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—Xample

e GPX file in Google Earth
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Applications

e Travel behaviour studies



Applications

e Travel behaviour studies

e Datasets:
e Department of Urban and Regional Development, OTB
e Department of Urbanism, Faculty of Architecture
e 17.6 M points from 1369 individuals

e 539000 km
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—Xisting solutions

e Deterministic solutions

e Speed

e A few modes (average: 4.5), dissimilar in behaviour
e Problem with data gaps not solved

e No segmentation
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Overview

e Segmentation with sensitive thresholds

e Classification system inspired by fuzzy expert systems and strongly
supported by geo-information

e Developed experimental software (Python + PostgreSQL/PostGIS)

¢ 10 modes: walking, bicycle, car, bus, tram, train, underground, sailing boat,
ferry, aircraft
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Segmentation

e Detection of stops or shortages in the data
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Segmentation (2)
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Segmentation (3)

¢ Sensitive thresholds

e Oversegmentation is better than undersegmentation
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Classification solution

e Nine indicators: speed + geo-information
e (Grouping similar modes
® Fuzziness

e Elimination of unlikely transportation modes
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Proximities (from Openstreetmap data)
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Grouping similar modes

1 Land Sea Air

2  Walk Boat Aircraft
Bicycle
Car/tram/bus
Train

Underground

3 Walk Sailing boat  Aircraft
Bicycle Ferry
Car
Tram
Bus
Train

Underground
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Classification (FES)

e Expert systems
¢ |[F e is observed THEN h is true
e Certainty factors (CF): confidence of a claim

® Fuzzy logic
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Classification (2)

e |[F (max. speed is 118 km/h) THEN (mode = car) WITH CF =1.0



Classification (2)

¢ |F (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0

¢ |[F (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6
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Classification (2)

¢ |F (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0

¢ |[F (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6
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Classification (2)

¢ |F (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0

¢ |[F (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6

¢ |F (max. speed is 138 km/h) THEN (mode = train) WITH CF = 0.8
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Classification (2)

¢ |F (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0

¢ |[F (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6

¢ |F (max. speed is 138 km/h) THEN (mode = train) WITH CF = 0.8

e |[F (max. speed is 138 km/h) THEN (mode = {car, train, . . . }) WITH CF = {0.6,
0.8, ...}
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Classification (2)

¢ |F (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0

¢ |[F (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6

¢ |F (max. speed is 138 km/h) THEN (mode = train) WITH CF = 0.8

e |[F (max. speed is 138 km/h) THEN (mode = {car, train, . . . }) WITH CF = {0.6,
0.8, ...}

e Assigning certainties with fuzzy variables (via empirically determined
membership functions):
CF = f(e)
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Memlbership functions

e One for each mode for each indicator

CF,, = f. (i)
speed speed
CE 5eoPoe0 = f92 2P (max.speed)
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Training
¢ Training data - manual trials, iterative process

e Extensibility with XML.:

<indicator name="bus_proximity">
<mode layer="3" name="bus">

<values>0,0,10,30</values>
</mode>
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Chaining the results

e Result in nine CFs for each transportation mode

CF = fi(i) CF=f(i) ... CF=f{(ix)
CF:ézle(il) CFzzfzz(iz) CFk:fzk(ik)

CF, = fu(i) CFp=fi(i2) ... CF,=fr(ix)



Chaining the results (2)

* CF[A N B] = min(CF[A], CF[B])

CF = fi(iy) CF?=f2(i,) ... CFF=fk(i,) = CF =min(CFE,...CF})
CF, = fl(i;) CF2=f2(i,) ... CF%=fF(it) = CF,=min(CE,...CFE})
CF. = fi(i;) CF?=f2%(i;) ... CF*=fk(i) = CF,=min(CF,...CF)



Chaining the results (3)

IF (max. speed is 55 km/h) THEN (mode = tram) WITH CF = 0.85
IF (proximity to tram network is 4933 m) THEN (mode = tram) WITH CF =0

— CF(tram) = min(0.85, 0) = 0
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Demonstration

e Prototype report

o KML output



Solving specific problems

e GPS errors, noise

e Bus, tram, and cars in urban areas are similar in behaviour (speed, often
stops, infrastructure-GPS errors)

e ‘Gaps’ in the data caused by signal shortages
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Distinguishing car, bus, and tram

¢ |nfrastructure

Bus line

Travelled path



Distinguishing car, bus, and tram

e Assisted by the location of nearest bus/tram stops

[

Bus station

Buffer of the station

Transition point

Si+1

CFpuys
CFcar

CFtram

=1.0+0.2

¢ A
r
[ ]



Missing time intervals

¢ |nterpolation not possible

Car Car Car

Bike Train Walk

//\O S B DT -0 ——

(b) The whole segment done with another mode is not recorded.

Bike Walk

T T O —

(c) The first transition is recorded, but not the rest of the segment and the second transition.

Bike Train Train Train Walk

//’/_\O e e — = ——

(d) Neither of the transitions is detected, but a small fragment of the segment is recorded in
between.




Missing time intervals (2)

e Example

e Attempted classification with geo-information and duration/distance of the
gap

e Taking advantage of gaps for underground mode
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Deriving additional mode-related information

e Segment done by train.
Departure station: Den Haag HS
Arrival station: Delft

e Segment done by aircraft.
Departure: Copenhagen, Denmark (CPH)
Arrival: Amsterdam, Netherlands (AMS)
Carrier(s): Scandinavian Airlines System, KLM Royal Dutch

Airlines
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=Xperiments

e A random subset of the dataset
e Available validated data (“ground truth”)

e Added a few tracks from abroad and specific situations
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—xperiments (results)

e Segmentation is precise and sensitive
¢ \/ery short segments are successfully detected and classified

e | ong journeys (with a lot of observations), especially cars, are virtually always
correctly classified

e \Worldwide applicability (at least Europe)
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-Xperiments (accuracy)

Quality of input data Layers

1 2 3
Good GPS data 991% 94.5% 93.6%
Bad GPS data 99.0% 91.4% 89.2%
Total (all data) 99.0% 93.1% 91.6%




—Xperiments (problems)

e \/ery short trips with noisy points - human intervention not beneficial
e Attribution to water modes (in the Netherlands)
e Unusual behaviour (low or high speeds)

e Car, tram, bus - problems with incomplete data (combining them in one class
- OK)
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Conclusions

e Functional (extensible) prototype
e Geo-information is the key for solving this problem
e Openstreetmap is suitable for the classification

e Classification focused on removing unlikely classes
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Conclusions (2)

e More modes, higher accuracy, results with certainties
e Solving the gaps, coping with noise, classification of short segments

® Enriching the trajectories with more information
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Future work

e Classification for trip purpose
e Established framework

e OSM data suitable as well
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Questions?
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