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Objective

� ������������

(xn , yn , zn , tn)
Several authors praise the advantage of these techniques over travel diaries since
underreporting of trips is less likely, the data are immediately available in the
digital form, and in general more data are available, for instance, travelled paths
which can be integrated in a Geo-information Systems (GIS) environment for
additional analyses, precise time data, trip distances, and trip duration (Bricka&
Bhat, ����; Draijer et al., ����; Wolf, ����). Further, most researchers conclude
that these receivers completely replace, rather than supplement, traditional travel
diaries (Wolf et al., ����). Several travel surveys with positioning loggers have
already been doneworldwide (Axhausen et al., ����; Bohte&Maat, ����; Draijer
et al., ����), almost exclusively in Europe and North America.

However, the aforementioned data such as transportation mode and trip pur-
pose can never be acquired directly with a positioning receiver, unlike with travel
diaries or telephone surveys, since only timestamped positions of movement are
available. Combining the two methods would be a high burden for participants
of these surveys (Wolf et al., ����), and since the datasets are usually vast, manual
classi�cation may not be possible. Hence, a method for the automated detection
of transportation modes and trip purposes from the movement data has to be
developed.

�.� ����������

�is thesis concentrates on the determination of the transportation mode from
a set of timestamped positions:

(x� , y� , z� , t�)
(x� , y� , z� , t�)

⋮
(xn , yn , zn , tn)

⇓
Transportation mode

where a set of important and most frequently used transportation modes is
determined. Since a trajectory may contain multiple transportation modes, the
problem is extended to the segmentation of the movement data:

(x� , y� , z� , t�)⋮
(x i , y i , z i , t i)

�����������
�st transportation mode

(x i+� , y i+� , z i+� , t i+�)⋮
(x j , y j , z j , t j)

�����������
�nd transportation mode

⋮
(xk , yk , zk , tk)⋮
(xu , yu , zu , tu)

�����������
n-th transportation mode
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Example

• GPX file in Google Earth



Applications



Applications

• Travel behaviour studies



Applications

• Travel behaviour studies

• Datasets:

• Department of Urban and Regional Development, OTB

• Department of Urbanism, Faculty of Architecture

• 17.6 M points from 1369 individuals

• 539000 km







Existing solutions

• Deterministic solutions

• Speed

• A few modes (average: 4.5), dissimilar in behaviour

• Problem with data gaps not solved

• No segmentation
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Overview

• Segmentation with sensitive thresholds

• Classification system inspired by fuzzy expert systems and strongly 
supported by geo-information

• Developed experimental software (Python + PostgreSQL/PostGIS)

• 10 modes: walking, bicycle, car, bus, tram, train, underground, sailing boat, 
ferry, aircraft



Segmentation

• Detection of stops or shortages in the data



Segmentation (2)
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Segmentation (3)

• Sensitive thresholds

• Oversegmentation is better than undersegmentation



Classification solution

• Nine indicators: speed + geo-information

• Grouping similar modes

• Fuzziness

• Elimination of unlikely transportation modes



Proximities (from Openstreetmap data)
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Grouping similar modes

�� �����������

car/tram/bus (a singlemode), train, underground, boat (comprises sailing boat
and ferry), and aircra�.
Although the underground mode could be merged with train in the second

layer of the transportation mode hierarchy due to similar characteristics, the
achieved results are con�dent enough to completely separate these two modes
already in the second layer.
�e list of classi�ed transportation modes if presented in the Table �, with

their hierarchy.

Table �: List of considered transportation modes by layers.

� Land Sea Air

� Walk Boat Aircra�

Bicycle

Car/tram/bus

Train

Underground

� Walk Sailing boat Aircra�

Bicycle Ferry

Car

Tram

Bus

Train

Underground

�.� ������������

Since trajectories may contain multiple journeys and may have been completed
with multiple modes, the trajectories have to be segmented for each, therefore
there are two consecutive types of segmentation:

�. �rst the segmentation of trajectories to single-journeys segments (between
two meaningful locations), and

�. segmentation of journeys into single-mode segments (also known as
stages).

Although both segmentations technically derive segments, the segments in the
�rst segmentation are referred to as journeys, and the latter simply as segments.
Once a trajectory is segmented, it is ready for classi�cation.
�is section explains the concept of the segmentation into journeys (§�.�.�),

and discusses the possibilities of di�erent methods of detection of transition
points and segmentation into single-mode trajectories (§�.�.�). Section �.�.�
on page �� discusses the possibility of modelling probabilities of transitions
between particular transportation modes.



