Automatic segmentation and classification of movement trajectories for transportation modes

A thesis submitted in partial fulfilment of the requirements for the degree Master of Science in Geomatics

Filip Biljecki

2 July 2010

Supervisors: Peter van Oosterom and Hugo Ledoux Department of GIS Technology, OTB

Objective

 (x_1, y_1, z_1, t_1) (x_2, y_2, z_2, t_2) \vdots (x_n, y_n, z_n, t_n) \Downarrow

Transportation mode

Objective (2)

$$\begin{cases} (x_{1}, y_{1}, z_{1}, t_{1}) \\ \vdots \\ (x_{i}, y_{i}, z_{i}, t_{i}) \end{cases}$$
 Ist transportation mode
$$\begin{cases} (x_{i}, y_{i}, z_{i}, t_{i}) \\ \vdots \\ (x_{j}, y_{j}, z_{j}, t_{j}) \\ \vdots \\ (x_{k}, y_{k}, z_{k}, t_{k}) \\ \vdots \\ (x_{u}, y_{u}, z_{u}, t_{u}) \end{cases}$$
 n-th transportation mode
$$\end{cases}$$

Example

• GPX file in Google Earth

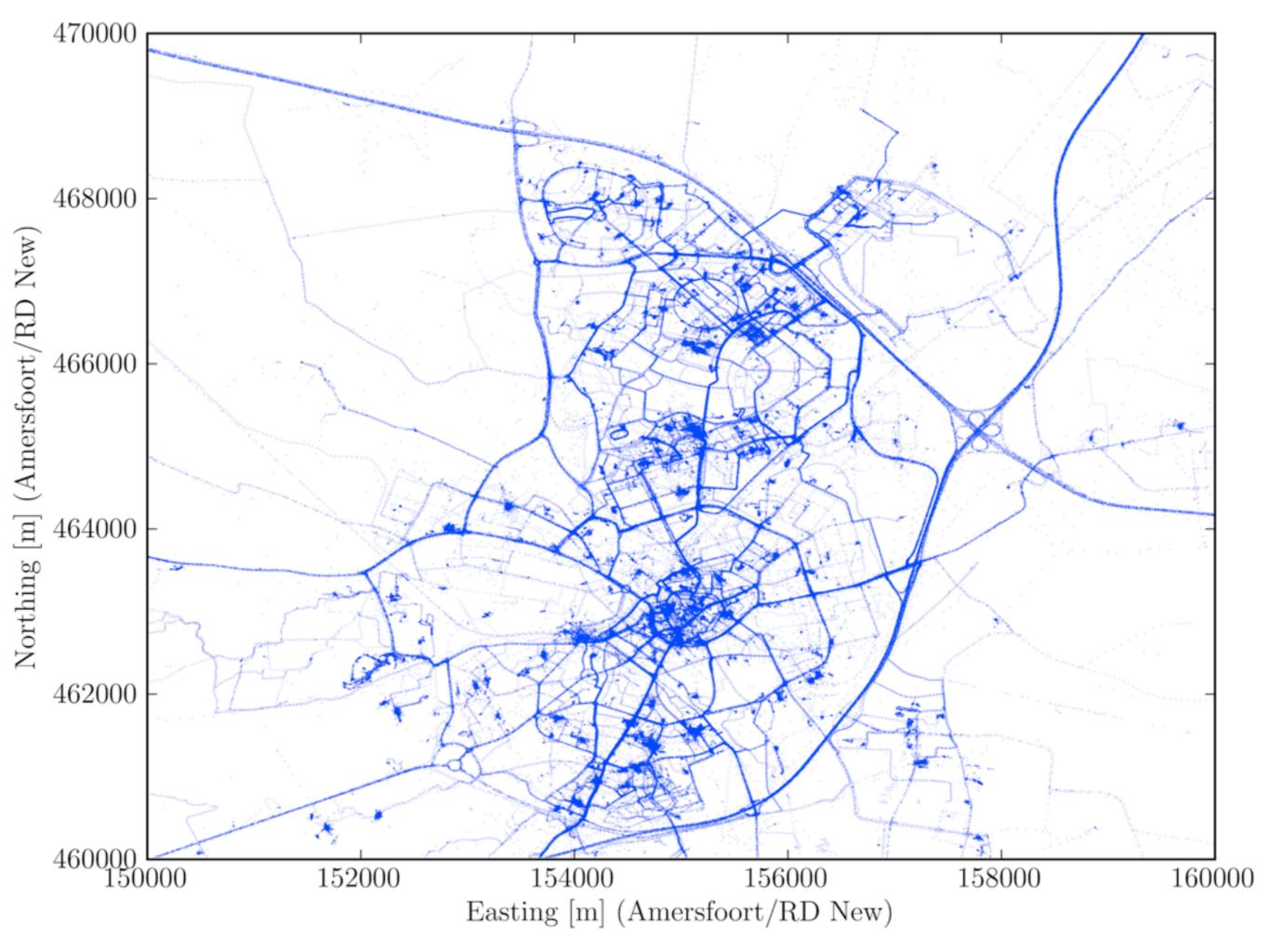
Applications

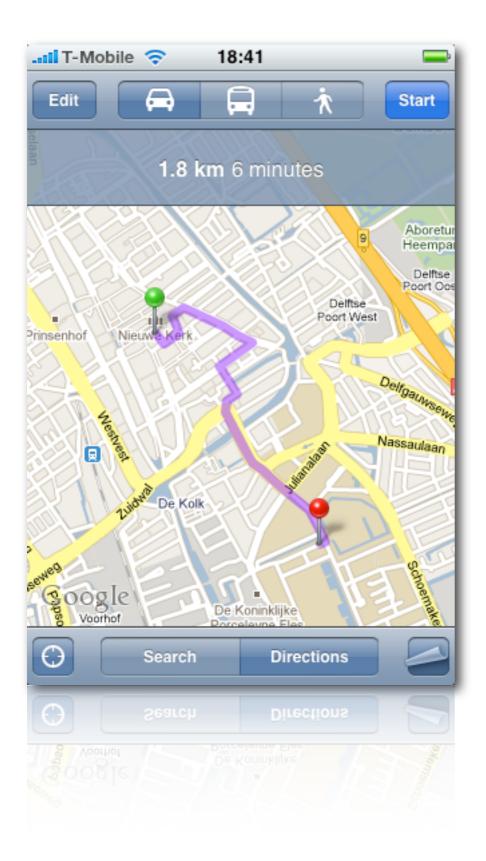
Applications

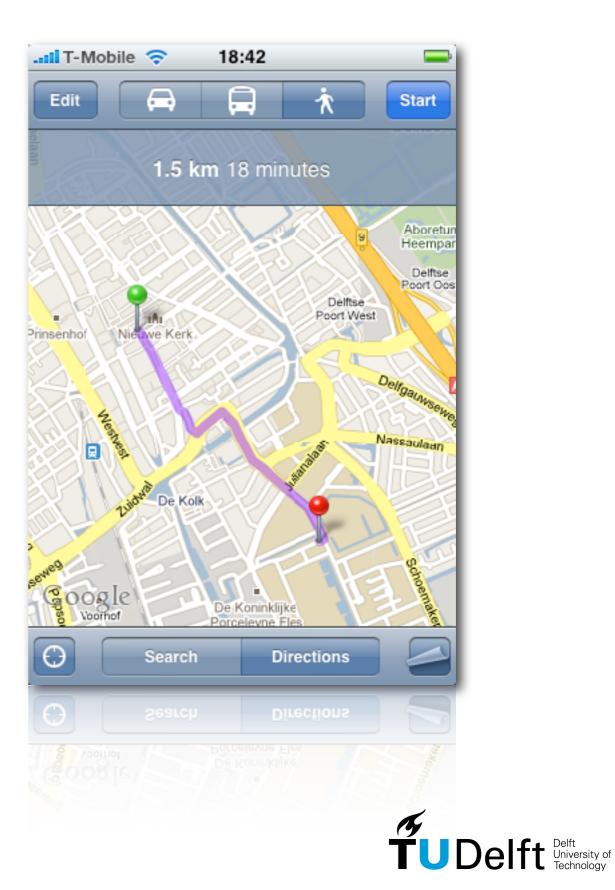
• Travel behaviour studies

Applications

- Travel behaviour studies
- Datasets:
 - Department of Urban and Regional Development, OTB
 - Department of Urbanism, Faculty of Architecture
 - 17.6 M points from 1369 individuals
 - 539000 km

