
Knowledge and Topology: A Two Layer Spatially Dependent
Graph Neural Networks to Identify Urban Functions with
Time-series Street View Image
Yan Zhanga,b, Pengyuan Liub and Filip Biljeckib,c,∗

aState Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China
bDepartment of Architecture, National University of Singapore, Singapore
cDepartment of Real Estate, National University of Singapore, Singapore

ART ICLE INFO

Keywords:
GeoAI
Natural Language Processing
GeoKG
Pretrained Model
Knowledge Graph
Multi-Modal

ABSTRACT

With the rise of GeoAI research, streetscape imagery has received extensive attention due to its
comprehensive coverage, abundant information, and accessibility. However, obtaining a holistic
spatial-temporal scene representation is difficult because places are often composed of multiple
images from different angles, times and locations. This problem also exists in other types of geo-
tagged imagery. To solve it, we propose a purely visual, robust, and reliable method for urban
function identification at the street scale. We introduce a method based on a two-layer spatially
dependent graph neural network structure, which handles sequential street view imagery as input
(typically available in services such as Google Street View, Baidu Maps, and Mapillary), with
full consideration of the spatial dependencies among road networks. In this paper, we construct
an urban topological map network using OpenStreetMap data in Wuhan, China, and compute
a semantic representation of the scene as a whole at the street scale using a large-scale pre-
trained model. We construct the graph network with streets as nodes based on 28,693 mapping
relationships constructed from 75,628 street view images and 5,458 streets. Only 5.3% of the
node labels were required to obtain 10 categories of functions for all nodes in the study area. The
results demonstrate that by using appropriate spatial weights, street encoder, and graph structure,
our novel method achieves high accuracy of P@1 46.2%, P@3 73.0%, P@5 82.4%, and P@10
89.9%, fully demonstrating the effectiveness of the introduced approach. We also use the model
to sense urban spatial-temporal renewal by computing time series street images. The model is
also applicable to the prediction of other attributes, where only a small number of labels are
required to obtain valid and reliable scene perception results. The example data and code is
shared at: github.com/yemanzhongting/Knowledge-and-Topology.
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1. Introduction
Urban functions are aggregated areas resulting from various types of human activities in urban space (Zhou et al.,

2020; Crooks et al., 2015). As the continuous expansion and development of cities lead to an increasing need of mon-
itoring and updating urban functions, we have witnessed numerous efforts devoted into such studies (Hu et al., 2021;
Lu et al., 2022; Biljecki and Chow, 2022) in the recent years. The city is the most dominant carrier of human activities
(Liu et al., 2018). Thanks to physical and social sensing networks, and the proliferation of big data technologies, a
wealth of multi-modal urban datasets are generated, which has brought massive changes in the study of urban functions
(Zhang et al., 2019a).

Remote sensing imagery is an important data source for data-driven urban function studies, providing a bird’s eye
view that has a successful history of capturing an overall understanding on land use (e.g., lakes, farmland, buildings,
etc.) (Cao et al., 2018, 2020). However, such imagery-based analysis lacks in-situ socio-economic semantic infor-
mation for understanding human-space interactions further (Zhang et al., 2021c). Thus, the quality of urban function
identification using such top view imagery is often inadequate (Van de Voorde et al., 2011). Meanwhile, the proxi-
mate sensing perspectives such as streetscape (or street view) imagery (Qiao and Yuan, 2021) captured at high spatial
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resolution facilitate obtaining detailed urban information (Zhang et al., 2020; Chen et al., 2022). Numerous existing
studies have asserted that street view images are efficient in identifying urban functions (Xu et al., 2022b; Biljecki and
Ito, 2021), sometimes in conjunction with other data sources such as point of interest (POI) (Hu et al., 2020b; Yao
et al., 2017), social media (Chen et al., 2017; Gao et al., 2017), taxi trajectory (Hu et al., 2021), and night light remote
sensing (Huang et al., 2021).

According to Liu et al. (2021), 51% of the urban function identification study used only a single data source, 49%
used two or more of the above datasets (Liu et al., 2017; Yin et al., 2021), and POI serves as the most widely used data,
being used by 75% of studies. However, in existing research, imagery of the streetscape has only been considered a
secondary data source, complementing other data sources (e.g. remote sensing), to improve the identification accuracy
(Fang et al., 2021; Qiao and Yuan, 2021). This gap leads to devise the first research question of whether we can perceive
urban functions solely from visual data.

Taking advantage of the rapid progress of digital image processing, many studies used neural networks for image
classification (Hu et al., 2020a; Kang et al., 2018), semantic segmentation (Lauko et al., 2020; Qi et al., 2020) and
object detection (Campbell et al., 2019; Chen et al., 2020) the street scenes in the images. These studies, however,
can only address a single streetscape image. They cannot be generalized to a broader area (Zhang et al., 2021c), as
they cannot provide an effective holistic representation of spatial units, such as for Area of Interest (AOI) (Li et al.,
2021a), Traffic Analysis Zone (TAZ) (Gong et al., 2020; Chen et al., 2021a) or building footprints (Song et al., 2022).
Generating an overall semantic representation of the space is the second question answered in this paper.

For sequential input data sources such as street view images, which are common in both commercial and crowd-
sourced platforms (e.g. Google Street View, Baidu Maps, Tencent Maps, Mapillary, and KartaView), it is essential to
note that the pre-trained convolutional neural network (CNN)-based methods (e.g., Resnet) can only process images
one by one (Zhang et al., 2021b; Yao et al., 2021). The typical way to obtain a spatial unit embedding is to calculate
the average of the multiple images feature vectors. However, such an approach ignores the location information of the
imagery and prevents the model from capturing the spatial heterogeneity of urban functional areas. That is, it will not
capture the spatial topological relationships between those images, and also, the spatial location relationships between
key geographic entities within the images (Fang et al., 2021). Moreover, there is information bias in representing
spatial units with separate or small number of images (Wang et al., 2021; Kang et al., 2018), and the loss of spatial
contextual information can lead to different urban function identifications for the same region (Amiruzzaman et al.,
2021).