Classification (FES)

• Expert systems

• IF e is observed THEN h is true

• Certainty factors (CF): confidence of a claim

• Fuzzy logic



Classification (2)



Classification (2)

• IF (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0
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Classification (2)
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Classification (2)

• IF (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0
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Classification (2)

• IF (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0

• IF (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6

• IF (max. speed is 138 km/h) THEN (mode = train) WITH CF = 0.8

• IF (max. speed is 138 km/h) THEN (mode = {car, train, . . . }) WITH CF = {0.6, 
0.8, ...}

• Assigning certainties with fuzzy variables (via empirically determined 
membership functions):

CF = f(e)



Membership functions

• One for each mode for each indicator

CFi
m = f i

m(i)

CFmax.speed
train = fmax.speed

train (max.speed)
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In order to show the standard overlapping of the membership functions in
a single indicator, Figure �� depicts the overlap of several functions for the
indicator of the nearly-maximum speed.

µA

�� �� ��� ���

Figure ��:�e membership functions usually overlap.�is is an example for the member-
ship functions for nine modes used in the indicator of the nearly maximum
speed (in km�h).�e following modes are plotted: car (black), train (yellow),
walk (red), bicycle (green), tram (brown), bus (purple), sailing (light blue),
ferry (blue), and underground (dark orange).�e classes standing and aircra�
are le� out for aesthetic reasons.

�.� ������� ���� ����������� �� ��� ����

Signal shortages which cause disruption in the acquisition of data (i. e. gaps)
are frequent, and hard to handle, since these data does not exist, therefore we
are dealing with the classi�cation of non-existing data.�ese gaps may not be
important to classify, especially if the transportation mode was not changed in
between.

As noted, data is marked missing when no samples are recorded in more than
�� s. Moreover, since the signal is not regained instantly, due to TTFF and location
in the new transportation mode (e. g. receivers have no or bad reception in aisle
seats of trains) the transitions sometimes cause longer spatial shi�s and longer
gaps in the dataset.�e problem is complex since there are numerous di�erent
cases. �e classi�cation attempts of these cases are explained in this separate
section.
Resolving the gaps requires investigating many possible cases that occur in

practice, and that is the reason why this part was not discussed in the chapter
about the methodology. In addition to these problems, this method takes ad-
vantage of gaps, since the underground mode does not have any reception, and
it is detected by the disruption of signal in between entrances to the two under-
ground stations, similar to the methods of Stopher et al. (����) and Shalaby et al.
(����).

�e following distinct cases account for most, if not all occurrences of gaps,
and their reconstruction was conceptually developed and implemented in the
prototype. All cases are depicted in Figure �� on the following page.

(a) "Regular" gaps, during which the transportation mode was not changed.
�ey are usually short, and caused by entering in tunnels or a random
temporary loss of signal (Figure ��a).

(b) �e signal was lost during the transition between two modes, and the
whole segment in between is not recorded (Figure ��b).�is case occurs
frequently, especially in trains. For instance, a person cycles to a train
station, where the signal is lost, and it is not regained later in the train.
�e logging resumes a�er a person makes a transition to a third mode,
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Training

• Training data - manual trials, iterative process

• Extensibility with XML:

<indicator name="bus_proximity">
<mode layer="3" name="bus">
<values>0,0,10,30</values>
</mode>



• Result in nine CFs for each transportation mode

Chaining the results

�� �����������

IF (max. speed is ���km�h)
THEN (mode = {car, train, . . . })
WITH CF = {�.�, �.�, . . . }

In case of multiple facts, the �nal CF is determined as a conjunctive CF since
the rules are not �red in a particular sequence:

IF (max. speed is ��km�h)
THEN (mode = tram)
WITH CF = �.��

IF (proximity to tram network is ����m)
THEN (mode = tram)
WITH CF = �

→ CF(tram) = min(�.��, �) = �

�is is done for each mode respectively. It is visible that one rule in my FES
could completely eliminate the possibility of a transportationmode based on one
fact only, which is a positive "byproduct" for this thesis.�erefore, the presented
expert system works on the elimination of unlikely modes by assigning them CFs
of zero for each evidence that is against a hypothesis.
In order to formalise the presented concepts an overview is given. For each