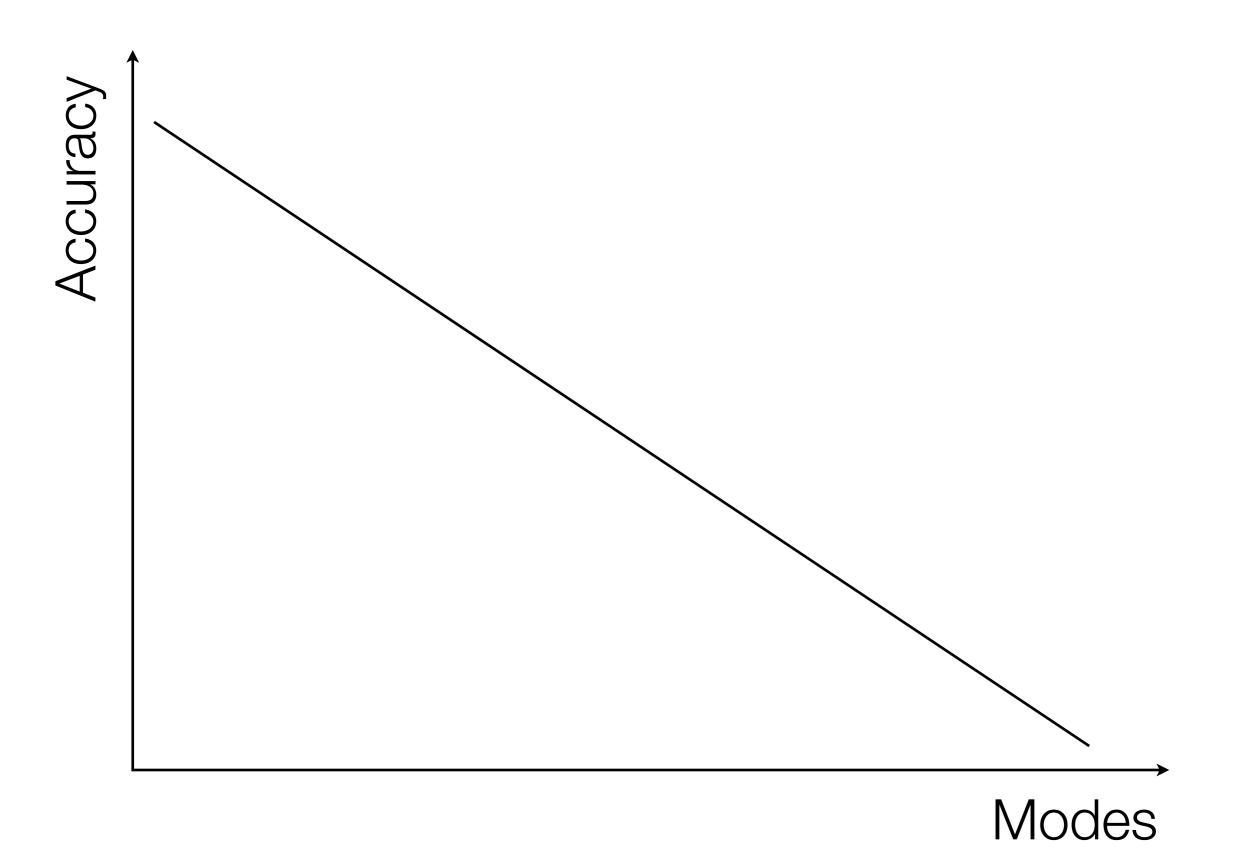






Existing solutions

- Deterministic solutions
- Speed
- A few modes (average: 4.5), dissimilar in behaviour
- Problem with data gaps not solved
- No segmentation



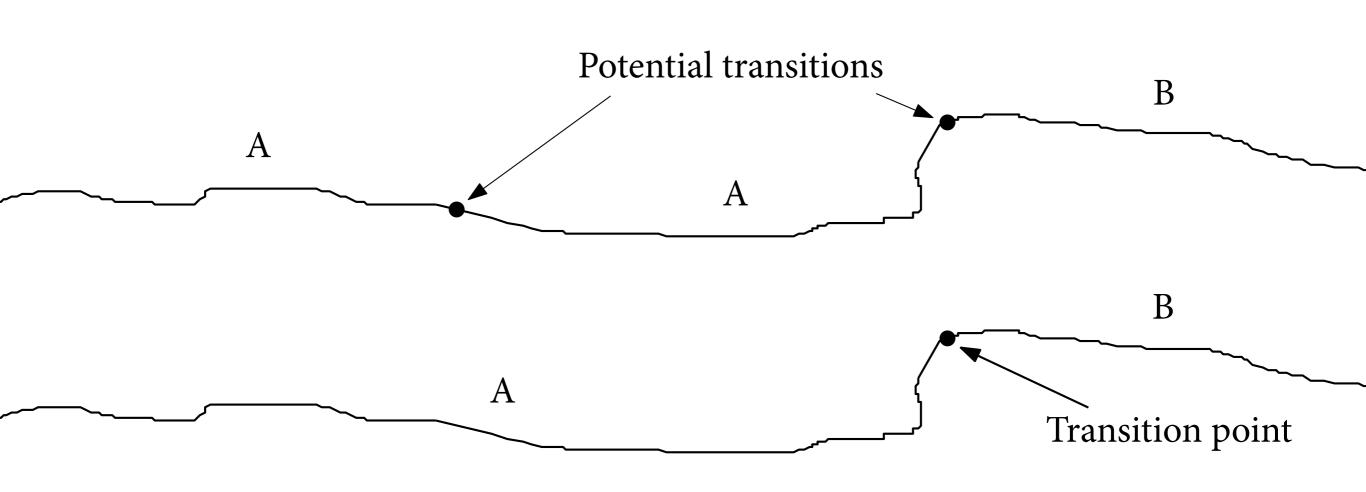
Overview

- Segmentation with sensitive thresholds
- Classification system inspired by fuzzy expert systems and strongly supported by geo-information
- Developed experimental software (Python + PostgreSQL/PostGIS)
- 10 modes: walking, bicycle, car, bus, tram, train, underground, sailing boat, ferry, aircraft