As illustrated in Figure 1, the results of both semantic segmentation and object detection performed on street view
imagery lack comprehensive semantic information. Even if two images have similar proportions of various elements
after semantic segmentation, or the same objective features exist after object detection, there may still be considerable
geographical differences in the actual situation described by the two images due to the different spatial relationships
between the elements or features. More specifically, the street view images in Figure 1 both contain entities such as
Building, Window, Tree, Street Light, Motorcycle, and Car. Besides, the pixel proportions occupied by these entities
in the two images are similar. For example, the pixel ratio of the building on the Figure 1 left image is 23%, the ratio
of green plants is 20%, and the ratio of pixels occupied by the sky is 28%, while the pixel ratio of the building on
the Figure 1 right image is 26%, the green view index is 28%, and the sky view factor is also 28%. With the above
information, it is difficult to find the difference between the street view images of two locations simply by the type of
entity, the number of entities, or the pixel ratio of the field of view.

To capture the spatial relationships between the street scenes, such as the ones exhibited in the Figure 2, we use road
data as a network structure and choose the street with multiple streetscapes as the minimum spatial unit. We design to
capture two layers of spatial relationship, the first one is to capture overlapping entities in different views, the second
one is to capture the spatial topology relationship between streets. As the data source, we rely on OpenStreetMap
(OSM) thanks to its global coverage, ease of access, and quality evidenced by many urban studies (Chen et al., 2021b;
Pađen et al., 2022; Venerandi et al., 2022), but our approach is generalisable to other data sources.

Graph Neural Networks (GNN) can handle non-Euclidean structure data and extract spatial features from the topo-
logical graph for learning efficiently (Wang et al., 2022b,a). Existing studies have proved that the performance of
GeoAI models can be improved by considering the spatial topology (Zhu et al., 2020). Besides, GNNs are able to
learn features of the nodes based on their local neighborhood, which is defined by the edges connecting them. This
allows GNNs to work with only a small subset of the labelled nodes, or even with completely unlabeled graphs (Zhao
et al., 2022). While urban function (land use) identification is a very typical label-scarcity type task, spending a lot
of manpower on land use labeling is time-consuming and labor-intensive, and semi-supervised methods like GNN are
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Figure 1: Examples of object detection and semantic segmentation on two scenes obtained from street view imagery.
Although the analysis results of these two street views are similar, there are considerable geographical differences in the
actual conditions. The first was taken on a school road and the second on a commercial street, pieces of information that
may be instrumental for urban studies but out of reach of conventional methods using street-level imagery. Thus, we posit
that traditionally used approaches do not give full justice to the urban function identification and their distinction, and
propose an enhanced approach relying on the sequential nature of imaging and a graph neural network structure. Source
of the imagery: Tencent Street View.

Layer 1: Capture overlapping entities Layer 2: Capture spatial topology

Figure 2: Schematic diagram of two-layers spatial relationship capture. For example, we identify a building from one
image, and the same building may also appear in other images, which establishes a relationship between the two images.
Source of the imagery: Tencent Street View. Source of the map: © OSM contributors.

very useful for such task (Zhang et al., 2022a). In view of the above advantages, we have witnessed an increasing use
of GNNs in urban-related studies (e.g. road traffic forecasting) (Zhao et al., 2019; Yu et al., 2020; Liu and Biljecki,
2022; Abdelrahman and Miller, 2022).

Considering that urban functions will have certain co-location patterns or spatial dependencies (Yu et al., 2017),
we introduce GNN to capture the topological relationships of roads in order to improve recognition accuracy. Related
research has attracted considerable attention recently. For example, Hu et al. (2021) used traffic trajectory data, treated
roads as nodes and extracted the topological relations between them. Nonetheless, such a relationship lacks semantic
information and the description of physical environment. This limitation is why the trained model is not rich in pre-
dictions and can only identify three types of functions: commercial, public, and traffic. Xu et al. (2022c) described
city region features based on POI data and relative relationship between POIs, extended the prediction results to six
categories. However, it can only use the category attributes of the POI (a standard treatment is to analogize POI cat-
egories, such as business, traffic, etc. to ‘words’, and regions to ‘documents’, but much information is lost in such
methods (Yao et al., 2017)), and lacks the use of road network topology information (Inoue et al., 2022).

Inspired by the application of vision-language multi-modality in remote sensing image analysis (Wang et al.,
2022b), we propose a two-layer spatially dependent graph neural network based on knowledge (socio-economic infor-
mation extracted from the physical environment of the streetscape) — topology (neighborhood relationships between
road networks). Using the urban road networks as a backbone, we generated a street semantic knowledge graph and
computed an embedding representation for each street node. The first spatially dependent layer is a knowledge layer
that generates objective descriptions of street view images in ‘human language’, which are then aggregated to the whole
street. In other words, calculating the caption of street scene. Machine reasoning is used to deconstruct and understand
the content of the image, then generate a natural semantic description of the given scene (Hossain et al., 2019).
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To the best of our knowledge, some attempts have been proved to be successful using such a cross-modal approach
in understanding remote sensing images (Shen et al., 2020; Li et al., 2021c), and such studies are highly valuable for
applications in disaster assessment, urban planning and geographic information retrieval (Hong et al., 2020; Murali
and Shanthi, 2022). The cross-modal model has the ability to describe the objects, attributes and relationships between
objects that appear in the image (Yang et al., 2022b), which will contain more information compared to the traditional
results of semantic segmentation (Amiruzzaman et al., 2021) and object detection (Ning et al., 2022). Accurate scene
inference is a challenging task that requires a fine-grained understanding of global and local entities in an image, as
well as their attributes and relationships, and also requires a joint contribution from the fields of computer vision and
natural language processing (Zhang et al., 2022a).

In this paper, we refer to the knowledge graph consisting of geographical entities and spatial location relationships
between entities in the streetscape as the street semantic knowledge graph (von Richthofen et al., 2022; Li et al., 2021b;
Chadzynski et al., 2022). The cross-modal technique is applied to urban street view interpretation to generate the scene
caption and the entity-relationship-entity knowledge triple.

The second spatially dependent layer is the topology layer, which constructs a spatial weight matrix based on
the road spatial topology. It can take full advantage of the spatial dependence of the urban functions distribution
(Georganos et al., 2021). Our method can fully use the graph semi-supervised learning features to obtain accurate
prediction results with only a small number of training labels. Considering that in a spatial unit, street view images
are often sampled in different times, this means that not only socio-economic and physical built information can be
perceived, but also temporal-spatial changes, which was often neglected (Xu et al., 2022a; Biljecki and Ito, 2021).

