure 1: Our approach to visibility analysis in three steps.
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Figure 2: The shrinking ball algorithm.

interior MAT is obtained. With flipped normals that point
inward, the exterior MAT is obtained that occupies the com-
plement of the space that is occupied by the interior MAT.
For this paper we are only interested in the interior MAT.

To improve the performance of the shrinking ball algo-
rithm for typical LiDAR point clouds that contain signifi-
cant noise (unlike the pristine point clouds used by [MBC12]
and [JKT12]), we extended the algorithm with a number of
heuristics that will stop the shrinking of a ball prematurely
based on the progression of the separation angle, ie the angle
∠pcq where c denotes the ball’s center. The ball shrinking of
a given point p is halted if either the separation angle of the
initial ball is below a threshold ta or if the separation angle
of a succeeding ball drops below a second threshold tb < ta.
We choose the last ball that does not violate both thresholds
as the approximate medial ball for p (see [PL16] for more
details).

Ultimately, the extended shrinking ball algorithm is sim-
ple, fast, robust to noise and easy to parallelize (see also
[MBC12] and [JKT12]) which makes it a good choice for
approximating the MAT of large LiDAR point clouds.

p0

~vy
~vx

s|~vx|

s|~vy|

Figure 3: Parameters that define the viewport

3.2. Depthmap computation

Prior to performing the visibility queries we must generate a
depthmap of the the interior medial balls. The depthmap is
computed for a viewport that is described by a point p0 to fix
its position, two vectors ~vx and ~vy to fix its orientation and
size in model space and a scalar s that scales model units to
the pixels on the screen (see Figure 3).

Computing the depthmap is a fairly straightforward pro-
cess that involves first projecting each medial ball center,
rasterising the ball to the viewport and finally performing
a depth test for each pixel of the rasterised ball. Figure 1b
illustrates this process.

Algorithm 1 which updates the depthmap for one me-
dial ball first projects the ball center to the viewport. Then
for each pixel in the ball’s projected image it computes the
depth, and performs a depthtest. When a depth test succeeds
(ie the depth of the ball is smaller than the current pixel
depth), the pixel in the depthmap is updated.

Prior to calling WRITEBALL for each medial ball, the
depthmap is initialised with an infinite depth for each pixel.
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Algorithm 1 WRITEBALL

Input: a ball with center c and radius r,the viewport param-
eter s and depthmap D

Output: D is updated with the depths of ball (c,r)
1: cs← PROJECTPOINT (c)
2: for integer x from −rs to +rs do
3: for integer y from −rs to +rs do
4: h←

√
x2 + y2

5: if h smaller than rs then
6: d′← cs.z− (rs−h)
7: d← D[cs.x+ x,cs.y+ y]
8: if d′ smaller than d then
9: D[cs.x+ x,cs.y+ y]← d′

10: end if
11: end if
12: end for
13: end for

3.3. Point visibility queries

After the depthmap has been computed, we use Algorithm 2
to perform the point visibility queries, it involves project-
ing the query point to the viewport, and then comparing its
depth to the corresponding depth in the depthmap (similar
to [Wil78]). As illustrated in figure 1c the query point is

Algorithm 2 QUERYPOINT

Input: a querypoint qm in model coordinates, depthmap D
Output: whether qm is visible or not

1: qs← PROJECTPOINT (qm)
2: d← D[qs.x,qs.y]
3: if qs.z smaller than d then
4: qm is visible
5: else
6: qm is not visible
7: end if

visible only if its depth test succeeds. The depth test will fail
for query points that are behind any medial ball as seen from
the viewport.

4. Implementation and Experiments

We have built a prototype implementation of the algorithms
we propose in this paper. To approximate the interior MAT
we use masbcpp†. Our prototype utilises OpenCL ‡ for par-
allel execution of the algorithms listed in Section 3.2 and
3.3.

We ran our experiments on two different datasets:

† https://tudelft3d.github.com/masbcpp
‡ https://www.khronos.org/opencl/
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Figure 4: Artificially generated dataset. (a) Depthmap for
viewport, (b) top-down view of pointcloud and (c) point vis-
ibility from viewport with medial balls

1. A simple artificially generated point cloud with its points
and normals derived from a triangular mesh (2 690
points), and

2. an airborne LiDAR dataset of a housing block in Zagreb,
Croatia (24 647 points).

For the latter dataset the normals were approximated using
principal component analysis of the 6 nearest neighbours of
each point. For a good separation of the interior and exterior
MAT it is important that the normals are properly oriented.
This can be achieved by flipping the normals with respect to
the scanner position at the time a point is acquired. However,
because this information is not present in our LiDAR dataset
we used a city model to properly orient the point normals.

For the visibility queries we randomly generated 1 million
query points that are uniformly distributed inside the bound-
ing box of the respective dataset. For both datasets the total
computation time (from raw point cloud to point visibility
queries) is in the order of a few seconds, when all compu-
tations are performed on a quadcore 2.9 GHz Intel Core i5
CPU. From our pseudocodes it can easily be seen that the
computation of the depthmap (it must happen once for every
viewport) is the most expensive (O((rs)2N) time, with N the
number of medial balls, r the ball radius and s the number of
pixels per model unit). However, once the depthmap is com-
puted point visibility queries are extremely fast, since they
run in constant time (thus independent of depthmap resolu-
tion or size of the dataset).

Figure 4 shows the results for the artificial dataset. From
the depthmap (4a) it is clear that three-dimensional features
in the point cloud (4b) such as the tree in the center are accu-
rately modeled by the medial balls, given a sufficiently dense
and complete sampling. The invisible or ‘shadowed’ points
(inside the bounding box of the point cloud) as seen from the
viewport (4a) are depicted in Figure 4c.