Segmentation

• Detection of stops or shortages in the data

Segmentation (2)



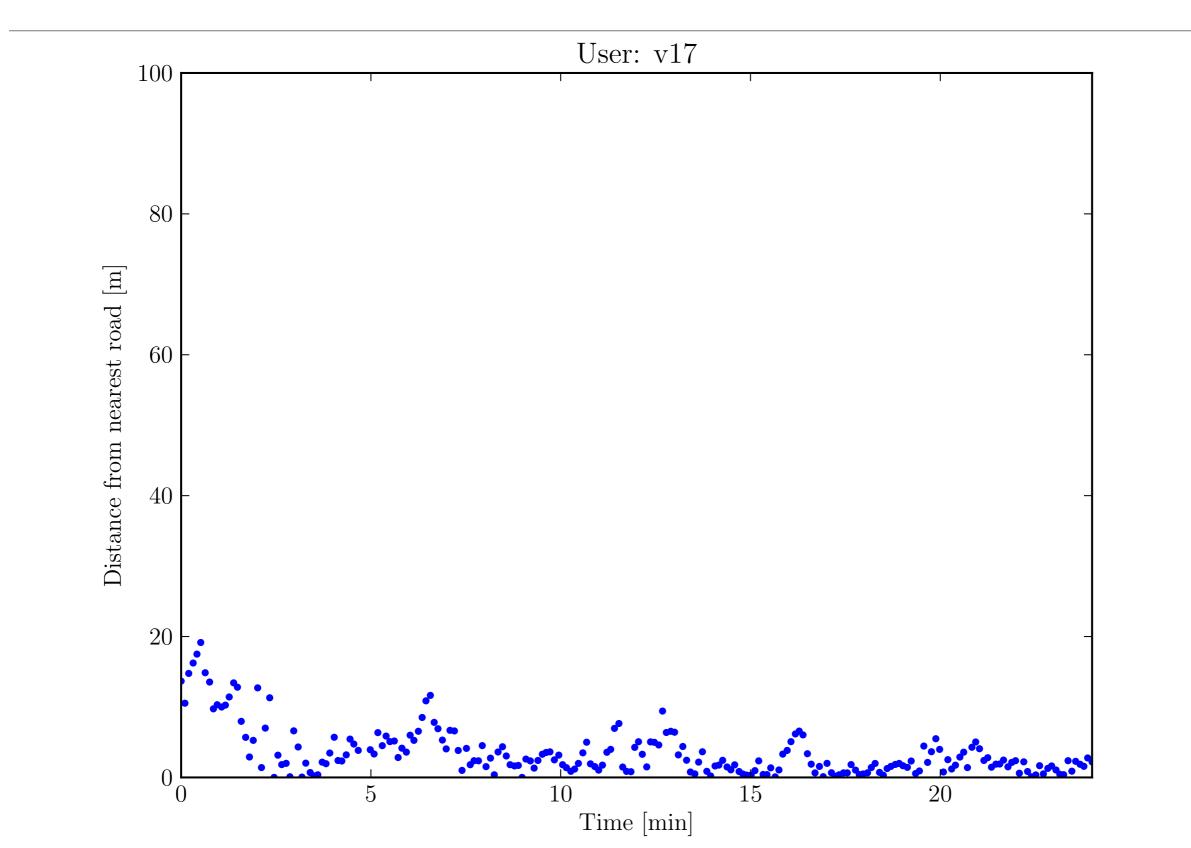
Segmentation (3)

- Sensitive thresholds
- Oversegmentation is better than undersegmentation

Classification solution

- Nine indicators: speed + geo-information
- Grouping similar modes
- Fuzziness
- Elimination of unlikely transportation modes

Proximities (from Openstreetmap data)



Grouping similar modes

1	Land	Sea	Air
2	Walk	Boat	Aircraft
	Bicycle		
	Car/tram/bus		
	Train		
	Underground		
3	Walk	Sailing boat	Aircraft
	Bicycle	Ferry	
	Car		
	Tram		
	Bus		
	Train		
	Underground		

Classification (FES)

- Expert systems
- IF e is observed THEN h is true
- Certainty factors (CF): confidence of a claim
- Fuzzy logic

• IF (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0

- IF (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0
- IF (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6

- IF (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0
- IF (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6

- IF (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0
- IF (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6

• IF (max. speed is 138 km/h) THEN (mode = train) WITH CF = 0.8

- IF (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0
- IF (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6

