

OGC 16-064r1

46 Copyright © 2015 Open Geospatial Consortium.

Figure 25: BPMN process model for analyzing conformance requirements

The following steps have to be performed:

1. Identify and extract CRs in a given document (in this case the CityGML 2.0
specification);

2. Split up complex formulations into small isolated pieces;

3. Analyze isolated pieces and split up further parts until basic but exact
formulations are found;

4. Rate and classify testing formulations (mandatory / optional / obsolete);

5. Transform testing formulations into a formal language; and

6. Create a document containing at least all steps of transformation.

Upon closer inspection of the figure above, one will notice that this process model can be
generalized for all kinds of tests in content of CityGML, e.g., geometry tests or semantic
tests and a generalized process model can be denoted as shown in Figure 26.

OGC 16-064r1

Copyright © 2015 Open Geospatial Consortium. 47

Figure 26: BPMN process model for analyzing general tests

One lesson learned in experiment 4 of the QIE is that CRs can actually be formalized and
thus tested.

As a consequence of this experiment, for future versions of CityGML, it is recommended
that a much more precise formulation of the CRs be made. Furthermore all elementary
definitions of CityGML should be defined explicitly, so that no interpretation is needed:
e.g., what is a building and what is a buildingPart?

10 Use cases and requirements for geometry

During the kick-off phase of the experiment, a collection of standard use-cases was
defined.

The specific questions to be answered were:

 Is there a universal, reasonably generic set of CityGML requirements that should
be specified in addition to the CityGML standard;

 What are the detailed quality requirements to be specified; and

 How can these requirements be tested to ensure that they have been adhered to?

The generic use cases to be explored are the creation and maintenance of CityGML
models for national and regional mapping including visualization and analysis such as:

 Line of sight;

OGC 16-064r1

48 Copyright © 2015 Open Geospatial Consortium.

 Shading;

 Flooding;

 Aggregation of floorspace for buildings/sites;

 Energy demand simulation; and

 Scenario evaluation in urban planning.

The initial goal to give recommendations for respective use-cases could not be reached
within the CityGML Quality IE. The project participants agreed that it would be
beneficial to the community if there were guidelines on how to validate CityGML
instance documents in order to be of appropriate data quality and structure for a certain
standard use case.

This task can also be solved on a national level to allow for consideration of local and
regional differences.

11 Conclusion and Recommendations

This project has come a long way towards refining both testing methods and unit test
datasets in the area of both CityGML, specifically and 3D geospatial data, in general.

The QIE team made great strides in bringing together a wide range of users from a
variety of 3D communities to promote collaboration in the area of validating CityGML
and 3D data. This is in itself a great accomplishment, since work in the area of
developing common standards around validation, specifically as related to CityGML, has
been lacking. More work needs to be done to refine the unit tests and better document
those tests in terms of validity status, error type, error priority, etc. Even basic graphical
depictions of what the error actually looks like, developed in the course of the project,
were very helpful to promote discussion and common understanding of the issues at play.

11.1 Recommendations for geometry and semantics

CityGML as an open standard allows many different modeling alternatives of one and the
same geometric structure (cf. Section 9.2.1). Validation of a given geometry is not
possible without clear specification of the requirement, e.g. whether a Solid geometry or
MultiSurface geometry is considered valid, or even both. In a validation plan, all aspects
which are not restricted in an unambiguous way by the CityGML standard must be
clearly specified with sufficient details.

This report recommends introducing the concept of tolerance for the geometric validation
of objects. Neither ISO19107 nor OGC GML address this issue, but this experiment
suggests that validation can only be performed when a tolerance is defined.

OGC 16-064r1

Copyright © 2015 Open Geospatial Consortium. 49

This is especially true for polygon planarity (i.e., all the points of a polygon forming a
surface of a solid must lie on a plane), which is a requirement.

This reports proposes three requirements for tolerance.

1. The distance between every point forming a polygon and a plane is less than a
given tolerance e_1 (eg 1mm). This plane should be a plane fitted with least-
square adjustment.

2. The distance between every point forming a polygon and all the planes defined by
all possible combinations of 3 non-collinear points is less than e_1. This is to
ensure that surfaces having a very small 'fold' are detected.