The main contributions of this paper are threefold:
• The first is a method for sensing urban functions based on pure visual data, which is compatible with arbitrary im-

ages containing geo-tags and has significantly broadened the application scenarios of proximate sensing images
in this field.

• The second is the solution to the sequence input and regional representation of street view images by effectively
using their spatial location information. It can perceive city temporal-spatial changes (city renewal) and provide
more accurate street function prediction products.

• The third is the generation of the street semantic knowledge graph based on the intermediate products of the
computation (physical entities of the city, spatial location relationships of the entities) to improve the urban
comprehensibility.

On a broader scope, we also introduce a new use case of street view imagery, a rapidly growing source of urban
data, but not utilised for this purpose hitherto.

Our study is organized as follows: the second section presents the model architecture of our Spatio-temporal two-
layer graph neural network; the third section is about the experiments, which discusses the model accuracy and the
Spatio-temporal representation performance, then generates the knowledge graph for visualization; the last section
summarizes this work and discusses the advantages and applicability of the model, which is of high value for urban
planning and geographic information retrieval, etc.

2. Method
Our method is divided into five parts, as shown in Figure 3, Step 1 and Step 2 are the encoder part of the model,

and Step 3, Step 4, Step 5 are the decoder part of the model.
Step 1: Cross-modal extraction scenario description (Street View Captioning)
Each source or form of information can be referred to as a modality. Cross-ModalMachine Learning (CMML) aims

to achieve the ability to process and understand data from multiple sources of modality through a machine learning
approach (Lin et al., 2016). The descriptive text of images (caption) is a cross-modal process that converts images
into textual descriptions and provides rich semantic information for further computation. There are three methods to
generate image captions: template-based, retrieval-based, and sequence-generation-based method (Zhao, 2021). The
last method can not only obtain the correspondence between image features and words but also learn the sequence
relationship between adjacent words and generate flexible and variable descriptions, which is the method adopted in
this paper.
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Figure 3: Schematic diagram of the Knowledge-Topology Two Layers Spatially Dependent Graph Neural Network.

Figure 4 shows the detailed steps of the cross-modal computation, where we input a street scene image and output
the corresponding text description, “A red car parked on the side of the road”. The description contains the vital
physical entities of the city, the nature of the entities, and the spatial location relationship between the entities. As
such, we can extract a triple like (“A red car” ->s,” parked on the side of “->r,” the road” ->o). We perform a similar
calculation for each image, aggregating it to form a semantic description of each street.

We use a vision-language model (Figure 4) trained through the Bottom-Up and Top-Down Attention to obtain
urban street view captions (Anderson et al., 2018; Rennie et al., 2017; Lu et al., 2020), its applicability in street views
can be found in (Zhang et al., 2022a). During the pre-training process, the model’s input consists of images and the
corresponding description text. Note that there is no relevant caption dataset in the street view domain. Therefore, the
model used the Microsoft COCO caption dataset (Lin et al., 2014; Lu et al., 2017) for the model training step, which
consists of a variety of scenarios, both indoor and outdoor.

The sequence generation unit consists of two LSTM layers (Hochreiter and Schmidhuber, 1997) and an attention
layer. As shown in Figure 4, the model uses an object detection neural network (Faster R-CNN (Ren et al., 2015)) to
extract the image features and divides the image into k regions, which are fed into the recurrent neural network together
with a text description containingN words (tokens).

In Figure 4,We is the word vector matrix,∏t is the one-hot encoding of the word at time t, and the product of the
two represents the word vector of the input word yt at that moment. v̄ denotes the mean-pooled of an image feature,
vi means the image feature of the ith region. Then the conditional distribution over possible output words at the time
step t is:

p
(

yt|y1∶t−1
)

= softmax
(

Wpℎ
2
t + bp

) (1)
Where Wp is the parameter we need to train, bp is the weights and biases to be learned, and the output y is the

word, i.e., the textual description of the street image.
Step 2: Aggregate the images and calculate the scene embedding of the street
Based on the scene description generated by Step 1, we treat the street as a ‘document’ containing multiple ‘sen-

tences’ (street scenes). Through the mapping between street scenes and road networks, we can obtain street-view
neighborhood information, then calculate the feature code of the street as a whole.

We encode the ‘document’ using the Bidirectional Encoder Representations from Transformers (BERT) model
: Preprint submitted to Elsevier Page 5 of 22
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(based on Faster R-CNN) extracts image regions and corresponding feature vector, the top-down mechanism adjusts
feature weighting. Source of the imagery: Tencent Street View.

Table 1
Semantic Embedding of Street Scenes based on Bert Encoder

Dim
Street

0 1 2 3 4 5 6 7 8 ... 5457

0 -0.115 -0.436 -0.220 -0.464 -0.444 -0.553 -0.637 -0.397 -0.368 ... -0.650
1 -0.693 0.281 -0.226 -0.729 -0.263 -0.168 0.243 0.092 0.017 ... 0.285
2 -0.791 -0.359 -0.100 -0.690 -0.410 -0.188 -0.404 -0.249 -0.374 ... -0.280
3 0.359 -0.072 0.086 0.153 0.204 0.107 0.038 -0.017 -0.119 ... -0.022
4 0.070 -0.460 -0.218 -0.048 -0.266 -0.019 -0.341 -0.300 -0.190 ... -0.358
5 0.282 -0.613 -0.466 -0.389 -0.343 -0.796 -0.586 -0.580 -0.469 ... -0.570
6 0.099 -0.745 -0.691 -1.046 -0.657 -1.065 -0.523 -0.450 -0.888 ... -0.523
7 -0.249 0.492 0.754 0.098 0.435 0.322 0.300 0.523 0.489 ... 0.458
... ... ... ... ... ... ... ... ... ... ...
767 0.087 -0.190 -0.107 -0.216 -0.225 -0.125 -0.140 -0.059 -0.383 ... -0.067

(Vaswani et al., 2017), which consists of 12 transformer layers, 12 attention heads, 768 dimensions, and 110M pa-
rameters. Subsequently, a D(768) dimensional scene embedding is generated as the model input for initialization. In
addition to Bert, the struct in Figure 3 can also be compatible with various embedding methods, such as Doc2vec
(Niu and Silva, 2021). The experimental section will also compare the computational effects of different embedding
methods. Table 1 represents the results of the street embedding calculation with Bert as the semantic encoder (5458
streets, 768 dimensions).