- IF (max. speed is 138 km/h) THEN (mode = train) WITH CF = 0.8
- IF (max. speed is 138 km/h) THEN (mode = {car, train, . . . }) WITH CF = {0.6, 0.8, ...}

- IF (max. speed is 118 km/h) THEN (mode = car) WITH CF = 1.0
- IF (max. speed is 138 km/h) THEN (mode = car) WITH CF = 0.6

- IF (max. speed is 138 km/h) THEN (mode = train) WITH CF = 0.8
- IF (max. speed is 138 km/h) THEN (mode = {car, train, . . . }) WITH CF = {0.6, 0.8, ...}
- Assigning certainties with fuzzy variables (via empirically determined membership functions):

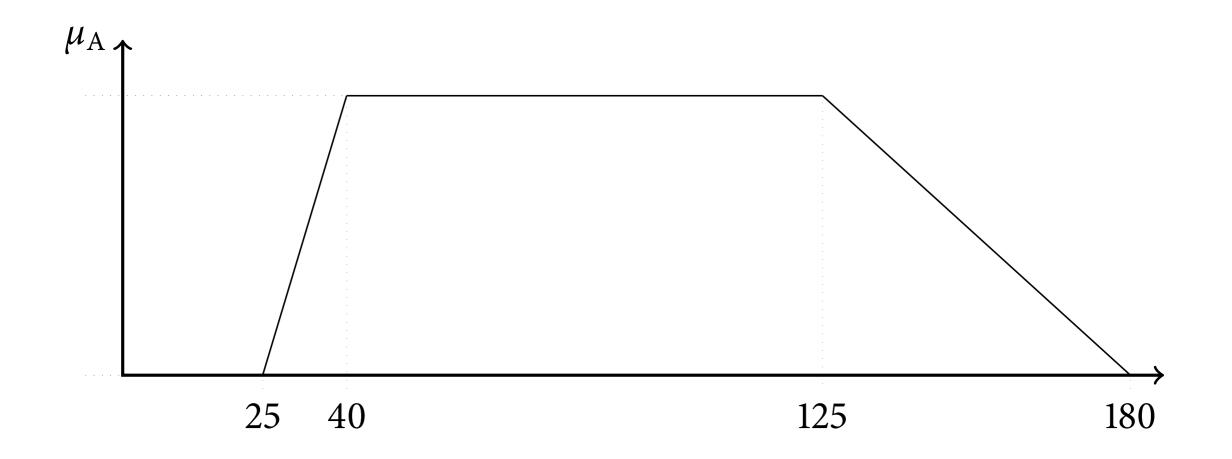
$$CF = f(e)$$

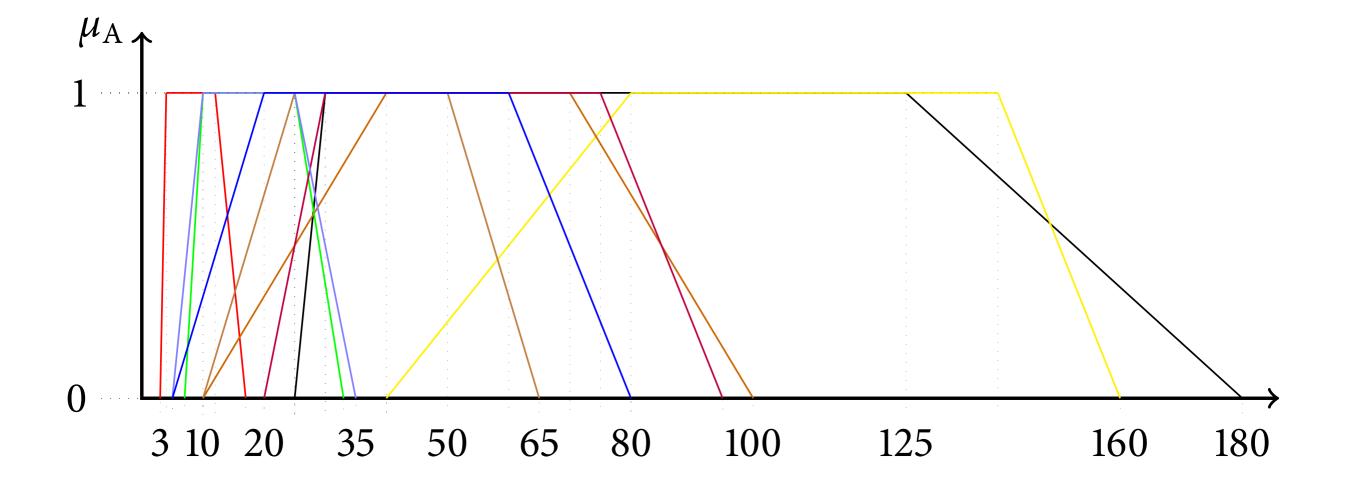
Membership functions

• One for each mode for each indicator

$$\operatorname{CF}_m^i = f_m^i(i)$$

$$CF_{train}^{max.speed} = f_{train}^{max.speed}(max.speed)$$





Training

- Training data manual trials, iterative process
- Extensibility with XML:

```
<indicator name="bus_proximity">
  <mode layer="3" name="bus">
    <values>0,0,10,30</values>
    </mode>
```