3. A tolerance for the snapping of input vertices should be defined. Solids stored in
GML are modelled with very little topological relationships. For instance, all six
surfaces of a cube are stored independently, and thus the coordinates (x,y,z) of
a single point (where 3 surfaces 'meet') is stored 3 times. For the validation, one
needs to identify that these 3 points are the same, and thus a tolerance should be
used.

Most important is the method for modeling geometric features. The editors recommend
that buildings should be modeled as Solid elements, only roof overhangs should be
Multisurface elements. In addition, BoundarySurfaces should contain their actual
geometry, which is then referenced by the Solid element.

To enable comparison of validation results from different tools, it is necessary to define
check algorithms in a consistent and comparable way. Furthermore, the order of
execution of interdependent geometric checks can influence the validation result. It is
thus required to execute the checks in a standardized order. Recommendations for this
order are given in section 9.2.2.

Semantics are an important design concept of CityGML. Semantics and geometry must
be coherent. Semantic validation is thus focused on the relationship of semantics and
geometry. For example, a RoofSurface element has a face normal which is directed
“upwards.” This example shows that the validation criteria is rather imprecise: the
validation result can be regarded as the plausibility of a geometric feature having certain
well defined semantics. Exceptions might occur, and the angular range of “upwards”
must be set according to users’ needs.

Another aspect of semantic validation is be the plausibility check of attributes with
relation to geometry, such as measuredHeight. For the validation results, the same
considerations have to be made as stated above.

In some cases, it is difficult to separate semantics from conformance requirements.
However, the same approach as described in Section 9.3 can be used to derive semantic
restrictions from the CityGML standard, which might be useful for further development.

OGC 16-064r1

50 Copyright © 2015 Open Geospatial Consortium.

CityDoctor was the only tool which provided semantic validation during the QIE. The
current implementation considered checks of BoundarySurface orientation and attributes
with relation to geometry. Within a tolerance, these semantic elements can be validated
against their geometry. It is important to define a suitable tolerance and keep in mind that
exceptional cases can still cause a validation error, although the geometric-semantic
coherency was not violated. These cases have to be inspected manually.

11.2 General recommendations for conformance requirements

 Each CR should be verified through the CR process model as described in Figure
25. Reaching the “ignore” exit leads to an invalid CR which may be ignored.

 Each CR should be formulated precisely. Colloquial formulations should be
avoided, otherwise a translation or transformation into a set of exact formulations
is needed.

 Each CR should be uniquely associated to a module or domain (for example
building) and should not span across domains (neither technically,
geometrically, semantically, nor schematically).

 If a basic definition used in a CR is ambiguous, it must be defined in a dictionary.
This basic definition should be used consistently in all CRs.

 These recommendations should be applied to existing, future and additional CRs.

11.3 Recommendations for existing conformance requirements

The following CRs or parts of a CR of the CityGML 2.0 building module are classified
against the general recommendations.

Conformance Requirement Deals with Sentences Status Basic
Requirement

Classification

CO-bldg:BU-001 Building - BuildingPart (A)
(B)
(C)

valid
valid
valid

(D1)
(D2)
(D3)

mandatory
optional
mandatory

CO-bldg:BU-002 lod0FootPrint and
lod0RoofEdge

(A)
(B)

valid
valid

(D1)
(D2)
(D3)

mandatory
mandatory
mandatory

CO-bldg:BU-003 lodXSolid and
lodXMultiSurface

(A)
(B)
(C)

invalid
valid
invalid

(D1)

mandatory

CO-bldg:BU-004 boundedBy (A)
(B)
(C)

valid
invalid
valid

(D1)
(D2)

mandatory
(D2) difficult to
translate into
schematron

OGC 16-064r1

Copyright © 2015 Open Geospatial Consortium. 51

CO-bldg:BU-005 lodXMultiCurve (A)
(B)

valid
invalid

(D1) optional

CO-bldg:BU-006 outerBuildingInstallation (A)
(B)
(C)

valid
invalid
invalid

(D1) optional

CO-bldg:BU-007 outerBuildingInstallation -
boundedBy

(A)
(B)

invalid
valid

(D1) mandatory

CO-bldg:BU-008 opening (A)
(B)
(C)
(D)

valid
invalid
invalid
invalid

(D1) optional

Hence, the invalid parts are recommended as to be treated as obsolete.

It is recommended that an official change request should be submitted if either a CR is
classified as invalid but meaningful or desirable or optional but necessary.

11.4 Recommendations for future conformance requirements

It is recommended for the development of CityGML 3.0 that each CR should be built in
accordance with the general recommendations for CRs as described in chapter 10.2.