transportation mode m (e. g. train) of the n considered modes, the classi�ca-
tion system contains k membership functions f im , where k is total number of
indicators (facts) used as the input of the classi�cation and i marks the designa-
tion of the indicator, e. g. f �� or f max.speed

train . For each segment, k indicators i�. . .k
are calculated (e. g. i� or iavg.speed) and passed to the respective membership
functions for each transportation mode (e. g. f �train(i�), f �car(i�), f �bicycle(i�), . . . )
from which certainty factors CFi

m = f im(i) are calculated.�e total number of
the membership functions and corresponding certainty factors is the product of
the number of indicators k with the number of the considered transportation
modes n.
A�er computing the k certainty factors for each transportation mode, the

system determines the minimum value for each and considers it as a the "�nal"
CF, i. e. con�dence that the mode in question was used to complete the classi�ed
segment:

CF�� = f �� (i�) CF�� = f �� (i�) . . . CFk
� = f k� (ik) ⇒ CF� =min(CF�� , . . . CFk

� )
CF�� = f ��(i�) CF�� = f �� (i�) . . . CFk

� = f k� (ik) ⇒ CF� =min(CF�� , . . . CFk
�)

⋮ ⋮ ⋮ ⋮
CF�n = f �n(i�) CF�n = f �n (i�) . . . CFk

n = f kn (ik) ⇒ CFn =min(CF�n , . . . CFk
n)

For more insight in the theory of expert systems, the reader is referred to the
publications cited in this section. Technical details of the implementation of
the system and de�nition of membership functions are given in Chapter � on
page ��.�e membership functions are conceptually discussed further in the
next section.

�.�.� Types of trapezoidal membership functions

A common construction of a Membership Function (MF) is trapezoidal, as it is
shown in Figure ��.



Chaining the results (2)

• CF[A ∩ B] = min(CF[A], CF[B])

�� �����������
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Chaining the results (3)

IF (max. speed is 55 km/h) THEN (mode = tram) WITH CF = 0.85

IF (proximity to tram network is 4933 m) THEN (mode = tram) WITH CF = 0

→ CF(tram) = min(0.85, 0) = 0



Demonstration

• Prototype report

• KML output



Solving specific problems

• GPS errors, noise

• Bus, tram, and cars in urban areas are similar in behaviour (speed, often 
stops, infrastructure-GPS errors)

• ‘Gaps’ in the data caused by signal shortages



Noise



Noise (2)

0 2 4 6 8
Time [min]

0

20

40

60

80

100

120

140

160

180

S
p
ee

d
[k

m
/h

]
User: filip

Trackpoints

95th percentile



• Infrastructure

Distinguishing car, bus, and tram

Bus line

Travelled path



Distinguishing car, bus, and tram

• Assisted by the location of nearest bus/tram stops

Si

Si+� ��bus = �.� + �.�
��car = �.�

Bus station

Transition point

Bu�er of the station

��tram = �.�



Missing time intervals

• Interpolation not possible

�� ��� ������������ ��� �������������� ������

usually walking or again bicycle. Even if the two boundary modes are the
same, another mode in between might be detected with the presented
technique.

(c) �e sampling is interrupted during a segment, and it is resumed at a
transition to another mode (Figure ��c).�is case is similar to the inverse
case where the sampling is interrupted at a transition from one mode to
another and resumed a�erwards in the segment before another transition
occurs.

(d) Trajectories with fragments of data, without recorded transitions are fre-
quent in some train stages (Figure ��d).

(e) Two transitionswhich are not recorded addmore challenge to this problem
(Figure ��e).

(f) Two transitions in a disruption double the problem (Figure ��f).

Car Car Car

(a) "Regular" gaps where the mode was not changed.

Bike Train Walk

(b)�e whole segment done with another mode is not recorded.

Bike
Train WalkTrain

(c)�e �rst transition is recorded, but not the rest of the segment and the second transition.

Bike
Train WalkTrain Train

(d) Neither of the transitions is detected, but a small fragment of the segment is recorded in
between.

Bike WalkTrain

Bike
Walk

(e) Signal shortage occurs during both transitions, the mode is not recorded, and the disruptions
exist in the earlier and next segments.

Bike
Bus WalkTrain

(f) Two segments are not recorded, including their transitions.

Figure ��: General cases of data interruption.