Step 3: Labelling and spatial weights (road network topology)
The streetscape is rich in socio-economic information (Zhang et al., 2021a, 2018), and this paper assesses its ability

to identify urban street functions. We use the EULUC-China dataset produced by (Gong et al., 2020) to label the streets.
The EULUC-China dataset identifies 27 major cities in China based on multiple data sources such as 10 m satellite
images, OpenStreetMap, night time lights, POIs, and Tencent Social Big Data, including five primary classification
labels and 12 secondary classification labels, with an overall classification accuracy of 60%. The urban land use
classification labels refer to the Chinese land-use status classification standard (GB/T 21010-2017). Among those
12 secondary categories, road classification is not the type we focused, and the study area does not contain Airport
facilities type, we excluded such irrelevant labels. As a result, we constructed a street function dataset containing ten
types of labels in Table 2, detailed information about labels can be found in the literature (Gong et al., 2020).

The study area contains 13,889 streetscape sampling locations, and each has four images from different angles,
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Table 2
Categories, descriptions, and labeling status of urban functions.

ID Type Description
Region
Number

Labeled
Street

0 Residential Houses and apartment where people live 1,096 87
1 Business office Commercial office space 114 15
2 Commercial service Commercial retails,restaurants,lodging,and entertainments 161 29
3 Industrial Manufacturing,warehouse,mining,etc. 176 37
4 Transportation stations Transportation facilities 24 6
5 Administrative Government,public service agencies 61 6
6 Educational Education and research 289 65
7 Medical Hospitals 28 12
8 Sport and cultural Public sports and training,cultural services 71 28
9 Park and greenspace Entertainments and environmental conservations 273 10

Note: There are 5,458 streets, 13,889 sampling points and 2,296 regions, and only labeled about 5.3% of the streets.

5,458 OSM roads, and 2,296 functional regions with labels. To obtain the labels, we set a 25 m wide buffer for the
sampled locations (50m can cover most of the city road width), which is spatially connected to the functional regions
to label the street view image. As elaborated in Step 1, we have constructed the relationship between streetscape and
street, therefore, here, we simply count the streetscape labels that contain the most categories as the street’s primary
function. Some streets contain multiple labeled street views. For those streets, we select streets with more prominent
functions as training data. As shown in Table 2. We labeled 190 streets, with an overall annotation rate of 5.3%.

Using the road network topology, we generated a spatial weight matrix to generate the adjacent road relationship.
Formally, we used an n×n (n is the number of streets) matrixA to express it, if there is an adjacent relationship between
streets i and j, then ai,j is assigned to 1, otherwise ai,j is assigned to 0.

We used two methods to express the adjacent relationship. The first is Queen contiguity spatial weight method
(Suryowati et al., 2018). If there is an intersection and overlap between streets, the technique will mark that the two
streets are adjacent. The advantage is that it can better reflect the existing road network, but the disadvantage is that it
cannot handle streets without neighbors. The other is K-nearest neighbors spatial weight method. It can calculate theK
nearest streets and mark them adjacent relationships. The advantage is that it avoids dangles roads. The disadvantage
is that some non-intersecting streets will also be marked adjacent (Zhu et al., 2020).

Step 4: Build semi-supervised graph neural network for training
There are many graph models, and most graph models share their filter parameters over all locations in the graph.

Those models are Graph Convolutional Networks (GCN) (Kipf and Welling, 2017; Zhang et al., 2019b). GCNs have
an excellent ability to extract graph features. Thus, suitable for semi-supervised learning tasks (only a small amount of
labels required), and it takes fewer iterations to converge (Bruna et al., 2014; Kipf and Welling, 2017). We generated
a city road graph according to the adjacency matrix A built-in Step 3. Every street was regarded as a node, and our
task was to label street functions. This graph includesN nodes, withD dimensions, as the initial feature matrixX. F
is the output dimension of the model, then the output is a matrix Z of size D × F , andH represents the intermediate
state of the model. The GCN propagation rules are defined as follows:

f (H (l), A) = �
(

AH (l)W (l)) (2)
Where W (l) is a weight matrix for the lth network layer,�(⋅) is non-linear activation function ReLU . There are

still two limitations of the propagation rule at this point. The first is that A is the adjacency matrix of the graph, and
the nodes’ features are not considered; the second is that the regularization ofA is also required. We define Â = A+I ,
I as the identity matrix. D̂ is the diagonal node degree matrix of Â. At this point, the propagation rule of the GCNs
is defined as:

f (H (l), A) = �
(

D̂− 1
2 ÂD̂− 1

2H (l)W (l)
)

(3)
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The model training procedure is defined as follows: 1. perform forward propagation of the model through the f
function. 2. Compute the cross-entropy loss on the labels of known nodes.

cross_entropy = −
N
∑

k=1

(

pk × log qk
) (4)

p is the true label, q is the predict label. 3. Back propagate the loss and update each layer’s weight matrixW .
The number of layers is the farthest distance a node feature can reach. In a 1-layer GCN, each node can only

get information from its neighbors, while in a 2-layer GCN, each node can also get information from its neighbors’
neighbors. More layers are not always better; over-stacked layers will cause the model to lose the ability to extract
local features. Xu et al. (2022c) believes that in the urban task, the model accuracy decreases as the depth increases,
and better accuracy can be achieved by taking two neural network layers on average. Collecting information is carried
out independently, with all nodes performing it at the same time (Yang et al., 2022a). At last, the features of the graph
are reduced from an initial 768 dimensions to a final ten dimensions. After the cross-entropy loss function (equation 4)
training the weight matrixW , and the propagation rule equation 3, we output the prediction result (matrixZ, equation
5) based on the softmax function, i.e., the probability that each node belongs to the above 10 classes.

Z = f (X,A) = softmax
(

ÂReLU
(

ÂXW (0))W (1)) (5)
We used three semi-supervised graph neural networks to test the performance, the first one is traditional GCN,

which incorporates the whole graph into the calculation, and the relationship between nodes is equal weight. We
designed two types of structures, the hidden channel (computational units) is 64 and 32, 32 and 16, respectively. The
second one is graph attention network (GAT) (Veličković et al., 2017), which is different from GCN, the relationships
between nodes are unequal-weighted, and these weight parameters are also the object of model learning. The third
one is GraphSage (Hamilton et al., 2017), which does not calculate the whole graph. It only considers the influence of
surrounding nodes on the node, and the calculation is faster.