11.5 Change requests

 The order of child elements is different for _AbstractBuilding in LOD 2 and LOD
3. For a building the sequence <lod2Solid> … </lod2Solid> followed by
<boundedBy> …</boundedBy> is correct, while <lod3Solid> … </lod3Solid>
followed by <boundedBy> …</boundedBy> is invalid. The sequence has to be
the other way around in this case (<boundedBy> …</boundedBy> followed by
<lod3Solid> … </lod3Solid>) due to the definition in the schema. This is
confusing and also often not taken into account by the software generating the
models. As a consequence, most LOD3 building models do not validate against
the schema as the order of elements is wrong. This report recommends to change
the order of elements: put the <boundedBy> element either before the
<lod0FootPrint> element or before the <consistsOfBuildingPart> element.

 The editors recommend introducing the concept of tolerance for the geometric
validation of objects. Neither ISO19107 nor OGC GML address this
issue, but this experiment suggests that validation can only be performed when a
tolerance is defined.

 Tolrance is especially important for polygon planarity (i.e., all the points of a
polygon forming a surface of a solid must lie on a plane) which is a
requirement in CityGML (for details, see section 11.1).

 Though there are some ways to model a CityGML building by using Solids or
MultiSurfaces, a volume model of a building should be modeled solely using

OGC 16-064r1

52 Copyright © 2015 Open Geospatial Consortium.

gml:Solid geometry elements and should meet the requirements of a solid
geometry.

 If BoundarySurfaces are defined in the model, they contain the actual geometry as
defined in CR 10.3.9-4 of the CityGML 2.0 standard document. In addition, it is
strongly recommended that the building geometry as Solid element referencing
the Boundary Surface geometry must be mandatory.

 Change CR 10.3.9-1 as “main part” of a building is very difficult to validate. A
building with buildingParts containing the entire geometry shall be valid.

12 Next steps

Further improvement of the validation process is required. Tools available to date do not
deliver the identical validation results when seemingly deploying the same checks.
Differences in implementation, algorithms, and tolerances or the order of check execution
can cause this divergence. Stronger definitions of checks could help to solve this
problem. However, there is a general need to certify/validate the validation tools.
Strategies to guarantee unified and certified validation results should be worked out in
future. This process should include a discussion of numeric accuracy in order to avoid
instable computations and/or random results to floating point errors. Specific future work
should include:

- Unification of workflows;

- Harmonization of specification of validation plans;

- Harmonization of error codes (concept is in the report, but just as a
recommendation);

- Define profiles / restrictions for specific applications;

- Focus on buildings from the QIE, then extend to other features;

- Interaction with different features; and

- Repair / healing.

It should be noted that GeometryValidator as well as CityDoctor have a repair mode, and
that many problems can be repaired. While repairs can themselves introduce new
problems, the results of automated repairs can be revalidated. This can be helpful for
managing large volumes of 3D data.

Another area worth exploring is deploying validation and repair as a web service such as
via REST, WFS-T or WPS. With FMEServer, any workspace that accepts or produces
XML/GML/CityGML can be deployed as a data streaming service.

OGC 16-064r1

Copyright © 2015 Open Geospatial Consortium. 53

More work needs to be done to refine unit tests and better document those tests in terms
of validity status, error type, and error priority. For example, basic graphical depictions of
the errors (see 7.5) were very helpful to promote discussion and common understanding
of the issues at play.

OGC 16-064r1

54 Copyright © 2015 Open Geospatial Consortium.

13 Resources

City Doctor (Deutsch): Methoden und Metriken zum Qualitätsmanagement virtueller
Stadtmodelle
City Doctor (English): Methods and metrics for quality management of virtual city
models (Access information from Volker Coors)
CityGML_QIE_Master_Contact_List.docx: CityGML QIE Contact List
CityGML_QualityIE_Activity_Plan_v0.4.5.docx: Latest activity plan
Kick-off meeting resources
TU Delft Github Site: Repository for the test datasets for the CityGML QIE Geometric
Validation
Random3Dcity - synthetic multi-LOD CityGML data, with several versions of datasets
that contain intentional errors of multiple classes (topology, semantics, ...)
SIG3D Modeling Guide (English): Modeling guide of the SIG3D for 3D objects - Rules
for validating GML geometries in CityGML (part 1) and rules for modeling buildings
(part 2)
SIG3D Quality Working Group Wiki (Access information form Egbert Casper)
SIG3D Test Cases
van Walstijn, Lucas (2015). Requirements for an Integral Testing Framework of
CityGML Instance Documents (Unpublished master thesis). TU Berlin, Germany.8

8 For information: lvanwalstijn@virtualcitySYSTEMS.de

OGC 16-064r1

55

Annex A

Three-dimensional primitives in the context of the CityGML QIE
1 What is an ISO 19107 solid?