Figures 5, 6 and 7 illustrate the results for the LiDAR
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dataset. First, note the difference in sampling density be-
tween horizontal and the vertical surfaces in the dataset
(5a,c). Despite the low number of samples on the verti-
cal segments we are still able to model the building fa-
cades without holes that would distort our visibility analysis
(5d,e). Also note how various sparsely sampled details such
as dormer windows and chimneys are modelled by the me-
dial balls, and how that affects the visibility analysis (5b and
6). In case of a complete lack of samples for surfaces such
as the right side of the roofs in Figure 7 the dimensions of an
object may be wrongly represented due to protruding medial
balls. Whether this leads to realistic results in the visibility
analysis depends on the actual (unknown) shape of the roof.
We do believe that this behaviour is preferable to being able
to see through the right side of the roof to the backside of
the left side of the roof. Finally, from 7 it can be seen that
trees can also be handled by our approach. We must notice
however that especially in the case of trees the orientation of
point normals becomes rather ambiguous, which leads to a
fuzzy definition of what is an interior or an exterior medial
ball, which can affects the visibility queries.

5. Conclusion and future work

We have introduced, implemented and demonstrated a new
approach to do visibility analysis in urban scenes directly on
a point cloud, thus without the need of an overly simplified
intermediate 3D city model. Because the visibility analysis
is performed in the raster domain, our algorithm can be im-
plemented to exploit the computing power of parallel com-
puting devices such as GPUs.

Our experiments show that our approach can be success-
fully applied to a typical airborne LiDAR dataset with holes,
non-homogeneous point density and noise. We notice that
the MAT on which our algorithm is based depends on prop-
erly oriented point normals, which may be ambiguous to de-
fine for vegetation. However, this did not lead to abnormal-
ities in our experimental results. We also observe that our
algorithm deals rather successfully with missing walls and
roof sides in the LiDAR point cloud. This is a major advan-
tage over existing point-based visibility approaches such as
splatting.

The most obvious extensions to our visibility algorithm
are 1) perspective projection (see for instance [MM12]),
2) handling more complex query object such as triangular
meshes.
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Figure 5: Aerial LiDAR point cloud dataset. Top-down view of point cloud (a) and point visibility with medial balls (b).
Viewport view with point cloud (c), medial balls (d) and depthmap (e).

Figure 6: Visible (top) and invisible (bottom) points for
viewport and LiDAR dataset of Figure 5

[MM12] MARA M., MCGUIRE M.: 2d polyhedral bounds of a
clipped, perspective-projected 3d sphere. JCGT. in submission
(2012). 11

[MT97] MÖLLER T., TRUMBORE B.: Fast, minimum storage
ray-triangle intersection. Journal of Graphics Tools 2, 1 (1997),
21–28. 7

[MTSM10] MEHRA R., TRIPATHI P., SHEFFER A., MITRA
N. J.: Visibility of noisy point cloud data. Computers & Graph-
ics 34, 3 (2010), 219–230. 8

[NP12] NGUYEN H. T., PEARCE J. M.: Incorporating shading
losses in solar photovoltaic potential assessment at the municipal
scale. Solar Energy 86, 5 (May 2012), 1245–1260. 7

[OE10] OUDE ELBERINK S.: Acquisition of 3D topgraphy: auto-
mated 3D road and building reconstruction using airborne laser
scanner data and topographic map. PhD thesis, University of
Twente Faculty of Geo-Information and Earth Observation (ITC),
2010. 7

[PL16] PETERS R., LEDOUX H.: Visualisation of massive and
noisy point clouds based on the medial axis transform. In sub-
mission: Computers & Geosciences, 2016. 9

Tree

Missing surface

Figure 7: Detail view of LiDAR dataset for point cloud (top)
and medial balls (bottom)

[PZVBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS
M.: Surfels: Surface elements as rendering primitives. In Pro-
ceedings of the 27th annual conference on Computer graphics
and interactive techniques (2000), ACM Press/Addison-Wesley
Publishing Co., pp. 335–342. 8

[Rot03] ROTTENSTEINER F.: Automatic generation of high-
quality building models from lidar data. IEEE Computer Graph-
ics and Applications 23, 6 (2003), 42–50. 7

submitted to Eurographics Workshop on Urban Data Modelling and Visualisation (2015)



/ short title 13

[SP04] SAINZ M., PAJAROLA R.: Point-based rendering tech-
niques. Computers & Graphics 28, 6 (2004), 869 – 879. 8

[Wil78] WILLIAMS L.: Casting curved shadows on curved sur-
faces. In Proceedings of the 5th Annual Conference on Com-
puter Graphics and Interactive Techniques (New York, NY, USA,
1978), SIGGRAPH ’78, ACM, pp. 270–274. 10

[WS05] WALD I., SEIDEL H.-P.: Interactive ray tracing of point-
based models. In Proceedings of the Second Eurographics /
IEEE VGTC Conference on Point-Based Graphics (Aire-la-Ville,
Switzerland, Switzerland, 2005), SPBG’05, Eurographics Asso-
ciation, pp. 9–16. 8

[YS94] YEZIORO A., SHAVIV E.: Shading: A design tool for
analyzing mutual shading between buildings. Solar Energy 52, 1
(Jan. 1994), 27–37. 7

[YYKK15] YAAGOUBI R., YARMANI M., KAMEL A.,
KHEMIRI W.: HybVOR: A Voronoi-Based 3D GIS Ap-
proach for Camera Surveillance Network Placement. ISPRS
International Journal of Geo-Information 4, 2 (May 2015),
754–782. 7

submitted to Eurographics Workshop on Urban Data Modelling and Visualisation (2015)