Step 5: Model prediction and accuracy evaluation
Based on the trained model in Step 4, we perform functional prediction for unlabeled streets in study area. Since

we introduce a semi-supervised machine learning approach, we include only a fraction of the labels of the data. We
borrow the accuracy criterion from recommendation systems and measure the model accuracy by the P@K score (Ge
et al., 2010), which calculates the proportion of the nearest K regions that correctly contain the predicted labels. As
such, P@K denotes when the predicted street label in the test data appears in the nearest − k true region label list
(the EULUC-China dataset in Step 3 is regarded as the actual value). Num denotes the number of test data, and nocdenotes the number of times this occurs, as follows:

P@K =
noc
Num

(6)

A smaller K value means a stricter evaluation criterion, and a more extensive P value indicates a higher model
accuracy and a closer distribution to the actual condition. Since the study area contains more than 5,000 streets and
2,000 regions, we use KD-Tree to speed up the retrieval and calculation.

3. Experiment
3.1. Introduction to the study area and data pre-processing

As shown in Figure 5, this research is divided into three main parts. The first part is the cross-modal decoder of
the streetscape images to obtain a highly semantic compressed description of the city scene; the second part is the
semantic encoder of the decoder results together with the OSM network topological relations and then input to the
graph network for semi-supervised learning; finally, we extract the knowledge triple from the images to generate a
street semantic knowledge graph and text summaries under each city function, which make the city not only can be
‘watched’ but also can be ‘read’.

Our study area is within the third ring of Wuhan in China, we collected 75,628 Tencent Street View images, which
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Figure 5: General structure of the approach (Step 1 – Data process and Image Caption; Step 2 – Build graph neural
network and train it; Step 3 – Extract triple and Generate Knowledge Graph). Source of the map: © OSM contributors.

were sampled at a similar time to the launch of the EULUC-China product, while 64,750 newly (collected in the July
of 2022) Baidu Street View images were used to sense the recent urban construction in the study area. By calculating
images from different times, we explore the urban functional transfer and the validity of the method from different data
sources.

There are many diverse urban scenes and physical entities in the study area, including 5,458 OSM roads and
18,907 streetscape sampling locations. Based on the pre-trained visual language model mentioned in Figure 4 Step 1,
we perform cross-modal decoding of 75,628 street scene images in the study area and generate the most relevant five
scene descriptions for each. Consequently, we obtained a total of 378,140 sentences after about 72 hours computation
on a Tesla P100 GPU.
3.2. Model training and accuracy comparison

We calculated the 25-meter buffer of OSM roads (street scenes are collected by sampling vehicles, and most urban
roads are no more than 50 metres wide), counted the streetscapes that fall within the buffer zone as a representation of
the street, built the 28,693 spatial connection between OSM and Sreet View. And then we use the EULUC to label the
streets. We continued the following research based on these information.

We use Queen contiguity to calculate the spatial weight matrix, with 23,549 neighboring relationships. There are
5,458 OSM segments in the study area, with an average of 5 relations per street, so we calculate 5-Nearest (K=5)
neighborhoods (27,290 neighboring relationships) as another set of spatial weights.
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Table 3
The accuracy comparison of 12 models under different conditions.

Model Encoder Weight Graph Sructure @1 @3 @5 @10 Number Time(s)

Model 1 Bert K-Nearest GCN1 0.344 0.568 0.654 0.758 8 39.672
Model 2 Bert K-Nearest GCN2 0.395 0.638 0.73 0.807 10 27.899
Model 3 Doc K-Nearest GCN1 0.327 0.544 0.632 0.738 9 24.516
Model 4 Doc K-Nearest GCN2 0.327 0.548 0.64 0.75 10 18.402
Model 5 Bert Queen Contiguity GCN1 0.382 0.637 0.736 0.824 7 32.374
Model 6 Bert Queen Contiguity GCN2 0.321 0.554 0.648 0.752 10 21.209
Model 7 Doc Queen Contiguity GCN1 0.335 0.564 0.657 0.75 8 24.298
Model 8 Doc Queen Contiguity GCN2 0.289 0.496 0.593 0.698 10 17.579
Model 9 Bert K-Nearest GAT 0.462 0.730 0.824 0.899 10 218.722
Model 10 Bert Queen Contiguity GAT 0.376 0.623 0.723 0.818 10 204.958
Model 11 Bert K-Nearest GraphSAGE 0.364 0.592 0.685 0.774 10 36.012
Model 12 Bert Queen Contiguity GraphSAGE 0.376 0.623 0.723 0.818 10 32.539

Note: GCN1,GCN2: the computational units is 64 and 32, 32 and 16 respectively

We conducted 12 sets of comparison experiments using different models as shown in Table 3. The main differences
between the models are the different semantic encoder, the spatial weight matrix and the graph feature extraction
network, and each model is given a unique name (Model1, Model2, etc.). We performed 200 rounds of epochs for all 12
models to test their prediction accuracy, and the training loss variations are shown in Figure 6. We only discuss models
where the number of prediction categories is equal to 10, because these models can maintain a better generalization
ability. As can be observed, using Bert as the encoder will achieve higher accuracy (Model 2 and Model 4). Such high
accuracy shows that Bert has a solid ability to extract scene features and can reduce training loss. On the contrary, the
traditional method (Doc2vec) can not reduce the loss even after 200 epochs. Take model 2 for example, when using
the basic GCN structure as a semi-supervised classifier, P@1=0.395, P@3=0.638, P@5=0.730, and P@10=0.807.
The result means that under the stricter criterion (P@1), about 40% of the predicted labels of streets agree with the
EULUC; under the loose criterion (P@10), about 80% of the predicted street labels are consistent with one or more
labels of the ten nearest parcels. Note that this does not mean that the accuracy of our model is only 40%. Limited
by the low quality of EULUC data and since one street may have multiple functions, loose criterion (P@10) may be a
better choice of model assessment.

Mentioned in Step 2 of the method, GAT requires more parameters for training (additional weight matrix), Model 9
andModel 10 are the slowest but achieve the highest accuracy (P@1=0.462, P@3=0.730 P@5=0.824, P@10=0.899).
This performance is quite satisfactory and the model’s predictions are excellent. The performance proves that Street
View can detect urban street functions effectively, and introducing spatial topology improves the city’s interpretation
level.