ISO 19107 defines different geometric primitives9: 0D is a GM_Point, 1D is a GM_Curve, 2D is
a GM_Surface, and 3D is a GM_Solid. A primitive is built with lower-dimensional primitives,
e.g., in Figure 27 the GM_Surface is composed of 2 (closed) GM_Curves, which are composed
of several GM_Points.

Figure 27: ISO 19017 primitives.

Observe that primitives do not need to be linear or planar, i.e., curves defined by mathematical
functions are allowed.

In our context, the following three definitions from ISO (2003) are relevant:

Definition 1 A GM_Solid is the basis for 3-dimensional geometry. The extent of a solid is defined by the boundary
surfaces. The boundaries of GM_Solids shall be represented as GM_SolidBoundary. […] The
GM_OrientablesSurfaces that bound a solid shall be oriented outward.

Definition 2 A GM_Shell is used to represent a single connected component of a GM_SolidBoundary. It consists of
a number of references to GM_OrientableSurfaces connected in a topological cycle (an object whose boundary is
empty). […] Like GM_Rings, GM_Shells are simple.

Definition 3 A GM_Object is simple if it has no interior point of self-intersection or self-tangency. In mathematical
formalisms, this means that every point in the interior of the object must have a metric neighbourhood whose
intersection with the object is isomorphic to an n-sphere, where n is the dimension of this GM_Object.

The bounding surfaces of a shell thus form a closed and orientable two-dimensional manifold
(or 2-manifold for short). A 2-manifold is a space that is topologically equivalent to R2, the 2D

9 All the geometric primitive have the prefix ‘GM_’

0D

GM Point

1D

GM Curve

2D

GM Surface

3D

GM Solid

OGC 16-064r1

56 Copyright © 2015 Open Geospatial Consortium.

Euclidean space. An obvious example is the surface of the Earth, on which near any point the
surrounding area is topologically equivalent to a plane. If a shell is stored in a data structure, it
implies that each edge is guaranteed to have a maximum of two incident faces, and that around
each vertex the incident faces form one ‘umbrella,’ as Figure 28 shows.

Figure 28: The red vertex is a non-manifold vertex since the neighborhood around it is not topologically
equivalent to a plane.

To be valid shell, the 2-manifold should be closed, i.e., there should not be ‘holes’ in the surface
(in other words, it should be watertight).

Figure 29 shows a solid that respects the definition above.

OGC 16-064r1

57

Figure 29: One solid which respects the international definition. It has one exterior shell and one interior
shell (forming a cavity).

First, observe that the solid is composed of two shells (both forming boundaries), one being the
exterior and one being the interior shell. The exterior shell has eleven surfaces, and the interior
one six. An interior shell creates a cavity in the solid—cavities are also referred to as “voids” or
holes in a solid. A solid can have no inner shells, or several. Observe that a cavity is not the
same as a hole in a torus (a donut) such as that in Figure 30: it can be represented with one
exterior shell having a genus of 1 and no interior shell.

OGC 16-064r1

58 Copyright © 2015 Open Geospatial Consortium.

Figure 30: A ‘squared torus’ is modelled with one exterior boundary formed of ten surfaces. Notice that
there is no interior boundary.

2 Primitives in CityGML

CityGML uses the ISO 19107 geometric primitives for representing the geometry of its objects.
However, as shown in Figure 31

OGC 16-064r1

59

Figure 31: UML diagram of the CityGML geometry model.

only a subset is used, with the following two restrictions: (1) GM_Curves can only be linear
(thus only LineStrings and LinearRings are used); (2) GM_Surfaces can only be planar (thus
Polygons are used). The primitives for constructing Shells and Solids are shown in Figure 32.

Figure 32: 2D CityGML primitives.

Definition 4 A LineString is a Curve with linear interpolation between each Point; each two consecutive Points
defines a line segment. A LinearRing is a LineString that is both closed and simple.