Chaining the results

• Result in nine CFs for each transportation mode

$$CF_{1}^{1} = f_{1}^{1}(i_{1}) CF_{1}^{2} = f_{1}^{2}(i_{2}) CF_{1}^{k} = f_{1}^{k}(i_{k})$$

$$CF_{2}^{1} = f_{2}^{1}(i_{1}) CF_{2}^{2} = f_{2}^{2}(i_{2}) CF_{2}^{k} = f_{2}^{k}(i_{k})$$

$$\vdots EF_{2}^{k} = f_{2}^{k}(i_{k}) EF_{2}^{k} = f_{2}^{k}(i_{k})$$

$$CF_{n}^{1} = f_{n}^{1}(i_{1}) CF_{n}^{2} = f_{n}^{2}(i_{2}) CF_{n}^{k} = f_{n}^{k}(i_{k})$$

Chaining the results (2)

• $CF[A \cap B] = min(CF[A], CF[B])$

$$CF_{1}^{1} = f_{1}^{1}(i_{1}) \quad CF_{1}^{2} = f_{1}^{2}(i_{2}) \quad \dots \quad CF_{1}^{k} = f_{1}^{k}(i_{k}) \quad \Rightarrow CF_{1} = \min(CF_{1}^{1}, \dots CF_{1}^{k})$$

$$CF_{2}^{1} = f_{2}^{1}(i_{1}) \quad CF_{2}^{2} = f_{2}^{2}(i_{2}) \quad \dots \quad CF_{2}^{k} = f_{2}^{k}(i_{k}) \quad \Rightarrow CF_{2} = \min(CF_{2}^{1}, \dots CF_{2}^{k})$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$CF_{n}^{1} = f_{n}^{1}(i_{1}) \quad CF_{n}^{2} = f_{n}^{2}(i_{2}) \quad \dots \quad CF_{n}^{k} = f_{n}^{k}(i_{k}) \quad \Rightarrow CF_{n} = \min(CF_{n}^{1}, \dots CF_{n}^{k})$$

Chaining the results (3)