In addition, as shown in Figure 6 that when GCN is used as a classifier (Model 2, Model 3), the training loss
is low at the beginning, indicating that the model already has a good feature extraction capability without training.
Model 2, Model 6, Model 9, Model 11, and Model 12 have the fastest converge speed. These models also have good
generalization ability and can accurately identify the ten functional categories. Using the 5-Nearest (K=5) neighbor-
hoods (dashed line, Model 5, Model 6) to calculate the spatial weights makes the model more likely to converge than
Queen contiguity (solid line, Model 1, Model 2). The results in Table 3 also show the lower accuracy of using Queen
contiguity.

We use the T-distributed stochastic neighbor embedding (T-SNE) dimensionality reduction method to visually
check if the model can learn the classification features well. As we can see in Figure 7, the 768-dimensional features
of the street nodes are reduced to two dimensions, and the labels of the model predictions are drawn. Figure 7 can
visually verify the algorithm’s effectiveness to see whether the model can learn similar embeddings of nodes belonging
to the same category. More specific, we can use T-SNE method for processing the feature embedding (lengtℎ = 10,
number of land use labels), which is the last layer output of the neural network. At this time, the embedding has been
calculated by forward propagation of the trained neural network. Besides, the predicted labels can also be obtained
after the calculation of the maximum value function (argmax).

In addition to the within-group comparisons performed in Table 3, we also compared the results by the traditional
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Model2

Model9

Figure 6: Training loss curves of different models. Dashed lines indicate the use of 5-Nearest neighborhoods, and solid
lines indicate the use of Queen contiguity.

machine learning method Multilayer Perception (MLP), without considering the spatial topology relationship. As
shown in Figure 7, Figure 7 (a) shows the predicted feature vector dimensionality reduction results for model 9, Figure
7 (b),(c) show the MLP feature vector dimensionality reduction results when the neurons are 32 and 128, respectively,
and the Bert is also used as the semantic encoder. Figure 7 (d) shows the case when a two-layer neural network is
used. we can see the tradition method is much less effective than our method, with some classes missing from the
predictions (only four categories). The advantage of our approach over traditional methods is that our forecasts take
into account not only the current street environment but also the environment of the adjacent streets. In addition, we
also use the test set to independently evaluate the performance of the model by calculating the number of correctly
predicted nodes (roads or streets) as the percentage of the test set number. The models represented by Figure 7(a,b,c,d)
achieved accuracies of 0.844, 0.445, 0.624 and 0.695, respectively, and our method remains optimal after inter-group
and intra-group comparisons.

The labels in Figure 7 are based on the categories predicted by the model, and the purpose of the figure is to
visualize how different models perform in separating different categories. Poorly generalized models do not accurately
identify all categories (predicted category number less than 10). One reason is that some categories have less training
data, which makes it difficult for non-graphical models to fully learn the features of each category. This is particularly
challenging for models that rely on large amounts of data, as there is not enough information for them to learn. Lack
of data can lead to poor generalization of the model, which results in reduced accuracy for some categories.

This phenomenon can be observed in Figure 7, where some models fail to predict all categories correctly and
certain categories are less accurate than others. The same can be seen in the table 3.

It is worth noting that this is a common challenge in machine learning, especially when dealing with unbalanced
datasets. The method proposed in this paper introduces graph neural networks to improve this semi-supervised (not
rich in training data) situation, which are able to process continuous street images as input and fully take into account
the spatial dependencies between road networks, which makes it more robust when dealing with less data and better
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(a) (b)

(c) (d)

Figure 7: T-SNE dimensionality reduction results of our method (a) compared to traditional methods (b,c,d).

generalizes to unseen data.
In addition, the different classes in Figure 7(b) show uneven spatial distributions due to the nature of the T-

SNE algorithm, which tries to preserve pairwise distances between data points in high-dimensional space, but in
low-dimensional space, distances between points are not guaranteed to be preserved. In addition, the uneven distribu-
tion may also be due to an imbalance in the data, i.e., some classes are more frequent than others, which may cause
the algorithm to focus more on these classes and create a denser cluster (Figure 7 c), while other classes may be
underrepresented in the graph.

The confusion matrix of Model 9 on the training data is shown in Table 4. Model 9 has an excellent fitting ability
to identify all ten urban function classes. However, almost every category has a portion of streets misclassified as
residential since the residential class is the most common type in the city and is often mixed with other functions.
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Table 4
The training confusion matrix of Model 9.

Types Res Bus Com Ind Tra Adm Edu Med Spo Par PredNum

Residential 85 0 1 0 0 0 0 1 0 0 3392
Business 5 9 1 0 0 0 0 0 0 0 158

Commercial 8 1 20 0 0 0 0 0 0 0 293
Industrial 13 0 1 21 0 0 1 0 1 0 412

Transportation 1 0 0 0 5 0 0 0 0 0 34
Administrative 2 0 0 0 0 4 0 0 0 0 48
Education 13 0 0 0 0 0 52 0 0 0 747
Medical 1 0 0 0 0 0 0 11 0 0 37

Sports/Culture 4 0 1 0 0 0 0 0 23 0 248
Parks 2 0 0 0 0 0 0 0 0 8 89

Therefore, the residential category has the highest percentage in 3,392 streets in the prediction results of Model 9
(Table 4). In contrast, the education, transportation, and administrative categories have the lowest number, with less
than 50 streets identified.
3.3. Model prediction and node attribute discussion

The Model 9 prediction results with the highest accuracy are shown in Figure 8. It can be seen that the prediction
results are generated at a fine scale, and the labels 0 to 9 are Residential, Business Office, Commercial Service, In-
dustrial, Transportation Station, Administration, Education, Medical, Sports and Culture, Parks and Green Space. As
shown in the Figure 8 subgraph, streets are the "nerve endings" of the city. Our model can identify actual and different
functions despite the short distance between two streets. Compared with using building footprint or TAZ as the spatial
unit, we can locate more rich results and are also good at exploring multiple functions of the same region.