Definition 5 A Polygon is a surface patch that is defined by a set of boundary curves and an underlying surface to
which these curves adhere. The default is that the curves are coplanar and the polygon uses planar interpolation in
its interior.

<<Geometry>>
gml::_GeometricPrimitive

<<Geometry>>
gml::_Solid

<<Geometry>>
gml::_Surface

<<Geometry>>
gml::_Curve

+position : gml::DirectPosition [1]

<<Geometry>>
gml::Point

<<Geometry>>
gml::CompositeSolid

<<Geometry>>
gml::Solid

<<Geometry>>
gml::CompositeSurface

<<Geometry>>
gml::TriangulatedSurface

<<Geometry>>
gml::Triangle+stopLines : gml::LineStringSegment [0..*]

+breakLines : gml::LineStringSegment [0..*]
+maxLength : gml::LengthType [1]
+controlPoint : gml::posList [1]

<<Geometry>>
gml::TIN

<<Geometry>>
gml::Polygon

+orientation : gml::SignType [0..1]

<<Geometry>>
gml::OrientableSurface

<<Geometry>>
gml::CompositeCurve

+position : gml::DirectPosition [2..*]

<<Geometry>>
gml::LineString

<<Geometry>>
gml::_Ring

+position : gml::DirectPosition [4..*]

<<Geometry>>
gml::LinearRing

<<Geometry>>
gml::Surface

<<Geometry>>
gml::_SurfacePatch

<<Geometry>>
gml::_Geometry

<<Geometry>>
gml::Rectangle

0..*

0..1

interior

*

*

1..*

*

solidMember

1

*

*

1

trianglePatches

0..2

1

baseSurface

1

*

1..*

*

curveMember

1

0..1

exterior

1..*

1

patches

1

*

exterior

1..*

*

surfaceMember

interior

exterior

exterior

LinearRing PolygonLineString

OGC 16-064r1

60 Copyright © 2015 Open Geospatial Consortium.

Each shell of a solid is thus composed of Polygons, and these can have inner rings (which are
often referred to as holes). Observe that the top polygon of the solid in Figure 29 has one inner
ring, but that other polygons “fill” that hole so that the exterior shell is “watertight” (i.e., it has
no holes and is thus closed).

3 QIE = no cavities

It should be noticed that during the QIE, only buildings in LOD1, LOD2, and LOD3 were
considered, and, as a consequence, cavities in solids are ignored.

This implies that a solid has exactly one shell representing its exterior boundary. However,
this does not mean that inner rings in the boundary surfaces are excluded, because simple LOD1
buildings having for instance, an inner yard, require inner rings, as Figure 30 shows; an
alternative to representing inner rings is to decompose the face into several polygons, e.g., to
triangulate the face.

4 Requirements for validity of the 3D primitives

Each primitive used to construct a higher-dimensional primitive should be valid. This means
that in order to validate a solid, one must also ensure that each ring and polygon used is valid.
For rings and polygons, observe that these will be embedded in 3D (i.e., the points used to
construct rings will have (x,y,z) coordinates).

4.1 Rings & Polygons

According to the ISO 19107 abstract specification, the different boundaries of a polygon are
allowed to interact with each other, but only under certain circumstances. The implementation
specifications defined by the OGC (OGC, 2006) gives clear requirements:

1. Polygons are topologically closed;
2. The boundary of a Polygon consists of a set of LinearRings that make up its exterior and

interior boundaries;
3. No two Rings in the boundary cross and the Rings in the boundary of a Polygon may

intersect at a Point but only as a tangent, e.g.,

 P Polygon, c1,c2 P.Boundary(),c1≠c2,

 p,q Point,p,q c1,p≠q,[p c2 q c2];
4. A Polygon may not have cut lines, spikes or punctures e.g.:

 P Polygon,P=P.Interior.Closure;
5. The interior of every Polygon is a connected point set; and

OGC 16-064r1

61

6. The exterior of a Polygon with 1 or more holes is not connected. Each hole defines a
connected component of the exterior.

Some concrete examples of invalid polygons are shown in Figure 33.

Figure 33: Some examples of invalid polygons. Polygon p12 has its exterior and interior rings defined by the
same geometry.

Below are explanations for some of the polygons in Figure 33.
1. Each ring should be closed (p11): its first and its last points should be the same.