IF (max. speed is 55 km/h) THEN (mode = tram) WITH CF = 0.85

IF (proximity to tram network is 4933 m) THEN (mode = tram) WITH CF = 0

 $\rightarrow CF(tram) = min(0.85, 0) = 0$

Demonstration

- Prototype report
- KML output

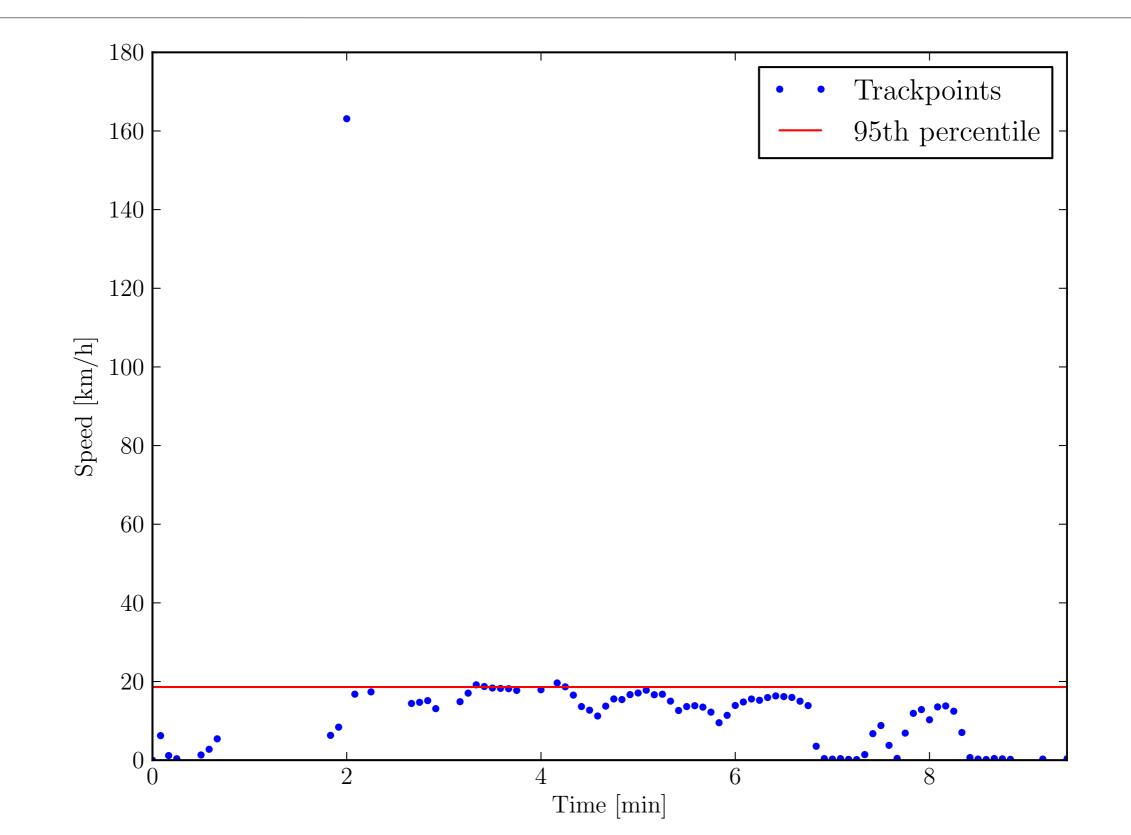
Solving specific problems

- GPS errors, noise
- Bus, tram, and cars in urban areas are similar in behaviour (speed, often stops, infrastructure-GPS errors)
- 'Gaps' in the data caused by signal shortages

Noise

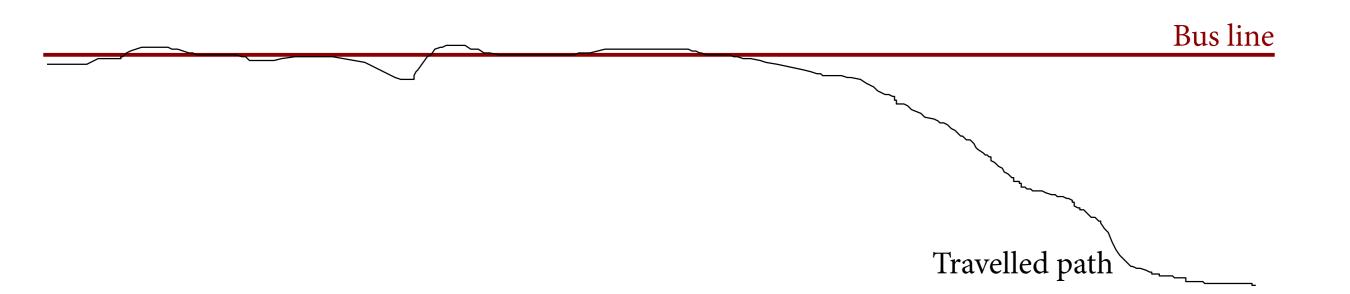


Noise (2)