Figure 9 (a-j) shows the 10 scenes predicted as categories 0-9 respectively. Figure 9 (a) is identified as Type 0
(Residential), with the most noticeable feature being tall residential buildings. Figure 9 (b) is identified as Type 1
(Business Office), the most apparent feature is the office building and a large number of parked cars. Figure 9 (c) is
identified as Type 2 (Commercial Service). As indicated in the figure, the street is busy, and there are superstores with
red signs on both sides. Figure 9 (d) is identified as Type 3 (Industrial), white vans can be seen parked on the street in
front of a factory. Figure 9 (e) is identified as Type 4 (Transportation Station). It can be seen from the figure that a bus
parking lot parked with many public buses. Figure 9 (f) is identified as Type 5 (Administrative), and the identification
results seem to be highly correlated with Overpass. The condition may be because the model does not learn the features
of this class sufficiently (only six streets are labeled in Table 2), and there may be errors in the labeled data. On the
other hand, Type 5 street may be challenging to distinguish effectively from other classes (e.g. Residential) in terms
of visual features. Figure 9 (g) is identified as Type 6 (Education). The main difference between it and Figure 9 (j,
Type 9, Parks and Green Space) is that the Type 6 functional street also includes buildings (dormitories, academic
buildings) with vehicles and pedestrians, while Figure 9 (j) includes only the natural environment. Figure 9 (h) is
identified as Type 7 (Medical). It is difficult to observe whether it is correctly predicted at this location using those
four different angle images, which is also related to the fact that the Type 7 also contains fewer visual features. Figure
9 (i) is identified as Type 8 (Sports and Culture), where we can see the presence of basketball courts on both sides of
the road, and the model keenly identifies this phenomenon.

In addition, since the model has a solid ability to identify urban open spaces (Figure 9 (a-j)), it shows that the street
view can not only extract information about the streets but also can detect the functions of the regions on the roadsides.
In addition, this study demonstrates that streetscape also has the potential to be used as an independent data source to
identify urban functions.

We mentioned that Figure 9(f) illustrates the model misclassifies the types of urban functions without distinctive
visual features. This phenomenon occurs because there are fewer differences in visual elements between medical,
administrative, and residential. We calculated the mean of the embedding vector Embd_T ypei (Equation 7) for each
city function as an overall expression and calculated the cosine similarity between different function categories (Figure
10).
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Figure 8: Prediction results of SOTA model in the study area. Source of the road data: OpenStreetMap contributors.
Source of the satellite imagery: USGS/NASA Landsat.

Figure 9: Randomly selected 10 locations predicted by the model 9 for categories 0-9 (each street has dozens of images,
we randomly selected 4 angles of a location for illustration). Source of the imagery: Tencent Street View.
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Figure 10: The cosine similarity between different function categories based on Equation 7. The semantic mean embedding
of each class is used as the class overall representation.

Embd_T ypei =

Numi
∑

j=1
Embd_Streetj
Numi

(7)

The semantic similarity between the different urban functional classes is high, with most similarities above 0.8.
It is difficult for traditional machine learning models to distinguish the different categories without incorporating the
dual spatial dependencies of knowledge and topology (Figure 7). The differences between Education, Industrial, and
Transportation categories are great. Park and Green Space, on the other hand, is more similar to Education and Sports
and Culture because these areas are often greener and share some characteristics (e.g., beautiful surroundings, less
traffic, and pedestrians). Residential differs more from the Education and Park. As residential areas are common
functional areas in cities, they have some spatial co-occurrence with most categories, with the slightest difference
with the medical category (correlation coefficient = 0.99). The Commercial and Park categories, one being an area of
heavy traffic and economic prosperity and the other being a more sparsely populated area, have the most significant
difference, with a correlation coefficient of 0.81.
3.4. Urban renewal and Spatial-Temporal changes

We collected the Baidu Street View for the same study area in July 2022, which reflects newer urban conditions.
Tencent Street View (which we used in the previous section), on the other hand, reflects the older urban conditions and
has been updated less frequently since 2014.

To capture more real urban spatial-temporal changes, we set Baidu Street View’s sampling location and angle
consistent with Tencent Street View. Although BaiduMaps do not cover some places, we collected 64,750 Baidu street
images. We adopted the same processing flow as shown in Figure 3, using the parameter settings of the SOTA model
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Figure 11: Urban renewal rate distribution based on Equation 8. Source of the road network: © OSM contributors.

(Model 9). We obtained the embedded representation of each street (Step 2) and the new urban function distribution
(Step 5).

Based on the street embedding generated in Step 2 with different data, we calculate the street renewal rate based
on Equation 8, which is used to analyze the urban function evolution trend in recent years.

Renewal_Rate = 1 − Cosine_Similarity(EmbeddingT encent, EmbeddingBaidu) (8)
In Figure 11, most of the areas, especially the main roads in the city, have changed less. Meanwhile, some areas

have changed significantly (renewal rate>0.8 ). Furthermore, we plot the overall urban function transfer matrix in
Table 5.

The transfer matrix is a two-dimensional matrix calculated based on the relationship between the changes in urban
functions in different phases of the same area. It includes the inter-conversion between different land types and the
overall change trend. Among all the 5,458 streets, the residential type has the largest decrease (1877 streets reduced
and 433 new streets added), reflecting the gradual demise of urban villages in recent years supported by the china
‘shantytown renovation’ policy. The net increase in commercial and industrial streets reflects the increasingly dynamic
economy and industry development. Cultural and green spaces show a non-significant shrinkage. Wuhan is the city
with the largest number of lakes in China. The continued anthropogenic activities and urbanization have led to serious
degradation of ecological wetlands, which is also consistent with other’s studies (Wang et al., 2020).
3.5. Street Semantic Knowledge Graph Construction

The method Step 1 mentions that we generate scene descriptions based on entity relations (s->r->o). We extract
knowledge triples from scene descriptions based on Spacy (Lai et al., 2022). This natural language processing tool
library can identify the part-of-speech of words and the dependencies betweenwords (Fang et al., 2021). For simplicity,
we extract entities from words with the lexicality ‘NOUN’ and relations only from words with ‘VERB’ and ‘ADP’. For
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Table 5
The city function transfer matrix of Model 9.