2. Each ring defining the exterior and interior boundaries should be simple, i.e., non-self-
intersecting (p1 and p10). Notice that this prevents the existence of rings with zero-area (p6
), and of rings having two consecutive points at the same location. It should be observed

p2

p4 p5 p6

p7 p8 p9

p3

p12p11p10

p1

exterior

boundary

interior

boundary

OGC 16-064r1

62 Copyright © 2015 Open Geospatial Consortium.

that the polygon p1 is not allowed (in a valid representation of the polygon, the triangle
should be represented as an interior boundary touching the exterior boundary).

3. The rings of a polygon should not cross (p3, p7, p8 and p12) but may intersect at one
tangent point (the interior ring of p2 is a valid case, although p2 as a whole is not since the
other interior ring is located outside the interior one). More than one tangent point is
allowed, as long as the interior of the polygon stays connected (see below).

4. A polygon may not have cut lines, spikes or punctures (p5 or p6); removing these is known
as the regularization of a polygon (a standard point-set topology operation).

5. The interior of every polygon is a connected point set (p4).

6. Each interior ring creates a new area that is disconnected from the exterior. Thus, an
interior ring cannot be located outside the exterior ring (p2) or inside other interior rings
(p9).

4.2 Planarity requirement

A polygon must be planar, i.e., all its points (used for both the exterior and interior rings) must
lie on a plane. Interestingly, the concept of tolerance is not mentioned in the standards by ISO
and OGC.

For the QIE, two requirements are proposed:

1. the distance between every point forming a polygon and a plane is less than ε1, a given
tolerance (e.g., 1mm). This plane should be a plane fitted with least-square adjustment;
and

2. the distance between every point forming a polygon and all the planes defined by all
possible combinations of 3 non-collinear points is less than ε1.

The second requirement is to ensure that cases such as that in Figure 34 are detected.

OGC 16-064r1

63

Figure 34: All the points of the top polygon are within 1mm but the polygon cannot be considered planar.

From algorithmic point of view, the definition is not very efficient, but in practice it can be
implemented with a triangulation of the polygon (any triangulation): the orientation of the
normal of each triangle must not deviate more than a certain user-defined tolerance ε2 (e.g., 1
degree).

4.3 Snapping tolerances for vertices

Geometries modeled in CityGML, and in GML in general, store amazingly very little
topological relationships. For instance, all six surfaces of a cube are stored independently. This
means that the coordinates (x,y,z) of a single point (where 3 polygons “meet”) is stored 3 times.
It is possible that these 3 vertices are not exactly at the same location, e.g., (0.01, 0.5, 1.0),
(0.011, 0.49999, 1.00004) and (0.01002, 0.5002, 1.0007), and that would create problems when
validating since there would be tiny cracks/overlaps in the cube. The snap tolerance basically
gives a threshold that says: “if 2 points are closer then ε3, then we assume that they are the
same.” This value should be defined by the user.

1mm

OGC 16-064r1

64 Copyright © 2015 Open Geospatial Consortium.

4.4 Orientation requirement

For a polygon embedded in the 2D plane, the orientation of its exterior ring must be the opposite
of that of its interior rings (e.g., clockwise versus counterclockwise).

If one polygon is used to construct a shell, its exterior ring must be oriented in such a way that
when viewed from outside the shell the points are ordered counterclockwise. Figure 35 shows an
example.

Figure 35: One solid and the orientation of 3 of its polygons (different colors).

In other words, the normal of the surface must point outwards if a right-hand system is used, i.e.,
when the ordering of points follows the direction of rotation of the curled fingers of the right
hand, then the thumb points towards the outside. If the polygon has interior rings, then these
must be ordered clockwise.

If the polygon is part of a MultiSurface, then there is no prescribed orientation other than the
outer ring must have a different orientation than the inner ring(s).

4.5 Requirements for shells and solids

To understand the requirements for shells and solids, we can simply generalize the following
assertions: polygons become solids, rings become shells, and holes become cavities.

Figure 36 shows 9 solids, some of them valid some not.

OGC 16-064r1

65

Figure 36: Nine solids, the number between brackets indicates which assertion(s) from the OGC Simple
Features is/are violated.

The first assertion means that a solid must be closed, or ‘watertight’. The solid s1 is thus not
valid but s2 is since the hole in the top surface is ‘filled’ with other faces.