Since the points are not sampled, the indicators in these cases are limited,
the system is le� to guessing the situation in the gap and used transportation
mode(s).�e distance between the two adjacent recorded segments is known,
alongwith the time di�erence. From these, the average distancemay be computed,
although this is rather a rough approximation due to the potential sinuosity of
the travelled path. As one might suggest, proximity to the stations for certain
modes are available for the points on the edge of the gap. Although it is possible
to take into account the proximity to the stations, these cases have something
more in common—they occur on the network of each corresponding mode.



Missing time intervals (2)

• Example

• Attempted classification with geo-information and duration/distance of the 
gap

• Taking advantage of gaps for underground mode



Deriving additional mode-related information

• Segment done by train.
Departure station: Den Haag HS
Arrival station: Delft 

• Segment done by aircraft.
Departure: Copenhagen, Denmark (CPH)
Arrival:! Amsterdam, Netherlands (AMS)
Carrier(s): Scandinavian Airlines System, KLM Royal Dutch 
Airlines



Experiments

• A random subset of the dataset

• Available validated data (“ground truth”)

• Added a few tracks from abroad and specific situations



Experiments (results)

• Segmentation is precise and sensitive

• Very short segments are successfully detected and classified

• Long journeys (with a lot of observations), especially cars, are virtually always 
correctly classified

• Worldwide applicability (at least Europe)



Experiments (accuracy)

�� ����������� ��� ����������

transition from a car to a bus, and then train. In addition, a few datasets from
outside the Netherlands (Denmark, Norway, Belgium, Germany, and Croatia)
have been added to test the performance of the method for usage withmovement
data acquired abroad.

�.� ������� �� ��� ����������

To separate segments which may have a negative impact on the classi�cation
system due to various di�culties such as very few observations and high GPS
noise, the subset have been split simply into good and bad data. As mentioned
earlier in the thesis I considered a segment short when the number of points is
below ��. Noisy GPS segments are stages where the classi�cation result can be
completely in�uenced by these deviations. Since both cases are problematic, they
are considered together in the latter category. On the other hand, good data are
segments which do not have the two previously mentioned properties, however,
they also contains GPS errors and noise, but to a smaller and normal extent.
Hence, this subset is still not perfect as a reader might have the impression, and
its classi�cation in these cases may be hard as well.
Table � shows the classi�cation accuracy for the mentioned subsets by each

layer of transportation modes, and joint �gures for the whole subset used in the
experiments.

Table �: Accuracy of the developed classi�cation system (experiments using a random
validation subset).�e ratio of correct classi�cations is expressed in percents.

Quality of input data Layers

� � �

Good GPS data ��.�% ��.�% ��.�%

Bad GPS data ��.�% ��.�% ��.�%

Total (all data) ��.�% ��.�% ��.�%

�e share of good and bad input data was ��% and ��%, respectively.�e high
amount of the latter subset is mostly caused by small segments caused by overseg-
menting the trajectories (splitting the trajectory at each stop at a very sensitive
threshold). However, the accuracy for short and noisy segments is comparable to
the accuracy of segments of data higher quality.�ese results show con�dence in
oversegmentation of the trajectories.�e method for segmentation shown very
good results. Oversegmentation of trajectories is evident, and transitions seldom
pass undetected (in less than a few percents of the cases).�ese errors are due to
the combination of bad sampling periods and fast transitions. Fortunately, these
cases are not frequent.

As expected, the accuracy of the system drops with with respect to the layers,
i. e. increased number of classes.
Cars on longer journeys are classi�ed most correctly—at a ���% rate.�is

is due to a high number of observations, and a high amount of data enough to
reject all other transportation modes. Even in this large validation subset, not a
single error was detected in the classi�cation for cars in segments longer than a
few kilometres. Since car is the most frequently used mode in the test dataset
and in overall according to the Dutch National Travel Survey (Ministerie van
Verkeer en Waterstaat, ����a), this result is assuring. Very short segments, such
as walking from a building to a car (usually less than ��m and �� points) are



Experiments (problems)

• Very short trips with noisy points - human intervention not beneficial

• Attribution to water modes (in the Netherlands)

• Unusual behaviour (low or high speeds)

• Car, tram, bus - problems with incomplete data (combining them in one class 
- OK)



Conclusions

• Functional (extensible) prototype

• Geo-information is the key for solving this problem

• Openstreetmap is suitable for the classification

• Classification focused on removing unlikely classes



Conclusions (2)

• More modes, higher accuracy, results with certainties

• Solving the gaps, coping with noise, classification of short segments

• Enriching the trajectories with more information



Future work

• Classification for trip purpose

• Established framework

• OSM data suitable as well



Questions?