Old
New

Res Bus Com Ind Tra Adm Edu Med Spo Par Sum Decrease

Residential 1515 12 591 636 11 15 460 12 124 16 3392 1877
Business 66 22 12 27 5 1 21 0 1 3 158 136

Commercial 91 5 160 4 0 0 31 2 0 0 293 133
Industrial 59 0 3 278 2 0 49 0 19 2 412 134

Transportation 4 0 2 12 15 0 1 0 0 0 34 19
Administrative 6 0 8 15 4 13 2 0 0 0 48 35
Education 154 0 18 76 0 0 486 0 5 8 747 261
Medical 7 0 10 2 0 0 0 18 0 0 37 19

Sports/Culture 36 0 27 111 0 2 19 0 52 1 248 196
Park Green Space 10 1 2 16 0 0 30 0 1 29 89 60

Sum 1948 40 833 1177 37 31 1099 32 202 59 5458
Add 433 18 673 899 22 18 613 14 150 30 2870

example, we can extract the triples of, s->van,r->parked,o->side, s->van,r->parked,o->street, etc from the sentence
of "a white van parked on the side of a street".

We perform similar calculations for all scenes and obtain 75,628 urban knowledge triples. Based on these knowl-
edge triples, we generate the semantic knowledge graph of all streets in Wuhan as shown in Figure 12. It includes 707
urban environment entities and 4,371 spatial location relationships. The larger nodes indicate the higher frequency of
the entity, and the thickness of the edges indicates the strength of the correlation relationship. After that, our graph-
based community detection method (Louvain method) (Traag et al., 2019; Zhang et al., 2022b) divides these entities
and relationships into multiple communities, and entities co-occur more frequently with entities inside the community
than with entities outside the community, which we do not explain in-depth here.

Based on the street labels predicted by Model 9, we perform similar processing for each class of urban functions to
identify the differences between them. Since we have predicted ten categories, we choose only three here as examples,
Commercial, Education, Park and green space, containing 259 nodes with 710 edges, 400 nodes with 1,257 edges,
and 209 nodes with 625 edges, respectively (Figure 13, namely, city function knowledge graph). More nodes indicate
richer urban entities within this function area, and more edges indicate stronger spatial relationships between entities.

Buildings, stores, road, etc. appear frequently in Figure 13(a), while tree appears more frequently in Figure 13(b,c).
The frequency of sidewalk and forest entities in Figure 13(c) varies more considerably from other categories. We can
get above information from these sub-graphs clearly, demonstrating the effectiveness of the street view semantic-based
approach in identifying urban functions.

In addition, we compute ‘summaries’ of each function description set based on the method provided by Hugging-
Face open source community (Wolf et al., 2020) to generate a ‘sentence’ that best represents it. These sentences consist
of the most important and most characteristic scene descriptions. Function summary is shown below:

• Commercial: a street with a large building in the background; a red car driving down a street next to tall
buildings; a view of a city street filled with tall buildings in the distance; a group of cars that are sitting in
the street; a view of a city street from a distance. a city road filled with traffic surrounded by tall buildings; a
highway filled with lots of traffic and tall buildings.

• Education: a tall white building next to a forest; a tree in the middle of the forest; a truck is driving down a city
street near tall buildings; a long line of cars driving down a city street; a sign that is on the side of a building; a
large building with a building in the background; a large blue bench sitting in front of a city skyline. A group
of cars that are sitting in the street; a boat that is sitting in the dirt ;

• Park and Green Space: an empty street with no cars on it; a highway with cars driving down the road; a blue
car parked in a parking lot. a view of a bridge from across the water; an empty highway with a sign; a long road
with a long line of traffic lights on it; a car is driving down a road next to a bridge; a train is traveling over a
bridge over a river; a small tree on the side of the road; a group of cars that are sitting in the street.
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Figure 12: Wuhan Street Semantic Knowledge Graph (nodes represent the environmental entities of the city, edges
represent the spatial relationships between entities, and the colors represent different ‘communities’).
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Figure 13: Comparison of city function knowledge graph (a,b,c represent Commercial, Education, Park and green space
respectively).
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As we can observe, the results of the city function ‘summary’ are similar to the city function knowledge graph, but
they are easier to read, and the characteristic elements can be found more easily.

4. Conclusion and discussion
Urban geo-tagged proximate sensing images are generated continuously in cities. For example, they include street

view imagery and photos shared on social media. They may be considered as twin mappings of the city’s operational
state, constantly ‘refreshing’ for sensing urban areas. Faced with a large volume of geo-tagged images, capturing the
rich semantic information and the spatio-temporal location relationship is crucial to understanding and interpreting
urban space. In this paper, we proposed a purely visual scheme for the functional perception of urban streets, which
incorporates urban knowledge and road network topology and can fuse multiple source images to generate a holistic
representation of a spatial unit. We also incorporate temporal information and integrate historical street images to
calculate urban spatial-temporal changes, renewal rates, and urban function transition matrix.

Our method has three significant novelties and advantages: fusing multiple sources of urban proximate sensing
images, supporting arbitrary scale spatial units, and being rich in socio-economic information. The first advantage is
that we can include the street view and other proximate images in the computation and generate the semantic repre-
sentation (city caption), as long as the pictures can show the actual conditions of the places, and even indoor images
can be included. These images can collectively form the overall image of the city (Filomena et al., 2019), driving our
understanding of the space deeper. The second advantage is that our research unit is not only limited to the street scale
but also generalisable to other scales, even for a small sampling point or a region. The different scales differ only in
the length of the semantic description text and the spatial topological relations. The third advantage is that because the
city is rich in human activity footprints, the proximate images can penetrate deep into the city and provide real-time
feedback on the ‘people’, ‘vehicles’, and ‘things’, and the raw shape & color information. It will help to sense the
socio-economic environment comprehensively. In contrast, remote sensing images in urban space are difficult to have
a such high spatial and temporal resolution.

This approach still has some limitations and elements that need to be discussed. The primary drawback is the low
scalability (3 days for the Step 1 computations) because the cross-modal step (generating caption) is computationally-
intensive. In addition, the maximum length of BERT is limited to 512 words. The generated spatial unit description
text can be long if the selected spatial unit is too large and with excessive images. The model cannot get all the
information thoroughly. One can choose the text truncation or based on the introduced text summarization method
before processing. It is important to note that this new geo-intelligent analysis method can be used not only for urban
function recognition but also for capturing and classifying socio-economically rich and sensitive features, such as urban
vibrancy, urban village identification, built-up area recognition, etc. In addition, this paper mainly discusses the street
view images provided by commercial and crowd-sourced services, which have more uniform spatial distribution and
longer update intervals. Understanding how to use the social sensing (user-generated) (Liu et al., 2015) images which
tend to be unevenly spatially distributed and got posted much more rapidly. Testing the applicability of our model will
be the focus of our following research.
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