The second assertion implies that each shell must be simple, i.e., that it is a 2-manifold. s5 and s8
are thus invalid.

The fourth assertion states that a shell is a 2-manifold and that no dangling pieces can exist
(such as that of s3); it is equivalent to the regularization of a point-set in R3.

The other assertions refer to solids having interior shells, which are out of scope for the QIE.
These are thus ignored.

s1 s2

invalid (1)

valid

s6

s7 s8

invalid (3 in 2D)

invalid (2)

valid

s3

s4 s5

invalid (2)

invalid (4)

valid

OGC 16-064r1

66 Copyright © 2015 Open Geospatial Consortium.

Comment on 4.5 (M.Wewetzer, D. Wagner)

By simply projecting assertions for 2D polygons to 3D shells, certain configurations can be
problematic.

ISO 19107 allows tangent points for interaction of different rings of one polygon. By extruding
such a polygon, e.g., to create an LoD 1 Building with Solid geometry, a non-manifold edge will
be part of the structure (Figure 37). Validation will fail at least for the checks
GE_S_NON_MANIFOLD_VERTEX and GE_S_NON_MANIFOLD_EDGE. Depending on
the implementation, there might be a GE_S_SELF_INTERSECTION error in addition.

Figure 37: Valid 2D polygon, which results in an extrusion body with a non-manifold edge (red).

The definition for a GM_Ring in ISO 19107 states: “Even though each GM_Ring is simple, the
boundary need not be simple. The easiest case of this is where one of the interior rings of a
surface is tangent to its exterior ring” (ISO 2003). However, this statement can be overridden:
“Implementations may enforce stronger restrictions on the interaction of boundary elements”
(ibid).

In the domain of CAD data quality this kind of interaction is neither permitted nor should the
distance between two boundary curves fall below a certain threshold.

OGC 16-064r1

67

Considering this, a recommendation to avoid tangent interactions between linear rings of one
polygon and thus within the shell of a solid can be justifiable, as we can see no urgent need for
their presence.

At least, we should not recommend or enforce non-manifold solid geometries as basic geometric
primitives.

References
ISO (2003). ISO 19107:2003: Geographic information—Spatial schema. International
Organization for Standardization.

OGC (2006). OpenGIS implementation specification for geographic information—simple
feature access. Open Geospatial Consortium inc. Document 06-103r3.

OGC 16-064r1

68 Copyright © 2015 Open Geospatial Consortium.

Annex B

Test data sets of the CityGML QIE

Karlsruhe Institut of Technology

name	 	 is_valid	

Cube-01.gml	

	

	

	

yes	

Cube-02.gml	

	

yes	

Cube-03.gml	

	

yes	

OGC 16-064r1

69

Cube-04.gml	

	

yes	

Cube-05.gml	

	

no	

Cube-06.gml	

	

yes	

Cube-07.gml	

	

yes	

OGC 16-064r1

70 Copyright © 2015 Open Geospatial Consortium.

Cube-08.gml	

	

yes	

Cube-09.gml	

	

no	

Cube-10.gml	

	

no	

Cube-11.gml	

	

no	

OGC 16-064r1

71

Cube-12.gml	

		

Cube-13.gml	

	

yes	

Cube-14.gml	

	

		

Cube-15.gml	

	

no	

OGC 16-064r1

72 Copyright © 2015 Open Geospatial Consortium.

Cube-16.gml	

	

no	

Cube-17.gml	

	

yes	

Cube-18.gml	

	

yes	

Cube-19.gml	

	

no	

OGC 16-064r1

73

Cube-20.gml	

	

yes	

SIG 3D

1) Test Case "Addresses"
 Building LoD 1 with 2 Addresses
 Building LoD 3 with 2 Doors with one Address each

2) Test Case "Generic Attributes"

 Building LOD 1 with different generic Attributes and one Attribute Set
 Building LOD 2 with generic Attributes for Boundary Surfaces

3) Test Case "Geometry"
 Building LoD 2 with 3 Balconies (BuildingInstallation) with implicit Geometry