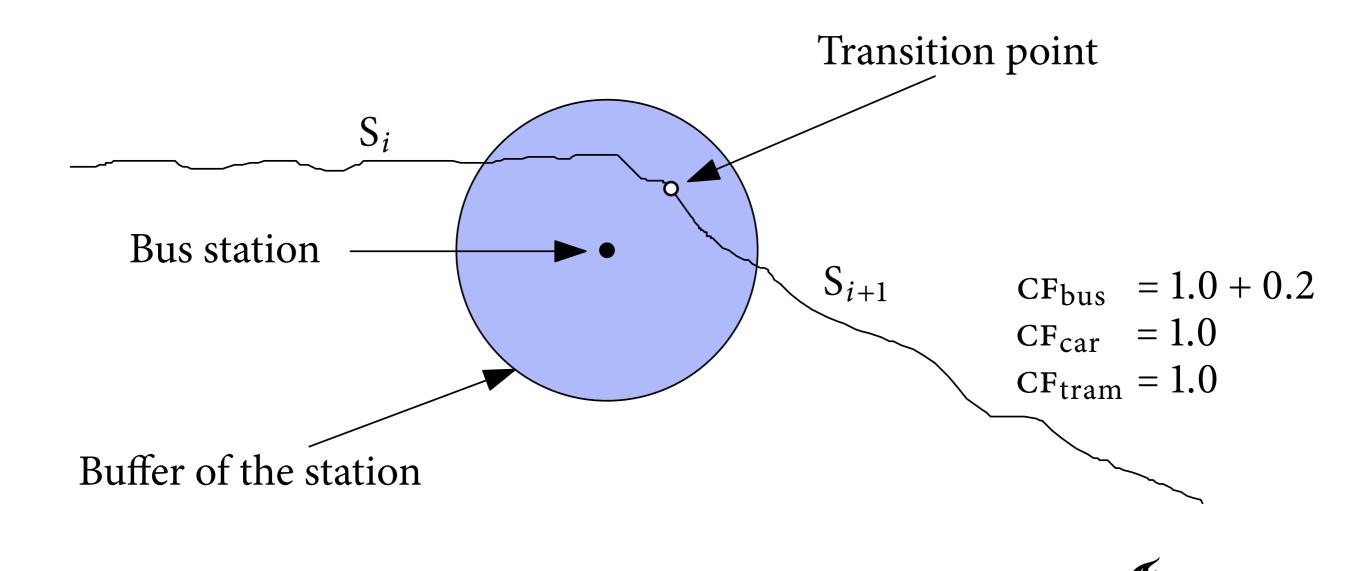
Distinguishing car, bus, and tram

• Infrastructure



Distinguishing car, bus, and tram

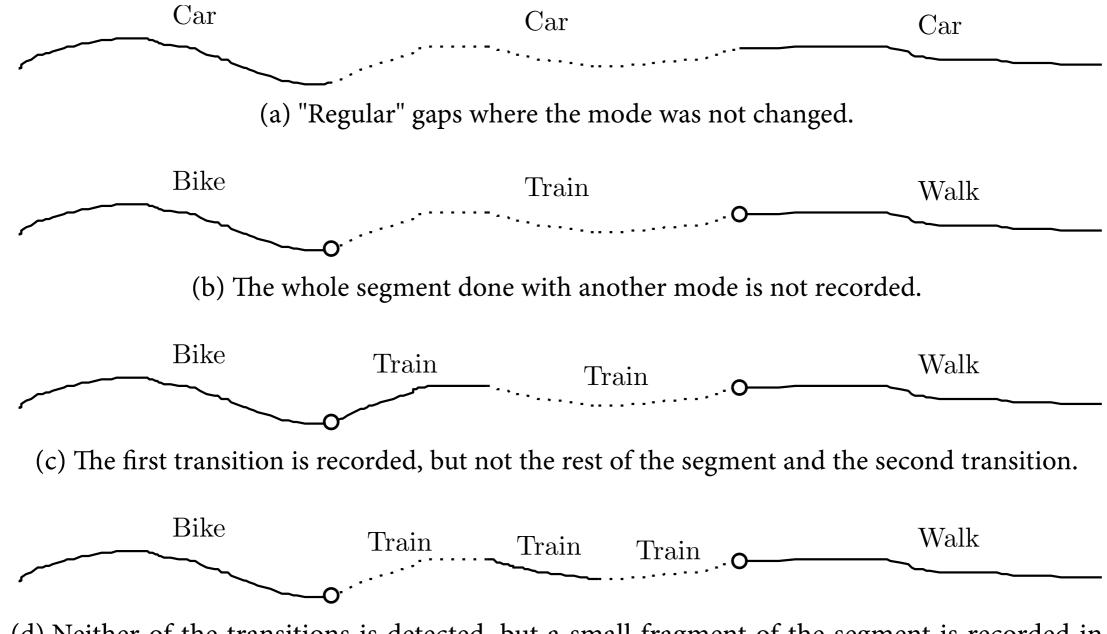
Assisted by the location of nearest bus/tram stops



iversity of

Missing time intervals

Interpolation not possible



(d) Neither of the transitions is detected, but a small fragment of the segment is recorded in between.

Missing time intervals (2)

- Example
- Attempted classification with geo-information and duration/distance of the gap
- Taking advantage of gaps for underground mode

Deriving additional mode-related information

• Segment done by train. Departure station: Den Haag HS Arrival station: Delft

Segment done by aircraft.
 Departure: Copenhagen, Denmark (CPH)
 Arrival: Amsterdam, Netherlands (AMS)
 Carrier(s): Scandinavian Airlines System, KLM Royal Dutch
 Airlines

Experiments

- A random subset of the dataset
- Available validated data ("ground truth")
- Added a few tracks from abroad and specific situations

Experiments (results)

- Segmentation is precise and sensitive
- Very short segments are successfully detected and classified
- Long journeys (with a lot of observations), especially cars, are virtually always correctly classified
- Worldwide applicability (at least Europe)

Experiments (accuracy)

Quality of input data	Layers		
	1	2	3
Good GPS data	99.1%	94.5%	93.6%
Bad GPS data	99.0%	91.4%	89.2%
Total (all data)	99.0%	93.1%	91.6%

Experiments (problems)

- Very short trips with noisy points human intervention not beneficial
- Attribution to water modes (in the Netherlands)
- Unusual behaviour (low or high speeds)
- Car, tram, bus problems with incomplete data (combining them in one class - OK)

Conclusions

- Functional (extensible) prototype
- Geo-information is the key for solving this problem
- Openstreetmap is suitable for the classification
- Classification focused on removing unlikely classes

Conclusions (2)

- More modes, higher accuracy, results with certainties
- Solving the gaps, coping with noise, classification of short segments
- Enriching the trajectories with more information

Future work

- Classification for trip purpose
- Established framework
- OSM data suitable as well

Questions?