TU Delft

i101_1.gml;cube with top face having only 2 points
i102_1.gml;cube with one duplicate vertex (repeated in a ring)
i104_1.gml;cube where top face has a bow tie
i104_2.gml;unit cube with top face having a self-intersecting surface (2D invalid)
i105_1.gml;cube3 where inner ring is collapsed to a line
i201_1.gml;unit cube with a intersecting rings in top face
i202_1.gml;unit cube with a duplicate inner ring top face
i203_1.gml;surface #12 isn't planar
t203_1.gml;planarity: cube with one point of top surface moved upward by 1e-? units
t203_2.gml;? depends on tolerance
t203_3.gml;? depends on tolerance
t203_4.gml;? depends on tolerance
i204_1.gml;cube with an almost vertical fold in the top surface
i204_2.gml;same shift but vertical
i205_1.gml;unit cube with a polygon with interior disconnected in top face
i206_1.gml;unit cube with a hole in top face located outside

OGC 16-064r1

74 Copyright © 2015 Open Geospatial Consortium.

i207_1.gml;unit cube with a polygon with nested rings in top face
i208_1.gml;unit cube with a hole (inner ring) in the top face having same orientation as outer ring
i301_1.gml;volume with only 3 surfaces
i301_2.gml;flat cube
i302_1.gml;unit cube with one face missing (bottom one)
t302_1.gml;snap: cube with top surface having one vertex moved a bit (10cm)
t302_2.gml;snap: cube with top surface having one vertex moved a bit (1cm)
t302_3.gml;snap: cube with top surface having one vertex moved a bit (1mm)
i302_2.gml;unit cube with a hole (inner ring) in the top face
i303_1.gml;unit cube with one dangling face touching the cube at one point only
i303_2.gml;cube with one dangling face
i303_3.gml;2 unit cubes touching at one vertex
i304_1.gml;unit cube with an extra vertex on an edge. Only one of the 2 incident faces has it
explicitly.
i304_2.gml;unit cube with one extra face in the middle
i305_1.gml;cube with one extra face "floating" in the air
i305_2.gml;2 unit cubes not touching at all
i306_1.gml;house with tip below the ground
i306_2.gml;house with tip touching the bottom face
i306_3.gml;unit cube with one extra face inside another face
i306_4.gml;torus where the hole in the top/bottom faces touches the side surfaces
i307_1.gml;unit cube with one face (face #1) with opposite orientation
i308_1.gml;axis-aligned cube with normals all pointing inwards
i308_2.gml;not axis-aligned cube with normals all pointing inwards
v001.gml;unit cube
v002.gml;not axis-aligned cube with normals all pointing outwards
v003.gml;unit cube with top face having 3 triangles forming the square
v004.gml;cube translated by (99999990
v005.gml;cube translated by (3333399999990
v006.gml;cube with -100.0 as z-coordinates
v007.gml;a real-life building from Munich
v008.gml;non-convex shape
v009.gml;cube with a pyramidal roof
v010.gml;Stanford bunny: valid
v011.gml;cube3 where there are extra faces that fill the hole on top face
v012.gml;cube5 where hole (inner ring) is touching the outer ring of a face
v013.gml;cube3 with one surface filling the hole
v014.gml;a "squared donut"
i103_1.gml;first polygon is not closed

OGC 16-064r1

75

University of Applied Sciences Stuttgart

name	 		 is_valid	

Solid-010-CP-NUMPOINTS.xml	

	

no	

Solid-020-CP-CLOSE.xml	

	

no	

Solid-030-CP-DUPPOINT.xml	

	

no	

Solid-040-CP-SELFINT.xml	

	

no	

OGC 16-064r1

76 Copyright © 2015 Open Geospatial Consortium.

Solid-050-CP-PLAN.xml	

	

no	

Solid-051-CP-PLAN.xml	

	

no	

Solid-060-CS-NUMFACES.xml	

	

no	

Solid-070-CS-SELFINT.xml	

	

no	

OGC 16-064r1

77

Solid-071-CS-SELFINT.xml	

	

no	

Solid-080-CS-2POLYPEREDGE.xml	

	

no	

Solid-090-CS-FACEORIENT.xml	

	

no	

Solid-100-CS-FACEOUT.xml	

	

no	

OGC 16-064r1

78 Copyright © 2015 Open Geospatial Consortium.

Solid-110-CS-CONCOMP.xml	

	

yes	

Solid-111-CS-CONCOMP.xml	

	

yes	

Solid-112-CS-CONCOMP.xml	

	

no	

Solid-120-CS-UMBRELLA.xml	

	

no	

OGC 16-064r1

79

Solid-BS_COPLANAR_SURFACE.xml	

	

yes	

Solid-SimpleBldg.xml	

	

yes	

